Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Glycobiology ; 31(11): 1531-1542, 2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34324645

RESUMEN

Fractones, specialized extracellular matrix structures found in the subventricular zone (SVZ) neurogenic niche, can capture growth factors, such as basic fibroblast growth factor, from the extracellular milieu through a heparin-binding mechanism for neural stem cell (NSC) presentation, which promotes neurogenesis. During aging, a decline in neurogenesis correlates with a change in the composition of heparan sulfate (HS) within fractones. In this study, we used antibodies that recognize specific short oligosaccharides with varying sulfation to evaluate the HS composition in fractones in young and aged brains. To further understand the conditions that regulate 6-O sulfation levels and its impact on neurogenesis, we used endosulfatase Sulf1 and Sulf2 double knockout (DKO) mice. Fractones in the SVZ of Sulf1/2 DKO mice showed immunoreactivity for the HS epitope, suggesting higher 6-O sulfation. While neurogenesis declined in the aged SVZ of both wild-type and Sulf1/2 DKO mice, we observed a larger number of neuroblasts in the young and aged SVZ of Sulf1/2 DKO mice. Together, these results show that the removal of 6-O-sulfation in fractones HS by endosulfatases inhibits neurogenesis in the SVZ. Our findings advance the current understanding regarding the extracellular environment that is best suited for NSCs to thrive, which is critical for the design of future stem cell therapies.


Asunto(s)
Heparitina Sulfato/metabolismo , Ventrículos Laterales/metabolismo , Sulfatasas/metabolismo , Sulfotransferasas/metabolismo , Animales , Matriz Extracelular , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Neurogénesis , Nicho de Células Madre , Sulfatasas/deficiencia , Sulfotransferasas/deficiencia
2.
Biochem J ; 477(20): 3963-3983, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33120425

RESUMEN

Sulfatases constitute a family of enzymes that specifically act in the hydrolytic degradation of sulfated metabolites by removing sulfate monoesters from various substrates, particularly glycolipids and glycosaminoglycans. A common essential feature of all known eukaryotic sulfatases is the posttranslational modification of a critical cysteine residue in their active site by oxidation to formylglycine (FGly), which is mediated by the FGly-generating enzyme in the endoplasmic reticulum and is indispensable for catalytic activity. The majority of the so far described sulfatases localize intracellularly to lysosomes, where they act in different catabolic pathways. Mutations in genes coding for lysosomal sulfatases lead to an accumulation of the sulfated substrates in lysosomes, resulting in impaired cellular function and multisystemic disorders presenting as lysosomal storage diseases, which also cover the mucopolysaccharidoses and metachromatic leukodystrophy. Bioinformatics analysis of the eukaryotic genomes revealed, besides the well described and long known disease-associated sulfatases, additional genes coding for putative enzymes with sulfatases activity, including arylsulfatase G as well as the arylsulfatases H, I, J and K, respectively. In this article, we review current knowledge about lysosomal sulfatases with a special focus on the just recently characterized family members arylsulfatase G and arylsulfatase K.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/enzimología , Lisosomas/metabolismo , Sulfatasas/genética , Sulfatasas/metabolismo , Animales , Dominio Catalítico , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Glicina/análogos & derivados , Glicina/química , Humanos , Lisosomas/enzimología , Filogenia , Procesamiento Proteico-Postraduccional , Sulfatasas/química , Sulfatasas/deficiencia
3.
J Inherit Metab Dis ; 43(6): 1298-1309, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32749716

RESUMEN

Multiple sulfatase deficiency (MSD) is an ultra-rare neurodegenerative disorder caused by pathogenic variants in SUMF1. This gene encodes formylglycine-generating enzyme (FGE), a protein required for sulfatase activation. The clinical course of MSD results from additive effect of each sulfatase deficiency, including metachromatic leukodystrophy (MLD), several mucopolysaccharidoses (MPS II, IIIA, IIID, IIIE, IVA, VI), chondrodysplasia punctata, and X-linked ichthyosis. While it is known that affected individuals demonstrate a complex and severe phenotype, the genotype-phenotype relationship and detailed clinical course is unknown. We report on 35 cases enrolled in our retrospective natural history study, n = 32 with detailed histories. Neurologic function was longitudinally assessed with retrospective scales. Biochemical and computational modeling of novel SUMF1 variants was performed. Genotypes were classified based on predicted functional change, and each individual was assigned a genotype severity score. The median age at symptom onset was 0.25 years; median age at diagnosis was 2.7 years; and median age at death was 13 years. All individuals demonstrated developmental delay, and only a subset of individuals attained ambulation and verbal communication. All subjects experienced an accumulating systemic symptom burden. Earlier age at symptom onset and severe variant pathogenicity correlated with poor neurologic outcomes. Using retrospective deep phenotyping and detailed variant analysis, we defined the natural history of MSD. We found that attenuated cases can be distinguished from severe cases by age of onset, attainment of ambulation, and genotype. Results from this study can help inform prognosis and facilitate future study design.


Asunto(s)
Leucodistrofia Metacromática/genética , Mucopolisacaridosis/genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Adolescente , Niño , Preescolar , Femenino , Genotipo , Glicina/análogos & derivados , Glicina/genética , Glicina/metabolismo , Humanos , Lactante , Internacionalidad , Leucodistrofia Metacromática/patología , Masculino , Mucopolisacaridosis/patología , Enfermedad por Deficiencia de Múltiples Sulfatasas/patología , Mutación , Fenotipo , Enfermedades Raras , Estudios Retrospectivos , Sulfatasas/deficiencia , Sulfatasas/genética
4.
J Inherit Metab Dis ; 43(6): 1288-1297, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32621519

RESUMEN

Multiple Sulfatase Deficiency (MSD, MIM#272200) is an ultra-rare lysosomal storage disorder arising from mutations in the SUMF1 gene, which encodes the formylglycine-generating enzyme (FGE). FGE is necessary for the activation of sulfatases, a family of enzymes that are involved in the degradation of sulfated substrates such as glycosaminoglycans and sulfolipids. SUMF1 mutations lead to functionally impaired FGE and individuals with MSD demonstrate clinical signs of single sulfatase deficiencies, including metachromatic leukodystrophy (MLD) and several mucopolysaccharidosis (MPS) subtypes. Comprehensive information related to the natural history of MSD is missing. We completed a systematic literature review and a meta-analysis on data from published cases reporting on MSD. As available from these reports, we extracted clinical, genetic, biochemical, and brain imaging information. We identified 75 publications with data on 143 MSD patients with a total of 53 unique SUMF1 mutations. The mean survival was 13 years (95% CI 9.8-16.2 years). Seventy-five clinical signs and 11 key clusters of signs were identified. The most frequently affected organs systems were the nervous, skeletal, and integumentary systems. The most frequent MRI features were abnormal myelination and cerebral atrophy. Individuals with later onset MSD signs and survived longer than those with signs at birth. Less severe mutations, low disease burden and achievement of independent walking positively correlated with longer survival. Despite the limitations of our approach, we were able to define clinical characteristics and disease outcomes in MSD. This work will provide the foundation of natural disease history data needed for future clinical trial design.


Asunto(s)
Leucodistrofia Metacromática/genética , Mucopolisacaridosis/genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Glicina/análogos & derivados , Glicina/genética , Glicina/metabolismo , Humanos , Leucodistrofia Metacromática/patología , Mucopolisacaridosis/patología , Enfermedad por Deficiencia de Múltiples Sulfatasas/patología , Procesamiento Proteico-Postraduccional/genética , Sulfatasas/deficiencia , Sulfatasas/genética
5.
Mol Genet Metab ; 130(4): 283-288, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32620537

RESUMEN

Multiple Sulfatase Deficiency (MSD) is an inborn error of metabolism caused by pathogenic variants in the SUMF1 gene encoding the formylglycine-generating enzyme (FGE) that activates all known sulfatases. FGE deficiency results in widespread tissue accumulation of multiple sulphated substrates. Through a systematic analysis of published cases, we retrieved 80 MSD cases and reviewed the disease clinical, biochemical, and genetic findings. Leukodystrophy, neurosensorial hearing loss, and ichthyosis were the most frequent findings at diagnosis. Of 51 reported pathogenic variants, 20 were likely gene disruptive and the remaining were missense variants. No correlations between class of variants and clinical severity or degree of enzyme deficiency were detected. However, cases harboring variants located at N-terminal always had severe neonatal presentations. Moreover, cases with neonatal onset showed the lowest overall survival rate compared to late-infantile and juvenile onsets. Using GnomAD, carrier frequency for pathogenic SUMF1 variants was estimated to be ~1/700 and the disease prevalence was approximately 1/2,000,000. In summary, MSD is an ultra-rare multisystem disorder with mainly neurologic, hearing and skin involvements. Although the collected data were retrospective and heterogenous, the quantitative data inform the disease natural history and are important for both counseling and design of future interventional studies.


Asunto(s)
Enfermedad por Deficiencia de Múltiples Sulfatasas/diagnóstico , Mutación , Sulfatasas/deficiencia , Sulfatasas/genética , Adolescente , Niño , Preescolar , Estudios Transversales , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Enfermedad por Deficiencia de Múltiples Sulfatasas/enzimología , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Pronóstico , Tasa de Supervivencia , Revisiones Sistemáticas como Asunto
6.
Int J Mol Sci ; 21(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414121

RESUMEN

Multiple sulfatase deficiency (MSD, MIM #272200) is an ultra-rare disease comprising pathophysiology and clinical features of mucopolysaccharidosis, sphingolipidosis and other sulfatase deficiencies. MSD is caused by impaired posttranslational activation of sulfatases through the formylglycine generating enzyme (FGE) encoded by the sulfatase modifying factor 1 (SUMF1) gene, which is mutated in MSD. FGE is a highly conserved, non-redundant ER protein that activates all cellular sulfatases by oxidizing a conserved cysteine in the active site of sulfatases that is necessary for full catalytic activity. SUMF1 mutations result in unstable, degradation-prone FGE that demonstrates reduced or absent catalytic activity, leading to decreased activity of all sulfatases. As the majority of sulfatases are localized to the lysosome, loss of sulfatase activity induces lysosomal storage of glycosaminoglycans and sulfatides and subsequent cellular pathology. MSD patients combine clinical features of all single sulfatase deficiencies in a systemic disease. Disease severity classifications distinguish cases based on age of onset and disease progression. A genotype- phenotype correlation has been proposed, biomarkers like excreted storage material and residual sulfatase activities do not correlate well with disease severity. The diagnosis of MSD is based on reduced sulfatase activities and detection of mutations in SUMF1. No therapy exists for MSD yet. This review summarizes the unique FGE/ sulfatase physiology, pathophysiology and clinical aspects in patients and their care and outlines future perspectives in MSD.


Asunto(s)
Mucopolisacaridosis/genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Esfingolipidosis/genética , Glicina/análogos & derivados , Glicina/genética , Glicina/metabolismo , Humanos , Mucopolisacaridosis/patología , Enfermedad por Deficiencia de Múltiples Sulfatasas/patología , Mutación/genética , Procesamiento Proteico-Postraduccional/genética , Esfingolipidosis/patología , Sulfatasas/deficiencia , Sulfatasas/genética
7.
Mol Genet Metab ; 123(3): 337-346, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29397290

RESUMEN

Multiple sulfatase deficiency (MSD) is an ultra-rare neurodegenerative disorder that results in defective sulfatase post-translational modification. Sulfatases in the body are activated by a unique protein, formylglycine-generating enzyme (FGE) that is encoded by SUMF1. When FGE is absent or insufficient, all 17 known human sulfatases are affected, including the enzymes associated with metachromatic leukodystrophy (MLD), several mucopolysaccharidoses (MPS II, IIIA, IIID, IVA, VI), chondrodysplasia punctata, and X-linked ichthyosis. As such, individuals demonstrate a complex and severe clinical phenotype that has not been fully characterized to date. In this report, we describe two individuals with distinct clinical presentations of MSD. Also, we detail a comprehensive systems-based approach to the management of individuals with MSD, from the initial diagnostic evaluation to unique multisystem issues and potential management options. As there have been no natural history studies to date, the recommendations within this report are based on published studies and consensus opinion and underscore the need for future research on evidence-based outcomes to improve management of children with MSD.


Asunto(s)
Consenso , Enfermedad por Deficiencia de Múltiples Sulfatasas/terapia , Enfermedades Raras/terapia , Sulfatasas/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Preescolar , Femenino , Humanos , Masculino , Enfermedad por Deficiencia de Múltiples Sulfatasas/diagnóstico , Enfermedad por Deficiencia de Múltiples Sulfatasas/etiología , Enfermedad por Deficiencia de Múltiples Sulfatasas/patología , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Procesamiento Proteico-Postraduccional/genética , Enfermedades Raras/diagnóstico , Enfermedades Raras/etiología , Sulfatasas/deficiencia
8.
Protein Pept Lett ; 24(8): 710-722, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28741461

RESUMEN

Glycosaminoglycans (GAGs) such as heparan sulfate (HS) interact with a number of factors in the extracellular matrix (ECM) and as a consequence play a key role in the metabolic processes occurring within the cell. The dynamic synthesis and degradation of HS (and all GAGs) are necessary for ensuring that optimal chains are present for these functions. The degradation of HS begins at the cell surface and finishes in the lysosome, after which components can be recycled. Deficiencies or mutations in the lysosomal enzymes that process GAGs result in rare Mucopolysaccharidoses disorders (MPSs). There are few treatments available for these genetically inherited diseases and those that are available often do not treat the neurological symptoms of the disease. In this review, we discuss the enzymes involved in the degradation of HS and their related diseases, with emphasis on those located in the lysosome.


Asunto(s)
Matriz Extracelular/enzimología , Heparitina Sulfato/metabolismo , Lisosomas/enzimología , Mucopolisacaridosis/enzimología , Secuencia de Carbohidratos , Expresión Génica , Glicósido Hidrolasas/deficiencia , Glicósido Hidrolasas/genética , Humanos , Lisosomas/patología , Mucopolisacaridosis/genética , Mucopolisacaridosis/patología , Sulfatasas/deficiencia , Sulfatasas/genética
9.
Am J Respir Cell Mol Biol ; 57(5): 560-569, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28657777

RESUMEN

Epithelial injury has been proposed to be the initiating factor in the pathogenesis of idiopathic pulmonary fibrosis (IPF). We have shown previously that heparan sulfate 6-O-endosulfatase (Sulf) 2 is overexpressed in the hyperplastic type II alveolar epithelial cells (AECs) in the IPF lungs. By removing 6-O-sulfates from specific heparan sulfate intrachain sites, Sulf2 modulates the functions of many growth factors and cytokines. In this study, we hypothesized that Sulf2 plays a regulatory role in alveolar epithelial injury and repair, using the murine bleomycin model. Consistent with our findings in human IPF lungs, bleomycin treatment in mice resulted in up-regulation of Sulf2 mRNA in whole-lung extracts and overexpression of Sulf2 protein in type II AECs on lung tissue sections. Sulf2 protein was detectable in bronchoalveolar lavage fluid at baseline, and its level was significantly increased after bleomycin exposure. To study the role of Sulf2 in alveolar injury and repair in vivo, we generated a doxycycline-inducible epithelial-specific Sulf2 conditional knockout (Sulf2 CKO) mouse line. After bleomycin exposure, Sulf2 CKO mice exhibited enhanced neutrophil infiltration in the lung, with elevated levels of total protein, lactate dehydrogenase, and cytokines (granulocyte colony-stimulating factor and interferon-γ-inducible protein 10) in bronchoalveolar lavage fluid compared with wild-type littermates. We further showed that both the p53-p21 DNA damage response and the transforming growth factor-ß1 signaling pathway were up-regulated in Sulf2 CKO mice compared with wild-type. Finally, Sulf2 CKO mice suffered increased mortality after bleomycin exposure. In conclusion, Sulf2 expression in type II AECs plays a protective role in epithelial injury, inflammation and mortality.


Asunto(s)
Bleomicina/farmacología , Lesión Pulmonar/metabolismo , Sulfatasas/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Inflamación/metabolismo , Inflamación/mortalidad , Lesión Pulmonar/inducido químicamente , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/mortalidad , Sulfatasas/deficiencia
10.
Am J Physiol Renal Physiol ; 310(5): F395-408, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26764203

RESUMEN

Glomerular integrity and functions are maintained by growth factor signaling. Heparan sulfate, the major component of glomerular extracellular matrixes, modulates growth factor signaling, but its roles in glomerular homeostasis are unknown. We investigated the roles of heparan sulfate 6-O-endosulfatases, sulfatase (Sulf)1 and Sulf2, in glomerular homeostasis. Both Sulf1 and Sulf2 were expressed in the glomeruli of wild-type (WT) mice. Sulf1 and Sulf2 double-knockout (DKO) mice showed glomerular hypercellularity, matrix accumulation, mesangiolysis, and glomerular basement membrane irregularity. Platelet-derived growth factor (PDGF)-B and PDGF receptor-ß were upregulated in Sulf1 and Sulf2 DKO mice compared with WT mice. Glomeruli from Sulf1 and Sulf2 DKO mice in vitro stimulated by either PDGF-B, VEGF, or transforming growth factor-ß similarly showed reduction of phospho-Akt, phospho-Erk1/2, and phospho-Smad2/3, respectively. Since glomerular lesions in Sulf1 and Sulf2 DKO mice were reminiscent of diabetic nephropathy, we examined the effects of Sulf1 and Sulf2 gene disruption in streptozotocin-induced diabetes. Diabetic WT mice showed an upregulation of glomerular Sulf1 and Sulf2 mRNA by in situ hybridization. Diabetic DKO mice showed significant increases in albuminuria and serum creatinine and an acceleration of glomerular pathology without glomerular hypertrophy; those were associated with a reduction of glomerular phospho-Akt. In conclusion, Sulf1 and Sulf2 play indispensable roles to maintain glomerular integrity and protective roles in diabetic nephropathy, probably by growth factor modulation.


Asunto(s)
Nefropatías Diabéticas/enzimología , Heparitina Sulfato/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Glomérulos Renales/efectos de los fármacos , Receptores de Factores de Crecimiento/agonistas , Transducción de Señal/efectos de los fármacos , Sulfatasas/metabolismo , Sulfotransferasas/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Predisposición Genética a la Enfermedad , Glomérulos Renales/enzimología , Glomérulos Renales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , Receptores de Factores de Crecimiento/metabolismo , Proteínas Smad Reguladas por Receptores/metabolismo , Sulfatasas/deficiencia , Sulfatasas/genética , Sulfotransferasas/deficiencia , Sulfotransferasas/genética , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Factor de Crecimiento Transformador beta/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología
11.
PLoS One ; 10(10): e0139853, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26448642

RESUMEN

INTRODUCTION: Sulf1 and Sulf2 are cell surface sulfatases, which remove specific 6-O-sulfate groups from heparan sulfate (HS) proteoglycans, resulting in modulation of various HS-dependent signaling pathways. Both Sulf1 and Sulf2 knockout mice show impairments in brain development and neurite outgrowth deficits in neurons. METHODOLOGY AND MAIN FINDINGS: To analyze the molecular mechanisms behind these impairments we focused on the postnatal cerebellum, whose development is mainly characterized by proliferation, migration, and neurite outgrowth processes of precursor neurons. Primary cerebellar granule cells isolated from Sulf1 or Sulf2 deficient newborns are characterized by a reduction in neurite length and cell survival. Furthermore, Sulf1 deficiency leads to a reduced migration capacity. The observed impairments in cell survival and neurite outgrowth could be correlated to Sulf-specific interference with signaling pathways, as shown for FGF2, GDNF and NGF. In contrast, signaling of Shh, which determines the laminar organization of the cerebellar cortex, was not influenced in either Sulf1 or Sulf2 knockouts. Biochemical analysis of cerebellar HS demonstrated, for the first time in vivo, Sulf-specific changes of 6-O-, 2-O- and N-sulfation in the knockouts. Changes of a particular HS epitope were found on the surface of Sulf2-deficient cerebellar neurons. This epitope showed a restricted localization to the inner half of the external granular layer of the postnatal cerebellum, where precursor cells undergo final maturation to form synaptic contacts. CONCLUSION: Sulfs introduce dynamic changes in HS proteoglycan sulfation patterns of the postnatal cerebellum, thereby orchestrating fundamental mechanisms underlying brain development.


Asunto(s)
Proteoglicanos de Heparán Sulfato/metabolismo , Neuritas/fisiología , Sulfatasas/metabolismo , Sulfotransferasas/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Proteínas Hedgehog/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Neuronas/metabolismo , Transducción de Señal , Sulfatasas/deficiencia , Sulfatasas/genética , Sulfotransferasas/deficiencia , Sulfotransferasas/genética
12.
J Biol Chem ; 288(29): 21389-21398, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23740243

RESUMEN

Tissue regeneration requires the activation of a set of specific growth signaling pathways. The identity of these cascades and their biological roles are known; however, the molecular mechanisms regulating the interplay between these pathways remain poorly understood. Here, we define a new role for SULFATASE 2 (SULF2) in regulating tissue regeneration and define the WNT-GLI1 axis as a novel downstream effector for this sulfatase in a liver model of tissue regeneration. SULF2 is a heparan sulfate 6-O-endosulfatase, which releases growth factors from extracellular storage sites turning active multiple signaling pathways. We demonstrate that SULF2-KO mice display delayed regeneration after partial hepatectomy (PH). Mechanistic analysis of the SULF2-KO phenotype showed a decrease in WNT signaling pathway activity in vivo. In isolated hepatocytes, SULF2 deficiency blocked WNT-induced ß-CATENIN nuclear translocation, TCF activation, and proliferation. Furthermore, we identified the transcription factor GLI1 as a novel target of the SULF2-WNT cascade. WNT induces GLI1 expression in a SULF2- and ß-CATENIN-dependent manner. GLI1-KO mice phenocopied the SULF2-KO, showing delayed regeneration and decreased hepatocyte proliferation. Moreover, we identified CYCLIN D1, a key mediator of cell growth during tissue regeneration, as a GLI1 transcriptional target. GLI1 binds to the cyclin d1 promoter and regulates its activity and expression. Finally, restoring GLI1 expression in the liver of SULF2-KO mice after PH rescues CYCLIN D1 expression and hepatocyte proliferation to wild-type levels. Thus, together these findings define a novel pathway in which SULF2 regulates tissue regeneration in part via the activation of a novel WNT-GLI1-CYCLIN D1 pathway.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Regeneración Hepática , Sulfatasas/metabolismo , Vía de Señalización Wnt , Animales , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Hepatectomía , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Regeneración Hepática/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Sulfatasas/deficiencia , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt3A/farmacología , Proteína con Dedos de Zinc GLI1 , beta Catenina/metabolismo
13.
Cell Microbiol ; 15(9): 1560-71, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23480519

RESUMEN

The first step in attachment of Chlamydia to host cells is thought to involve reversible binding to host heparan sulfate proteoglycans (HSPGs), polymers of variably sulfated repeating disaccharide units coupled to diverse protein backbones. However, the key determinants of HSPG structure that are involved in Chlamydia binding are incompletely defined. A previous genome-wide Drosophila RNAi screen suggested that the level of HSPG 6-O sulfation rather than the identity of the proteoglycan backbone maybe a critical determinant for binding. Here, we tested in mammalian cells whether SULF1 or SULF2, human endosulfatases, which remove 6-O sulfates from HSPGs, modulate Chlamydia infection. Ectopic expression of SULF1 or SULF2 in HeLa cells, which decreases cell surface HSPG sulfation, diminished C. muridarum binding and decreased vacuole formation. ShRNA depletion of endogenous SULF2 in a cell line that primarily expresses SULF2 augmented binding and increased vacuole formation. C. muridarum infection of diverse cell lines resulted indownregulation of SULF2 mRNA. In a murine model of acute pneumonia, mice genetically deficient in both endosulfatases or in SULF2 alone demonstrated increased susceptibility to C. muridarum lung infection. Collectively, these studies demonstrate that the level of HSPG 6-O sulfation is a critical determinant of C. muridarum infection in vivo and that 6-O endosulfatases are previously unappreciated modulators of microbial pathogenesis.


Asunto(s)
Adhesión Bacteriana , Infecciones por Chlamydia/inmunología , Chlamydia muridarum/inmunología , Heparitina Sulfato/metabolismo , Sulfotransferasas/inmunología , Animales , Infecciones por Chlamydia/microbiología , Chlamydia muridarum/crecimiento & desarrollo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Células HeLa , Humanos , Ratones , Ratones Noqueados , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/microbiología , Sulfatasas/deficiencia , Sulfatasas/inmunología , Sulfotransferasas/deficiencia , Sulfotransferasas/metabolismo
14.
Zhonghua Er Ke Za Zhi ; 51(11): 836-41, 2013 Nov.
Artículo en Chino | MEDLINE | ID: mdl-24484558

RESUMEN

OBJECTIVE: Multiple sulfatase deficiency is a rare autosomal recessively inherited lysosomal storage disorder characterized by the accumulation of sulfated lipids and acid mucopolysaccharides. The aim of this study was to explore the clinical manifestations, enzyme activities and SUMF1 gene mutations in two Chinese patients with multiple sulfatase deficiency. METHOD: One boy and one girl from two families were studied. Both patients presented with mental retardation, mild coarse facial features, a neurodegenerative course of disease with loss of sensory and motor function after 2 years of age, ichthyosis and skeletal abnormalities (kyphosis or/and scoliosis). Clinical characteristics indicate multiple sulfatase deficiency.Sulfatases activities in blood leucocytes, plasma or cultured fibroblast of the patients were measured.Genomic DNAs were extracted from peripheral blood leukocytes from the patients and their parents. All SUMF1 gene exons and intron-exon boundaries were amplified by PCR and subjected for direct sequencing. RESULT: In case 1, five sulfatases activities of blood leucocytes and four sulfatases of cultured skin-fibroblasts were analyzed.In case 2, three sulfatases activities of blood leucocytes were tested.Significantly decreased sulfatases activities confirmed the diagnosis of multiple sulfatase deficiency.On SUMF1 gene, c.793_794 insATG (p. P265X)/ c.1045C>T (p.R349W) in case 1 and c.451A>G (p.K151E)/ c.1046G>C (p.R349Q) in case 2 were detected, respectively. Three novel mutations c.793_794insAGT, c.1046G>C and c.451A>G were identified. CONCLUSIONS: Multiple sulfatase deficiency usually results in multi-organ damage, especially neurologic, skeletal and skin.Sulfatases assay and SUMF1 gene analysis are necessary for the diagnosis. Two Chinese cases with multiple sulfatase deficiency were firstly reported. Three novel mutations were found.It should be considered that the mutation profile of SUMF1 gene in Chinese patients is different from other populations.


Asunto(s)
Enfermedad por Deficiencia de Múltiples Sulfatasas/diagnóstico , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Mutación/genética , Sulfatasas/genética , Anomalías Múltiples , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Discapacidad Intelectual/etiología , Discapacidad Intelectual/patología , Leucocitos/metabolismo , Masculino , Enfermedad por Deficiencia de Múltiples Sulfatasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Reacción en Cadena de la Polimerasa , Sulfatasas/deficiencia , Sulfatasas/metabolismo
15.
Autophagy ; 8(12): 1871-2, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23047468

RESUMEN

Neurodegeneration is a prominent feature of lysosomal storage disorders (LSDs). Emerging data identify autophagy dysfunction in neurons as a major component of the phenotype. However, the autophagy pathway in the CNS has been studied predominantly in neurons, whereas in other cell types it has been largely unexplored. We studied the lysosome-autophagic pathway in astrocytes from a murine model of multiple sulfatase deficiency (MSD), a severe form of LSD. Similar to what was observed in neurons, we found that lysosomal storage in astrocytes impairs autophagosome maturation and this, in turn, has an impact upon the survival of cortical neurons and accounts for some of the neurological features found in MSD. Thus, our data indicate that lysosomal/autophagic dysfunction in astrocytes is an important component of neurodegeneration in LSDs.


Asunto(s)
Astrocitos/patología , Autofagia , Enfermedades por Almacenamiento Lisosomal/patología , Animales , Astrocitos/enzimología , Inflamación/patología , Enfermedades por Almacenamiento Lisosomal/enzimología , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Fagosomas/metabolismo , Fagosomas/ultraestructura , Células de Purkinje/metabolismo , Células de Purkinje/patología , Sulfatasas/deficiencia , Sulfatasas/metabolismo
16.
J Biol Chem ; 286(29): 25973-82, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21507958

RESUMEN

The large-scale application of genomic and metagenomic sequencing technologies has yielded a number of insights about the metabolic potential of symbiotic human gut microbes. Nevertheless, the molecular basis of the interactions between commensal bacteria and their host remained to be investigated. Bacteria colonizing the mucosal layer that overlies the gut epithelium are exposed to highly sulfated glycans (i.e. mucin and glycosaminoglycans). These polymers can serve as potential nutrient sources, but their high sulfate content usually prevents their degradation. Commensal bacteria such as Bacteroides thetaiotaomicron possess more predicted sulfatase genes than in the human genome, the physiological functions of which are largely unknown. To be active, sulfatases must undergo a critical post-translational modification catalyzed in anaerobic bacteria by the radical AdoMet enzyme anaerobic sulfatase-maturating enzyme (anSME). In the present study, we have tested the role of this pathway in Bacteroides thetaiotaomicron which, in addition to 28 predicted sulfatases, possesses a single predicted anSME. In vitro studies revealed that deletion of the gene encoding its anSME (BT0238) results in loss of sulfatase activity and impaired ability to use sulfated polysaccharides as carbon sources. Co-colonization of formerly germ-free mice with both isogenic strains (i.e. wild-type or ΔanSME), or invasion experiments involving introduction of one followed by the other strain established that anSME activity and the sulfatases activated via this pathway, are important fitness factors for B. thetaiotaomicron, especially when mice are fed a simple sugar diet that requires this saccharolytic bacterium to adaptively forage on host glycans as nutrients. Whole genome transcriptional profiling of wild-type and the anSME mutant in vivo revealed that loss of this enzyme alters expression of genes involved in mucin utilization and that this disrupted ability to access mucosal glycans likely underlies the observed pronounced colonization defect. Comparative genomic analysis reveals that 100% of 46 fully sequenced human gut Bacteroidetes contain homologs of BT0238 and genes encoding sulfatases, suggesting that this is an important and evolutionarily conserved feature for bacterial adaptation to life in this habitat.


Asunto(s)
Bacteroides/enzimología , Bacteroides/fisiología , Tracto Gastrointestinal/microbiología , S-Adenosilmetionina/metabolismo , Sulfatasas/metabolismo , Simbiosis , Animales , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Ciego/microbiología , Dieta , Perfilación de la Expresión Génica , Genoma Bacteriano/genética , Genómica , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/microbiología , Mutación , Polisacáridos/metabolismo , Sulfatasas/deficiencia
17.
J Clin Endocrinol Metab ; 96(5): 1385-92, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21307141

RESUMEN

INTRODUCTION: The human placenta is believed to have insignificant CYP17 expression, rendering it dependent on the maternal and fetal compartments for the necessary androgenic precursors to yield the high levels of estrogens seen in pregnancy. OBJECTIVE: The aim of the study was to analyze whether the human trophoblast is capable of expressing CYP17 and producing androgens de novo. METHODS: Human trophoblasts from fresh placentas and JEG-3 cells were used for all experiments. CYP17 mRNA analysis was performed via RT-PCR, and protein detection by Western blot and immunohistochemical staining. Steroid products were quantified using RIAs. RESULTS: CYP17 mRNA was expressed in both cell types. CYP17 protein was detected by Western blotting and localized by immunostaining mainly to the cytoplasm of syncytiotrophoblasts. Measurement of 17α-hydroxyprogesterone, androstenedione, and their aromatized products in the media further demonstrated CYP17 expression and activity in the human trophoblast. Baseline levels of CYP17 steroid products were higher in primary cells and significantly increased in the presence of 22-hydroxycholesterol. CONCLUSIONS: We have demonstrated CYP17 mRNA and protein expression and activity in human trophoblasts. Considering the precursor concentration, blood flow, and mass of the placenta, we suggest that its contribution of androgens is an important source of estrogen production in pregnancy.


Asunto(s)
Andrógenos/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Placenta/enzimología , Esteroide 17-alfa-Hidroxilasa/biosíntesis , Corticoesteroides/farmacología , Adulto , Anencefalia/metabolismo , Western Blotting , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Medios de Cultivo , Femenino , Muerte Fetal , Humanos , Hidroxicolesteroles/metabolismo , Inmunohistoquímica , Embarazo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esteroides/metabolismo , Sulfatasas/deficiencia , Trofoblastos/enzimología
18.
Mol Ther ; 19(5): 860-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21326216

RESUMEN

Multiple sulfatase deficiency (MSD), a severe autosomal recessive disease is caused by mutations in the sulfatase modifying factor 1 gene (Sumf1). We have previously shown that in the Sumf1 knockout mouse model (Sumf1(-/-)) sulfatase activities are completely absent and, similarly to MSD patients, this mouse model displays growth retardation and early mortality. The severity of the phenotype makes MSD unsuitable to be treated by enzyme replacement or bone marrow transplantation, hence the importance of testing the efficacy of novel treatment strategies. Here we show that recombinant adeno-associated virus serotype 9 (rAAV9) vector injected into the cerebral ventricles of neonatal mice resulted in efficient and widespread transduction of the brain parenchyma. In addition, we compared a combined, intracerebral ventricles and systemic, administration of an rAAV9 vector encoding SUMF1 gene to the single administrations-either directly in brain, or systemic alone -in MSD mice. The combined treatment resulted in the global activation of sulfatases, near-complete clearance of glycosaminoglycans (GAGs) and decrease of inflammation in both the central nervous system (CNS) and visceral organs. Furthermore, behavioral abilities were improved by the combined treatment. These results underscore that the "combined" mode of rAAV9 vector administration is an efficient option for the treatment of severe whole-body disorders.


Asunto(s)
Terapia Genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/terapia , Sulfatasas/metabolismo , Animales , Western Blotting , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Ventrículos Cerebrales/virología , Dependovirus/genética , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Técnicas de Transferencia de Gen , Genes Transgénicos Suicidas , Vectores Genéticos , Glicosaminoglicanos/metabolismo , Inflamación/terapia , Ratones , Ratones Endogámicos C57BL , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Sulfatasas/deficiencia
19.
Eur J Hum Genet ; 19(3): 253-61, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21224894

RESUMEN

Multiple Sulfatase Deficiency (MSD) is caused by mutations in the sulfatase-modifying factor 1 gene encoding the formylglycine-generating enzyme (FGE). FGE post translationally activates all newly synthesized sulfatases by generating the catalytic residue formylglycine. Impaired FGE function leads to reduced sulfatase activities. Patients display combined clinical symptoms of single sulfatase deficiencies. For ten MSD patients, we determined the clinical phenotype, FGE expression, localization and stability, as well as residual FGE and sulfatase activities. A neonatal, very severe clinical phenotype resulted from a combination of two nonsense mutations leading to almost fully abrogated FGE activity, highly unstable FGE protein and nearly undetectable sulfatase activities. A late infantile mild phenotype resulted from FGE G263V leading to unstable protein but high residual FGE activity. Other missense mutations resulted in a late infantile severe phenotype because of unstable protein with low residual FGE activity. Patients with identical mutations displayed comparable clinical phenotypes. These data confirm the hypothesis that the phenotypic outcome in MSD depends on both residual FGE activity as well as protein stability. Predicting the clinical course in case of molecularly characterized mutations seems feasible, which will be helpful for genetic counseling and developing therapeutic strategies aiming at enhancement of FGE.


Asunto(s)
Codón sin Sentido , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Mutación Missense , Sulfatasas/genética , Edad de Inicio , Dominio Catalítico , Preescolar , Fibroblastos/metabolismo , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Enfermedades por Almacenamiento Lisosomal/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Fenotipo , Sulfatasas/deficiencia
20.
J Vet Diagn Invest ; 22(4): 622-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20622237

RESUMEN

Mucopolysaccharidosis type IIID is caused by a deficiency of N-acetylglucosamine-6-sulfatase, which is one of the enzymes involved in the catabolism of heparin sulfate. Simple molecular marker assays underpin modern routine animal breeding and research activities worldwide. With the rapid growth of single nucleotide polymorphism (SNP) resources for many important animal genetic disorders, the availability of routine assays for genotyping SNPs is of increased importance. In the current study, real-time polymerase chain reaction (PCR) is demonstrated to provide a valuable approach as a rapid and accurate alternative to a previously developed gel-based PCR as a straightforward and efficient assay for the diagnosis of caprine mucopolysaccharidosis IIID.


Asunto(s)
Genotipo , Enfermedades de las Cabras/diagnóstico , Mucopolisacaridosis/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , Sulfatasas/genética , Animales , Regulación Enzimológica de la Expresión Génica , Predisposición Genética a la Enfermedad , Enfermedades de las Cabras/genética , Cabras , Mucopolisacaridosis/diagnóstico , Mucopolisacaridosis/enzimología , Reacción en Cadena de la Polimerasa/métodos , Sulfatasas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...