Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Environ Microbiol Rep ; 16(5): e70019, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39396517

RESUMEN

Acidophilic sulphate-reducing bacteria (aSRB) are widespread anaerobic microorganisms that perform dissimilatory sulphate reduction and have key adaptations to tolerate acidic environments (pH <5.0), such as proton impermeability and Donnan potential. This diverse prokaryotic group is of interest from physiological, ecological, and applicational viewpoints. In this review, we summarize the interactions between aSRB and other microbial guilds, such as syntrophy, and their roles in the biogeochemical cycling of sulphur, iron, carbon, and other elements. We discuss the biotechnological applications of aSRB in treating acid mine drainage (AMD, pH <3), focusing on their ability to produce biogenic sulphide and precipitate metals, particularly in the context of utilizing microbial consortia instead of pure isolates. Metal sulphide nanoparticles recovered after AMD treatment have multiple potential technological uses, including in electronics and biomedicine, contributing to a cost-effective circular economy. The products of aSRB metabolisms, such as biominerals and isotopes, could also serve as biosignatures to understand ancient and extant microbial life in the universe. Overall, aSRB are active components of the sulphur and carbon cycles under acidic conditions, with potential natural and technological implications for the world around us.


Asunto(s)
Oxidación-Reducción , Sulfatos , Sulfatos/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Bacterias Reductoras del Azufre/metabolismo , Bacterias Reductoras del Azufre/genética , Bacterias Reductoras del Azufre/clasificación , Concentración de Iones de Hidrógeno , Minería , Sulfuros/metabolismo
2.
Environ Sci Pollut Res Int ; 31(21): 31213-31223, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38625470

RESUMEN

The establishment of sulfate (SO42-) reduction during methanogenesis may considerably hinder the efficient energetic exploitation of methane, once removing sulfide from biogas is obligate and can be costly. In addition, sulfide generation can negatively impact the performance of methanogens by triggering substrate competition and sulfide inhibition. This study investigated the impacts of removing SO42- during fermentation on the performance of a second-stage methanogenic continuous reactor (R2), comparing the results with those obtained in a single-stage system (R1) fed with SO42--rich wastewater (SO42- of up to 400 mg L-1, COD/SO42- of 3.12-12.50). The organic load (OL) was progressively increased to 5.0 g COD d-1 in both reactors, showing completely discrepant performances. Sulfate-reducing bacteria outperformed methanogens in the consumption for organic matter during the start-up phase (OL = 2.5 g COD d-1) in R1, directing up to 73% of the electron flow to SO42- reduction. An efficient methanogenic activity was established in R1 only after decreasing the OL to 0.625 g COD d-1, after which methanogenesis prevailed by consuming ca. 90% of the removed COD. Nevertheless, high sulfide proportions (up to 3.1%) were measured in biogas. Conversely, methanogenesis was promptly established in R2, resulting in a methane-rich (> 80%) and sulfide-free biogas regardless of the operating condition. From an economic perspective, processing the biogas evolved from R2 would be cheaper, although the techno-economic impacts of managing the sulfur pollution in the fermentative reactor still need to be understood.


Asunto(s)
Reactores Biológicos , Metano , Sulfuros , Metano/metabolismo , Aguas Residuales/química , Sulfatos/metabolismo , Separación de Fases
3.
Int J Phytoremediation ; 26(10): 1556-1563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584512

RESUMEN

Chile, the world's leading copper producer, generates significant volumes of mining waters, some of which cannot be recirculated into the production process. These mining waters are characterized by elevated sulfate (SO42-) concentrations, requiring sustainable management strategies for potential reuse. This study aims to evaluate the rhizofiltration technique using Carpobrotus chilensis for treating mining waters with a high SO42- concentration. Initially, the mining waters exhibited a pH of 7.97 ± 0.16 and a SO42- concentration of 2,743 ± 137 mg L-1, while the control water had a pH of 7.88 ± 0.08 and a SO42- concentration of 775 ± 19.0 mg L-1. The plants were hydroponically cultivated in 40 L containers with mining waters and drinking water as a control. Over an 8-week period, the pH of the mining water decreased to 3.12 ± 0.01, and the SO42- concentration declined to 2,200 ± 110 mg L-1. Notably, the fresh weight of roots was significantly higher in plants grown in mining water (22.2 ± 6.66 g) compared to those in the control treatment (14.3 ± 4.28 g). However, an undesirable increase in the acidity was observed in the mining waters after rhizofiltration, which was attributed to hydrogen sulfate (HSO4-) and/or root exudates. Despite the unexpected increase in acidity, C. chilensis effectively reduced the concentration of SO42- in mining waters by 20%. Additionally, the C. chilensis roots accumulated 4.84 ± 1.40% of sulfur (S), a level comparable to thiophore plants. This study provides evidence that this non-aquatic plant can be used in sulfate rhizofiltration.


Caprobrotus chilensis is a good candidate for sulfate rhizolfiltration in mining waters.The accumulation of sulfur by the roots of Carpobrotus chilensis reached 4.84%Mining waters with a high concentration of sulfates require control of the redox potential.


Asunto(s)
Biodegradación Ambiental , Minería , Sulfatos , Contaminantes Químicos del Agua , Sulfatos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Filtración , Purificación del Agua/métodos
4.
J Exp Bot ; 75(10): 2781-2798, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38366662

RESUMEN

Sulfur (S) is an essential macronutrient for plants and its availability in soils is an important determinant for growth and development. Current regulatory policies aimed at reducing industrial S emissions together with changes in agronomical practices have led to a decline in S contents in soils worldwide. Deficiency of sulfate-the primary form of S accessible to plants in soil-has adverse effects on both crop yield and nutritional quality. Hence, recent research has increasingly focused on unraveling the molecular mechanisms through which plants detect and adapt to a limiting supply of sulfate. A significant part of these studies involves the use of omics technologies and has generated comprehensive catalogs of sulfate deficiency-responsive genes and processes, principally in Arabidopsis together with a few studies centering on crop species such as wheat, rice, or members of the Brassica genus. Although we know that sulfate deficiency elicits an important reprogramming of the transcriptome, the transcriptional regulators orchestrating this response are not yet well understood. In this review, we summarize our current knowledge of gene expression responses to sulfate deficiency and recent efforts towards the identification of the transcription factors that are involved in controlling these responses. We further compare the transcriptional response and putative regulators between Arabidopsis and two important crop species, rice and tomato, to gain insights into common mechanisms of the response to sulfate deficiency.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Sulfatos , Sulfatos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo
5.
Molecules ; 28(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38138643

RESUMEN

The aim of the present study was to evaluate the differential expression of plasma proteins in broiler chickens supplemented with different sources (sulfates and hydroxychlorides) and levels of copper (15 and 150 mg kg-1) and manganese (80 and 120 mg kg-1). For this, plasma samples from 40 broiler chickens were used, divided into four experimental groups: S15-80 (15 ppm CuSO4 and 80 ppm MnSO4), S150-120 (150 ppm CuSO4 and 120 ppm MnSO4), H15-80 (15 ppm Cu(OH)Cl and 80 ppm Mn(OH)Cl), and H150-120 (150 ppm Cu(OH)Cl and 120 ppm Mn(OH)Cl). From plasma samples obtained from each bird from the same treatment, four pools were made considering 10 birds per group. Plasma proteome fractionation was performed by 2D-PAGE. Concentrations of the studied minerals were also evaluated in both plasma and protein pellet samples. A higher concentration of Cu and Mn was observed in the plasma and protein pellets of groups that received higher mineral supplementation levels compared to those receiving lower levels. Mn concentrations were higher in plasma and protein pellets of the hydroxychloride-supplemented groups than the sulfate-supplemented groups. Analysis of the gels revealed a total of 40 differentially expressed spots among the four treatments. Supplementation with different sources of minerals, particularly at higher levels, resulted in changes in protein regulation, suggesting a potential imbalance in homeostasis.


Asunto(s)
Cobre , Manganeso , Animales , Manganeso/metabolismo , Cobre/metabolismo , Pollos/metabolismo , Proteómica , Suplementos Dietéticos/análisis , Minerales/metabolismo , Sulfatos/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis
6.
Poult Sci ; 102(10): 102916, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37499613

RESUMEN

This study aimed to assess the influence of glycosaminoglycan (chondroitin and glucosamine sulfates) supplementation in the diet of broilers on the expression of matrix metallopeptidase 9 (MMP-9) and metallopeptidase inhibitor 2 (TIMP-2) genes, the synthesis of proteoglycans, collagen type II and chondrocytes, bone and cartilage macroscopy, bone mineral densitometry, bone breaking strength and mineral profile. A completely randomized design was carried out in a 3 × 3 factorial scheme (3 levels of chondroitin sulfate: 0.00, 0.05, and 0.10%; and 3 levels of glucosamine sulfate: 0.00, 0.15, and 0.30%), totaling 9 treatments. At 21 and 42 d of age, broilers were slaughtered, and tibias and femurs were collected for evaluation. There was an interaction (P < 0.05) of sulfates for the expression of MMP-9 and its inhibitor TIMP-2 in femur articular cartilage, as well as for the number of chondrocytes, collagen type II and proteoglycans in tibia articular cartilage, bone and cartilage macroscopy and mineral profile (P < 0.05), with better results obtained with the inclusion of chondroitin and/or glucosamine sulfates in the feed. In conclusion, chondroitin and glucosamine sulfates can be used in broiler diets in order to favor the development of the structure of the locomotor system (bones and joints), thus preventing locomotion problems.


Asunto(s)
Cartílago Articular , Glicosaminoglicanos , Animales , Glicosaminoglicanos/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/farmacología , Pollos , Colágeno Tipo II/metabolismo , Colágeno Tipo II/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/farmacología , Proteoglicanos/genética , Proteoglicanos/metabolismo , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacología , Glucosamina/metabolismo , Glucosamina/farmacología , Minerales/metabolismo , Sulfatos/metabolismo
7.
Arch Microbiol ; 205(5): 189, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055657

RESUMEN

A novel interdomain consortium composed of a methanogenic Archaeon and a sulfate-reducing bacterium was isolated from a microbial biofilm in an oil well in Cahuita National Park, Costa Rica. Both organisms can be grown in pure culture or as stable co-culture. The methanogenic cells were non-motile rods producing CH4 exclusively from H2/CO2. Cells of the sulfate-reducing partner were motile rods forming cell aggregates. They utilized hydrogen, lactate, formate, and pyruvate as electron donors. Electron acceptors were sulfate, thiosulfate, and sulfite. 16S rRNA sequencing revealed 99% gene sequence similarity of strain CaP3V-M-L2AT to Methanobacterium subterraneum and 98.5% of strain CaP3V-S-L1AT to Desulfomicrobium baculatum. Both strains grew from 20 to 42 °C, pH 5.0-7.5, and 0-4% NaCl. Based on our data, type strains CaP3V-M-L2AT (= DSM 113354 T = JCM 39174 T) and CaP3V-S-L1AT (= DSM 113299 T = JCM 39179 T) represent novel species which we name Methanobacterium cahuitense sp. nov. and Desulfomicrobium aggregans sp. nov.


Asunto(s)
Methanobacterium , Yacimiento de Petróleo y Gas , Methanobacterium/genética , Costa Rica , ARN Ribosómico 16S/genética , Sulfatos/metabolismo , Filogenia , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Ácidos Grasos
8.
Antiviral Res ; 203: 105330, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533778

RESUMEN

Despite substantial morbidity and mortality, no therapeutic agents exist for treatment of dengue or Zika, and the currently available dengue vaccine is only recommended for dengue virus (DENV)-immune individuals. Thus, development of therapeutic and/or preventive drugs is urgently needed. DENV and Zika virus (ZIKV) nonstructural protein 1 (NS1) can directly trigger endothelial barrier dysfunction and induce inflammatory responses, contributing to vascular leak in vivo. Here we evaluated the efficacy of the (1-6,1-3)-ß-D-glucan isolated from Agaricus subrufescens fruiting bodies (FR) and its sulfated derivative (FR-S) against DENV-2 and ZIKV infection and NS1-mediated pathogenesis. FR-S, but not FR, significantly inhibited DENV-2 and ZIKV replication in human monocytic cells (EC50 = 36.5 and 188.7 µg/mL, respectively) when added simultaneously with viral infection. No inhibitory effect was observed when FR or FR-S were added post-infection, suggesting inhibition of viral entry as a mechanism of action. In an in vitro model of endothelial permeability using human pulmonary microvascular endothelial cells (HPMECs), FR and FR-S (0.12 µg/mL) inhibited DENV-2 NS1- and ZIKV NS1-induced hyperpermeability by 50% and 100%, respectively, as measured by Trans-Endothelial Electrical Resistance. Treatment with 0.25 µg/mL of FR and FR-S inhibited DENV-2 NS1 binding to HPMECs. Further, FR-S significantly reduced intradermal hyperpermeability induced by DENV-2 NS1 in C57BL/6 mice and protected against DENV-induced morbidity and mortality in a murine model of dengue vascular leak syndrome. Thus, we demonstrate efficacy of FR-S against DENV and ZIKV infection and NS1-induced endothelial permeability in vitro and in vivo. These findings encourage further exploration of FR-S and other glycan candidates for flavivirus treatment alone or in combination with compounds with different mechanisms of action.


Asunto(s)
Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , beta-Glucanos , Agaricus , Animales , Anticuerpos Antivirales , Células Endoteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Sulfatos/metabolismo , Proteínas no Estructurales Virales/metabolismo , Infección por el Virus Zika/tratamiento farmacológico , beta-Glucanos/metabolismo
9.
FEMS Microbiol Ecol ; 98(5)2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35482603

RESUMEN

Andean wetlands hold extremophilic communities adapted to live in harsh conditions. Here, we investigated the microbial ecology of three high-altitude hypersaline ponds from La Puna region (Argentina) showing an increasing extent of desiccation by analyzing their lipid sedimentary record. We recreated the microbial community structure and the carbon metabolisms in each lacustrine system based on the molecular distribution of lipid biomarkers and their compound-specific carbon and hydrogen isotopic signatures. We detected lipid compounds considered to be biomarkers of cyanobacteria, sulfate-reducing bacteria, purple sulfur bacteria, and archaea in the three Andean ponds, as well as diatoms in the intermediate salinity system. The relative abundance of purple sulfur and sulfate-reducing bacteria decreased with salinity, whereas cyanobacteria and archaea decreased their relative abundance in the mid-saline pond to increase it again and became both prevailing at the highest salinity. Carbon fixation in the three ponds was driven by a combination of the reductive tricarboxylic acid cycle, the reductive pentose phosphate cycle, and the reductive acetyl-CoA pathway. This work is the first to describe molecular and isotopic lipid fingerprints in wetlands from the central Andean Puna, and serves as a basis for further biogeochemical studies in the area.


Asunto(s)
Cianobacterias , Humedales , Archaea/genética , Archaea/metabolismo , Biomarcadores/metabolismo , Carbono/metabolismo , Cianobacterias/metabolismo , Sedimentos Geológicos/microbiología , Lípidos , Sulfatos/metabolismo
10.
Virol J ; 19(1): 52, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331290

RESUMEN

BACKGROUND: Porcine circovirus type 2 (PCV2)-associated diseases are a major problem for the swine industry worldwide. In addition to vaccines, the availability of antiviral polymers provides an efficient and safe option for reducing the impact of these diseases. By virtue of their molecular weight and repetitious structure, polymers possess properties not found in small-molecule drugs. In this perspective, we focus on chitosan, a ubiquitous biopolymer, that adjusts the molecular weight and sulfated-mediated functionality can act as an efficient antiviral polymer by mimicking PCV2-cell receptor interactions. METHODS: Sulfated chitosan (Chi-S) polymers of two molecular weights were synthesized and characterized by FTIR, SEM-EDS and elemental analysis. The Chi-S solutions were tested against PCV2 infection in PK15 cells in vitro and antiviral activity was evaluated by measuring the PCV2 DNA copy number, TCID50 and capsid protein expression, upon application of different molecular weights, sulfate functionalization, and concentrations of polymer. In addition, to explore the mode of action of the Chi-S against PCV2 infection, experiments were designed to elucidate whether the antiviral activity of the Chi-S would be influenced by when it was added to the cells, relative to the time and stage of viral infection. RESULTS: Chi-S significantly reduced genomic copies, TCID50 titers and capsid protein of PCV2, showing specific antiviral effects depending on its molecular weight, concentration, and chemical functionalization. Assays designed to explore the mode of action of the low molecular weight Chi-S revealed that it exerted antiviral activity through impeding viral attachment and penetration into cells. CONCLUSIONS: These findings help better understanding the interactions of PCV2 and porcine cells and reinforce the idea that sulfated polymers, such as Chi-S, represent a promising candidates for use in antiviral therapies against PCV2-associated diseases. Further studies in swine are warranted.


Asunto(s)
Quitosano , Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Animales , Antivirales/metabolismo , Antivirales/farmacología , Proteínas de la Cápside/genética , Quitosano/metabolismo , Quitosano/farmacología , Infecciones por Circoviridae/prevención & control , Circovirus/genética , Peso Molecular , Sulfatos/metabolismo , Porcinos , Replicación Viral/genética
11.
Microb Ecol ; 84(2): 465-472, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34591135

RESUMEN

Acid mine drainage (AMD) is the major pollutant generated by the mining industry, and it is characterized by low pH and high concentration of metals and sulfate. The use of biochemical passive reactors (BPRs) is a promising strategy for its bioremediation. To date, there are various studies describing the taxonomical composition of BPR microbial communities, generally consisting of an assemblage of sulfate-reducing organisms inside Deltaproteobacteria, and a diverse set of anaerobic (ligno)cellulolytic bacteria; however, insights about its functional metagenomic content are still scarce. In previous studies, a laboratory-scale AMD bioremediation using biochemical passive reactors was designed and performed, tracking operation parameters, chemical composition, and changes, together with taxonomic composition of the microbiomes harbored in these systems. In order to reveal the main functional content of these communities, we used shotgun metagenomics analyses to explore genes of higher relative frequencies and their inferred functions during the AMD bioremediation from three BPRs representing the main microbiome compositions detected in the system. Remarkably, genes encoding for two-component regulatory systems and ABC transporters related to metal and inorganic ions, cellulose degradation enzymes, dicarboxylic acid production, and sulfite reduction complex were all detected at increased frequency. Our results evidenced that higher taxonomic diversity of the microbiome was arising together with a functional redundancy of the specific metabolic roles, indicating its co-selection and suggesting that its enrichment on BPRs may be implicated in the cumulative efficiency of these systems.


Asunto(s)
Metagenómica , Minería , Ácidos , Biodegradación Ambiental , Sulfatos/metabolismo
12.
J Biomol Struct Dyn ; 40(18): 8384-8393, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33860724

RESUMEN

In this work the DBL3x domain of the erythrocyte membrane protein from Plasmodium Falciparum (PfEMP1), was revisited as a potential molecular target for the development of new drugs against malaria. This protein interacts with chondroitin sulfate A (CSA), a glycosaminoglycan present in the substance fundamental for connective tissues of vertebrates and is implicated in malaria complications in pregnant women. We performed molecular docking and molecular dynamic studies of DBL3x complexed with CSA and five analogues, where the sulfate group was replaced by phosphate, in order to evaluate if the better electrostatic interactions provided by phosphate groups could afford better binders capable of preventing the binding of CSA to DBL3x. Results suggest that all proposed compounds have high affinity towards DBL3x and could bind better to the DBL3x domain of PfEMP1 than CSA, qualifying as potential inhibitors of this protein and, therefore, new potential leads for the drug design against malaria.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Malaria Falciparum , Malaria , Complicaciones Parasitarias del Embarazo , Animales , Antígenos de Protozoos/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacología , Eritrocitos/metabolismo , Femenino , Glicosaminoglicanos/metabolismo , Humanos , Malaria/complicaciones , Malaria/metabolismo , Malaria Falciparum/tratamiento farmacológico , Proteínas de la Membrana/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfatos , Placenta/metabolismo , Plasmodium falciparum/química , Embarazo , Complicaciones Parasitarias del Embarazo/metabolismo , Proteínas Protozoarias/química , Sulfatos/metabolismo
13.
J Mol Model ; 27(6): 189, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34046767

RESUMEN

Sulphate-reducing bacteria are commonly associated with biological causes of oil well souring. Biosulphetogenesis can directly affect oil quality and storage due to the accumulation of sulphides. In addition, these microorganisms can create bio-incrustation that can clog pipes. Sulphite reductase (SIR) is the enzyme responsible for converting ion sulphite into sulphide and several substances may interfere or control such activity. This interference can hinder growth of the sulphate-reducing bacteria and, consequently, it reduces sulphide accumulation in situ. This work focuses on molecular modelling techniques along with in vitro experiments in order to investigate the potential of two essential oils and one vegetable oil as main inhibitors of sulphite reductase activity. Docking simulation identified several substances present in Rosmarinus officinalis, Tea tree and Neem extractable oils as potential inhibitors of SIR. Substances present in Neem vegetable oil are the most potent inhibitors, followed by Rosmarinus officinalis and Tea tree essential oils. The Neem oil mixture showed a superior effectiveness in intracellular SIR inhibitory effects.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/enzimología , Simulación del Acoplamiento Molecular , Aceites Volátiles/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/antagonistas & inhibidores , Sulfatos/metabolismo , Aceite de Árbol de Té/farmacología , Bacterias/metabolismo , Rosmarinus/química
14.
BMC Plant Biol ; 20(1): 385, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831040

RESUMEN

BACKGROUND: Sulfur is a major component of biological molecules and thus an essential element for plants. Deficiency of sulfate, the main source of sulfur in soils, negatively influences plant growth and crop yield. The effect of sulfate deficiency on plants has been well characterized at the physiological, transcriptomic and metabolomic levels in Arabidopsis thaliana and a limited number of crop plants. However, we still lack a thorough understanding of the molecular mechanisms and regulatory networks underlying sulfate deficiency in most plants. In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. RESULTS: Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato at the transcript level, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SULFUR LIMITATION1, a central component of the sulfate starvation response in Arabidopsis. CONCLUSIONS: Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Sulfatos/metabolismo , Azufre/deficiencia , Azufre/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
15.
World J Microbiol Biotechnol ; 36(6): 81, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32448917

RESUMEN

This study evaluated the effect of three sulfate salt-based culture media on the reprecipitation of sulfur under the action of two types of bacterial inoculum, a pure strain of Acidithiobacillus ferrooxidans (ATCC 23270) and a consortium of this strain and Acidithiobacillus thiooxidans (ATCC 15494), in a biodesulfurization process for coal (particle size < 0.25 mm) from the 'La Guacamaya' mine (Puerto Libertador, Córdoba, Colombia). All of the experiments were periodically monitored, with measurements taken of pH, cell concentration, iron concentration, and pyrite oxidation. Additionally, mineralogical analyses were conducted on the initial and final coal samples, through scanning electron microscopy with an energy-dispersive X-ray spectrometer. The results showed that sulfate reprecipitation occurred primarily, and nearly entirely, during the first 3 days of the process. While all the treatments obtained high levels of mineral oxidation, the reprecipitation processes decreased in media with low concentrations of sulfate, leading to the higher final removal of inorganic sulfur. The bioassays revealed that after 15 days, the maximum pyrite oxidation (86%) and inorganic sulfur removal (53%) was obtained with the treatments using the Kos and McCready culture media. The bacteria evaluated were found to have a great ability to adapt to very simple culture media with minimal nutrient concentrations, and even with some nutrients absent (as in the case of magnesium).


Asunto(s)
Acidithiobacillus/crecimiento & desarrollo , Crecimiento Quimioautotrófico , Carbón Mineral/microbiología , Medios de Cultivo/química , Compuestos de Azufre/metabolismo , Acidithiobacillus/metabolismo , Biodegradación Ambiental , Hierro/metabolismo , Sulfatos/metabolismo , Sulfuros/metabolismo
16.
Int J Syst Evol Microbiol ; 70(5): 3219-3225, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32271141

RESUMEN

A novel Gram-negative, non-spore-forming, vibrio-shaped, anaerobic, alkaliphilic, sulfate-reducing bacterium, designated strain PAR22NT, was isolated from sediment samples collected at an alkaline crater lake in Guanajuato (Mexico). Strain PAR22NT grew at temperatures between 15 and 37 °C (optimum, 32 °C), at pH between pH 8.3 and 10.1 (optimum, pH 9.0-9.6), and in the presence of NaCl up to 10 %. Pyruvate, 2-methylbutyrate and fatty acids (4-18 carbon atoms) were used as electron donors in the presence of sulfate as a terminal electron acceptor and were incompletely oxidized to acetate and CO2. Besides sulfate, both sulfite and elemental sulfur were also used as terminal electron acceptors and were reduced to sulfide. The predominant fatty acids were summed feature 10 (C18 : 1 ω7c and/or C18 : 1 ω9t and/or C18 : 1 ω12t), C18 : 1 ω9c and C16 : 0. The genome size of strain PAR22NT was 3.8 Mb including 3391 predicted genes. The genomic DNA G+C content was 49.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that it belongs to the genus Desulfobotulus within the class Deltaproteobacteria. Its closest phylogenetic relatives are Desulfobotulus alkaliphilus (98.4 % similarity) and Desulfobotulus sapovorans (97.9 % similarity). Based on phylogenetic, phenotypic and chemotaxonomic characteristics, we propose that the isolate represents a novel species of the genus Desulfobotulus with the name Desulfobotulus mexicanus sp. nov. The type strain is PAR22NT (=DSM 105758T=JCM 32146T).


Asunto(s)
Deltaproteobacteria/clasificación , Lagos/microbiología , Filogenia , Sulfatos/metabolismo , Álcalis , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Deltaproteobacteria/aislamiento & purificación , Ácidos Grasos/química , Sedimentos Geológicos/microbiología , México , Oxidación-Reducción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Bacterias Reductoras del Azufre/clasificación , Bacterias Reductoras del Azufre/aislamiento & purificación
17.
Chemosphere ; 244: 125508, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31812042

RESUMEN

Two H2-based membrane biofilm reactor (H2-MBfR) systems, differing in membrane type, were tested for sulfate reduction from a real mining-process water having low alkalinity and high concentrations of dissolved sulfate and calcium. Maximum sulfate reductions were 99%, with an optimum pH range between 8 and 8.5, which minimized any toxic effect of unionized hydrogen sulfide (H2S) on sulfate-reducing bacteria (SRB) and calcite scaling on the fibers and in the biofilm. Although several strategies for control of pH and gas back-diffusion were applied, it was not possible to sustain a high degree of sulfate reduction over the long-term. The most likely cause was precipitation of calcite inside the biofilm and on the surface of fibers, which was shown by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) analysis. Another possible cause was a decline in pH, leading to inhibition by H2S. A H2/CO2 mixture in the gas supply was able to temporarily recover the effectiveness of the reactors and stabilize the pH. Biomolecular analysis showed that the biofilm was comprised of 15-20% SRB, but a great variety of autotrophic and heterotrophic genera, including sulfur-oxidizing bacteria, were present. Results also suggest that the MBfR system can be optimized by improving H2 mass transfer using fibers of higher gas permeability and by feeding a H2/CO2 mixture that is automatically adjusted for pH control.


Asunto(s)
Reactores Biológicos/microbiología , Minería , Sulfatos/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Procesos Autotróficos , Bacterias , Biopelículas , Hidrógeno/química , Membranas , Membranas Artificiales , Oxidación-Reducción , Sulfatos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
18.
FEMS Microbiol Ecol ; 95(12)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31665270

RESUMEN

The geothermal Copahue-Caviahue (GCC) system (Argentina) is an extreme acidic environment, dominated by the activity of Copahue volcano. Environments characterised by low pH values, such as volcanic areas, are of particular interest for the search of acidophilic microorganisms with application in biotechnological processes. In this work, sulfate-reducing microorganisms were investigated in geothermal acidic, anaerobic zones from GCC system. Sediment samples from Agua del Limón (AL1), Las Máquinas (LMa2), Las Maquinitas (LMi) and Baño 9 (B9-2, B9-3) were found to be acidic (pH values 2.1-3.0) to moderate acidic (5.1-5.2), containing small total organic carbon values, and ferric iron precipitates. The organic electron donor added to the enrichment was completely oxidised to CO2. Bacteria related to 'Desulfobacillus acidavidus' strain CL4 were found to be dominant (67-83% of the total number of clones) in the enrichment cultures, and their presence was confirmed by their isolation on overlay plates. Other bacteria were also detected with lower abundance (6-20% of the total number of clones), with representatives of the genera Acidithiobacillus, Sulfobacillus, Alicyclobacillus and Athalassotoga/Mesoaciditoga. These enrichment and isolates found at low pH confirm the presence of anaerobic activities in the acidic sediments from the geothermal Copahue-Caviahue system.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Manantiales de Aguas Termales/microbiología , Ácidos , Argentina , Bacterias/genética , Ambiente , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Sulfatos/metabolismo
19.
Geobiology ; 17(6): 660-675, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31328364

RESUMEN

The extent of fractionation of sulfur isotopes by sulfate-reducing microbes is dictated by genomic and environmental factors. A greater understanding of species-specific fractionations may better inform interpretation of sulfur isotopes preserved in the rock record. To examine whether gene diversity influences net isotopic fractionation in situ, we assessed environmental chemistry, sulfate reduction rates, diversity of putative sulfur-metabolizing organisms by 16S rRNA and dissimilatory sulfite reductase (dsrB) gene amplicon sequencing, and net fractionation of sulfur isotopes along a sediment transect of a hypersaline Arctic spring. In situ sulfate reduction rates yielded minimum cell-specific sulfate reduction rates < 0.3 × 10-15 moles cell-1  day-1 . Neither 16S rRNA nor dsrB diversity indices correlated with relatively constant (38‰-45‰) net isotope fractionation (ε34 Ssulfide-sulfate ). Measured ε34 S values could be reproduced in a mechanistic fractionation model if 1%-2% of the microbial community (10%-60% of Deltaproteobacteria) were engaged in sulfate respiration, indicating heterogeneous respiratory activity within sulfate-reducing populations. This model indicated enzymatic kinetic diversity of Apr was more likely to correlate with sulfur fractionation than DsrB. We propose that, above a threshold Shannon diversity value of 0.8 for dsrB, the influence of the specific composition of the microbial community responsible for generating an isotope signal is overprinted by the control exerted by environmental variables on microbial physiology.


Asunto(s)
Bacterias/metabolismo , Estanques/microbiología , Sulfatos/metabolismo , Isótopos de Azufre/metabolismo , Bacterias/clasificación , México , Microbiota , Oxidación-Reducción
20.
Artículo en Inglés | MEDLINE | ID: mdl-30676262

RESUMEN

Trichloroethylene (TCE) is known as a toxic organic compound found as a pollutant in water streams around the world. The ultimate goal of the present work was to determine the TCE concentration that would be feasible to biodegrade on a long-term basis by a sulfidogenic sludge while maintaining sulfate reducing activity (SRA). Microcosms were prepared with sulfidogenic sludge obtained from a stabilized sulfidogenic UASB and amended with different TCE concentrations (100-300 µM) and two different proportions of volatile fatty acids (VFA) acetate, propionate and butyrate at COD of 2.5:1:1 and 1:1:1, respectively to evaluate the tolerance of the sludge. The overall results suggested that the continuous exposure of the microorganisms to TCE leads to inhibition of SRA; nonetheless, the SRA can be recovered after adequate supplementation of carbon sources and sulfate. The most suitable TCE concentration to operate on a long-term basis while preserving SRA was 26-35 mg L-1 (200-260 µM). A low level of expression of the mRNA of the sulfite reductase subunit alpha (dsrA) gene was obtained in the presence of the TCE and its intermediate products. This gene was associated to SRB belonging to the genera Desulfovibrio, Desulfosalsimonas, Desulfotomaculum, Desulfococcus, Desulfatiglans and Desulfomonas.


Asunto(s)
Reactores Biológicos/microbiología , Aguas del Alcantarillado , Bacterias Reductoras del Azufre/efectos de los fármacos , Tricloroetileno/toxicidad , Contaminantes Químicos del Agua/toxicidad , Adaptación Fisiológica , Biodegradación Ambiental , Ácidos Grasos Volátiles/metabolismo , Estudios de Factibilidad , Genes Bacterianos , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Sulfatos/metabolismo , Bacterias Reductoras del Azufre/genética , Factores de Tiempo , Tricloroetileno/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA