Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 500: 220-227, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33358698

RESUMEN

The ability of chemo-radiation therapy to control locally advanced stage III non-small cell lung cancer (NSCLC) is poor. While addition of consolidation immunotherapy has improved outcomes in subsets of patients there is still an urgent need for new therapeutic targets. Emerging research indicates that nucleophosmin1 (NPM1) is over-expressed in NSCLC, promotes tumor growth and that over-expression correlates with a lower survival probability. NPM1 is critical for APE1 base excision activity and for RAD51-mediated repair of DNA double strand breaks (DSBs). YTR107 is a small molecule radiation sensitizer that has been shown to bind to NPM1, suppressing pentamer formation. Here we show that in irradiated cells YTR107 inhibits SUMOylated NPM1 from associating with RAD51, RAD51 foci formation and repair of DSBs. YTR107 acts synergistically with the PARP1/2 inhibitor ABT 888 to increase replication stress and radiation-induced cell lethality. YTR107 was found to radiosensitize tumor initiating cells. Congruent with this knowledge, adding YTR107 to a fractionated irradiation regimen diminished NSCLC xenograft growth and increased overall survival. These data support the hypothesis that YTR107 represents a therapeutic target for control of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Proteínas Nucleares/genética , Recombinasa Rad51/genética , Barbitúricos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Humanos , Indoles/farmacología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/radioterapia , Nucleofosmina , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Sumoilación/efectos de los fármacos , Sumoilación/efectos de la radiación
2.
DNA Repair (Amst) ; 95: 102959, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32927239

RESUMEN

UV is a significant environmental agent that damages DNA. Translesion synthesis (TLS) is a DNA damage tolerance pathway that utilizes specialized DNA polymerases to replicate through the damaged DNA, often leading to mutagenesis. In eukaryotic cells, genomic DNA is organized into chromatin that is composed of nucleosomes. To date, if and/or how TLS is regulated by a specific nucleosome feature has been undocumented. We found that mutations of multiple histone H4 residues mostly or entirely embedded in the nucleosomal LRS (loss of ribosomal DNA-silencing) domain attenuate UV mutagenesis in Saccharomyces cerevisiae. The attenuation is not caused by an alteration of ubiquitination or sumoylation of PCNA (proliferating cell nuclear antigen), the modifications well-known to regulate TLS. Also, the attenuation is not caused by decreased chromatin accessibility, or by alterations of methylation of histone H3 K79, which is at the center of the LRS surface. The attenuation may result from compromised TLS by both DNA polymerases ζ and η, in which Rad6 and Rad5 are but Rad18 is not implicated. We propose that a feature of the LRS is recognized or accessed by the TLS machineries either during/after a nucleosome is disassembled in front of a lesion-stalled replication fork, or during/before a nucleosome is reassembled behind a lesion-stalled replication fork.


Asunto(s)
Histonas/química , Histonas/genética , Mutagénesis/genética , Mutagénesis/efectos de la radiación , Mutación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Rayos Ultravioleta/efectos adversos , Modelos Moleculares , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Sumoilación/genética , Sumoilación/efectos de la radiación , Ubiquitinación/genética , Ubiquitinación/efectos de la radiación
3.
Curr Mol Med ; 18(8): 542-549, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30636603

RESUMEN

PURPOSE: Protein sumoylation is a well established regulatory mechanism that regulates chromatin structure and dynamics, cell proliferation and differentiation, stress response and cell apoptosis. In the vertebrate eye, we and others have shown that sumoylation plays an indispensable role in regulating eye development. During stress induction and aging process, the ocular tissues gradually loss their normality and develop major ocular diseases such as cataract and aging-related macular degeneration. We have recently demonstrated that sumoylation actively regulates differentiation of lens cells, whether this process is implicated in lens pathogenesis remains to be investigated. In this study, we have demonstrated that transparent mouse lenses treated with glucose oxidase and UVA irradiation undergo in vitro cataract formation, and associated with this process, the expression patterns of the 3 sumoylation enzymes have been found significantly altered. METHODS: Four-week-old C57BL/6J mice were used in our experiment. Lenses were carefully excised from eyes and cultured in M199 medium (Sigma 3769) for at least 12 hours. Transparent lenses (without surgical damage) were selected for experimentation. The lenses were exposed to UVA for 60 min or treated with 30 mU/mL glucose oxidase (GO, MP Biomedicals, 1673) to induce cataract formation. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS: we have obtained the following results: 1) Both GO treatment and UVA irradiation can induce cataract formation in the in vitro cultured mouse lenses; 2) With GO treatment, the mRNAs and proteins for the 5 sumoylation enzymes were all significantly downregulated; 3) With UVA irradiation, the changes in the expression patterns of the mRNAs and proteins for the SAE1, UBA2 , UBC9 and PIAS1 were opposite, while the mRNAs were upregulated either significantly (for SAE1, UBA2 and UBC9) or slightly (PIAS1), the proteins for all 4 sumoylation enzymes were downregulated; For RanBP2, the UVA induced changes in both mRNA and protein are consist with the GO treatment. CONCLUSION: Under GO and UVA irradiation conditions, the expression levels of both mRNA and protein for the three major sumoylation enzymes were significantly changed. Our results suggest that altered expression patterns of the sumoylation enzymes are associated with oxidative stressinduced cataractogenesis.


Asunto(s)
Catarata , Regulación Enzimológica de la Expresión Génica/inmunología , Glucosa Oxidasa , Cristalino , Sumoilación , Enzimas Activadoras de Ubiquitina , Rayos Ultravioleta/efectos adversos , Animales , Catarata/enzimología , Catarata/inmunología , Catarata/patología , Glucosa Oxidasa/inmunología , Glucosa Oxidasa/metabolismo , Cristalino/enzimología , Cristalino/inmunología , Cristalino/patología , Ratones , ARN Mensajero/biosíntesis , ARN Mensajero/inmunología , Sumoilación/inmunología , Sumoilación/efectos de la radiación , Enzimas Activadoras de Ubiquitina/biosíntesis , Enzimas Activadoras de Ubiquitina/inmunología
4.
Carcinogenesis ; 38(10): 976-985, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981631

RESUMEN

Subunit 2 of DNA damage-binding protein complex (DDB2) is an early sensor of nucleotide excision repair (NER) pathway for eliminating DNA damage induced by UV radiation (UVR) and cisplatin treatments of mammalian cells. DDB2 is modified by ubiquitin and poly(ADP-ribose) (PAR) in response to UVR, and these modifications play a crucial role in regulating NER. Here, using immuno-analysis of irradiated cell extracts, we have identified multiple post-irradiation modifications of DDB2 protein. Interestingly, although the DNA lesions induced by both UVR and cisplatin are corrected by NER, only the UV irradiation, but not the cisplatin treatment, induces any discernable DDB2 modifications. We, for the first time, show that the appearance of UVR-induced DDB2 modifications depend on the binding of DDB2 to the damaged chromatin and the participation of functionally active 26S proteasome. The in vitro and in vivo analysis revealed that SUMO-1 conjugations comprise a significant portion of these UVR-induced DDB2 modifications. Mapping of SUMO-modified sites demonstrated that UVR-induced SUMOylation occurs on Lys-309 residue of DDB2 protein. Mutation of Lys-309 to Arg-309 diminished the DDB2 SUMOylation observable both in vitro and in vivo. Moreover, K309R mutated DDB2 lost its function of recruiting XPC to the DNA damage sites, as well as the ability to repair cyclobutane pyrimidine dimers following cellular UV irradiation. Taken together, our results indicate that DDB2 is modified by SUMOylation upon UV irradiation, and this post-translational modification plays an important role in the initial recognition and processing of UVR-induced DNA damage occurring within the context of chromatin.


Asunto(s)
Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Sumoilación/efectos de la radiación , Cromatina/metabolismo , Cromatina/efectos de la radiación , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Lisina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Sumoilación/efectos de los fármacos , Rayos Ultravioleta
5.
J Cell Sci ; 129(12): 2407-15, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27160682

RESUMEN

Regulation of protein synthesis is crucial for cells to maintain viability and to prevent unscheduled proliferation that could lead to tumorigenesis. Exposure to stress results in stalling of translation, with many translation initiation factors, ribosomal subunits and mRNAs being sequestered into stress granules or P bodies. This allows the re-programming of the translation machinery. Many aspects of translation are regulated by post-translational modification. Several proteomic screens have identified translation initiation factors as targets for sumoylation, although in many cases the role of this modification has not been determined. We show here that eIF4A2 is modified by SUMO, with sumoylation occurring on a single residue (K226). We demonstrate that sumoylation of eIF4A2 is modestly increased in response to arsenite and ionising radiation, but decreases in response to heat shock or hippuristanol. In arsenite-treated cells, but not in hippuristanol-treated cells, eIF4A2 is recruited to stress granules, suggesting sumoylation of eIF4A2 correlates with its recruitment to stress granules. Furthermore, we demonstrate that the inability to sumoylate eIF4A2 results in impaired stress granule formation, indicating a new role for sumoylation in the stress response.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Estrés Fisiológico , Sumoilación , Secuencia de Aminoácidos , Arsenitos/farmacología , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/efectos de la radiación , Factor 4A Eucariótico de Iniciación/química , Células HeLa , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Mutación/genética , Radiación Ionizante , Esteroles/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/efectos de la radiación , Sumoilación/efectos de los fármacos , Sumoilación/efectos de la radiación
6.
J Biol Chem ; 291(1): 279-90, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26565033

RESUMEN

The maintenance of genomic stability relies on the concerted action of DNA repair and DNA damage signaling pathways. The PIAS (protein inhibitor of activated STAT) family of SUMO (small ubiquitin-like modifier) ligases has been implicated in DNA repair, but whether it plays a role in DNA damage signaling is still unclear. Here, we show that the PIAS3 SUMO ligase is important for activation of the ATR (ataxia telangiectasia and Rad3 related)-regulated DNA damage signaling pathway. PIAS3 is the only member of the PIAS family that is indispensable for ATR activation. In response to different types of DNA damage and replication stress, PIAS3 plays multiple roles in ATR activation. In cells treated with camptothecin (CPT), PIAS3 contributes to formation of DNA double-stranded breaks. In UV (ultraviolet light)- or HU (hydroxyurea)-treated cells, PIAS3 is required for efficient ATR autophosphorylation, one of the earliest events during ATR activation. Although PIAS3 is dispensable for ATRIP (ATR-interacting protein) SUMOylation and the ATR-ATRIP interaction, it is required for maintaining the basal kinase activity of ATR prior to DNA damage. In the absence of PIAS3, ATR fails to display normal kinase activity after DNA damage, which accompanies with reduced phosphorylation of ATR substrates. Together, these results suggest that PIAS3 primes ATR for checkpoint activation by sustaining its basal kinase activity, revealing a new function of the PIAS family in DNA damage signaling.


Asunto(s)
Puntos de Control del Ciclo Celular , Chaperonas Moleculares/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Camptotecina/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/efectos de la radiación , Técnicas de Silenciamiento del Gen , Humanos , Hidroxiurea/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , ARN Interferente Pequeño/metabolismo , Sumoilación/efectos de los fármacos , Sumoilación/efectos de la radiación , Rayos Ultravioleta
7.
J Biol Chem ; 291(3): 1387-97, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26620705

RESUMEN

Cockayne syndrome (CS) is a recessive disorder that results in deficiencies in transcription-coupled nucleotide excision repair (TC-NER), a subpathway of nucleotide excision repair, and cells from CS patients exhibit hypersensitivity to UV light. CS group B protein (CSB), which is the gene product of one of the genes responsible for CS, belongs to the SWI2/SNF2 DNA-dependent ATPase family and has an ATPase domain and an ubiquitin-binding domain (UBD) in the central region and the C-terminal region, respectively. The C-terminal region containing the UBD is essential for the functions of CSB. In this study, we generated several CSB deletion mutants and analyzed the functions of the C-terminal region of CSB in TC-NER. Not only the UBD but also the C-terminal 30-amino acid residues were required for UV light resistance and TC-NER. This region was needed for the interaction of CSB with RNA polymerase II, the translocation of CS group A protein to the nuclear matrix, and the association of CSB with chromatin after UV irradiation. CSB was modified by small ubiquitin-like modifier 2/3 in a UV light-dependent manner. This modification was abolished in a CSB mutant lacking the C-terminal 30 amino acid residues. However, the substitution of lysine residues in this region with arginine did not affect SUMOylation or TC-NER. By contrast, substitution of a lysine residue in the N-terminal region with arginine decreased SUMOylation and resulted in cells with defects in TC-NER. These results indicate that both the most C-terminal region and SUMOylation are important for the functions of CSB in TC-NER.


Asunto(s)
ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Sumoilación , Transcripción Genética , Sustitución de Aminoácidos , Western Blotting , Línea Celular , Roturas del ADN/efectos de la radiación , ADN Helicasas/química , ADN Helicasas/genética , Reparación del ADN/efectos de la radiación , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Fibroblastos/enzimología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Eliminación de Gen , Humanos , Inmunoprecipitación , Lisina , Mutación , Proteínas de Unión a Poli-ADP-Ribosa , Dominios y Motivos de Interacción de Proteínas , Tolerancia a Radiación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/efectos de la radiación , Ubiquitinas/metabolismo , Rayos Ultravioleta/efectos adversos
8.
Biochem Biophys Res Commun ; 438(1): 26-31, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23860269

RESUMEN

Damaged DNA-binding protein (DDB) is a heterodimer composed of two subunits, p127 and p48, which have been designated DDB1 and DDB2, respectively. DDB2 recognizes and binds to UV-damaged DNA during nucleotide excision repair. Here, we demonstrated that DDB2 was SUMOylated in a UV-dependent manner, and its major SUMO E3 ligase was PIASy as determined by RNA interference-mediated knockdown. The UV-induced physical interaction between DDB2 and PIASy supported this notion. PIASy knockdown reduced the removal of cyclobutane pyrimidine dimers (CPDs) from total genomic DNA, but did not affect that of 6-4 pyrimidine pyrimidone photoproducts (6-4PPs). Thus, DDB2 plays an indispensable role in CPD repair, but not in 6-4PP repair, which is consistent with the observation that DDB2 was SUMOylated by PIASy. These results suggest that the SUMOylation of DDB2 facilitates CPD repair.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , ADN/fisiología , ADN/efectos de la radiación , Proteína SUMO-1/metabolismo , Sumoilación/fisiología , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Dosis de Radiación , Proteína SUMO-1/genética , Sumoilación/efectos de la radiación , Rayos Ultravioleta
9.
J Cell Biol ; 201(6): 797-807, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23751493

RESUMEN

Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for specific recognition of poly-SUMO2/3 chains, and used Ubc13-Mms2 as a cognate E2 enzyme to promote nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response.


Asunto(s)
Reparación del ADN/fisiología , Proteínas Nucleares/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Línea Celular Transformada , Daño del ADN/fisiología , Células HeLa , Humanos , Ligasas/genética , Ligasas/metabolismo , Proteínas Nucleares/genética , Plásmidos/genética , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación/efectos de la radiación , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/fisiología , Ubiquitinación/efectos de la radiación , Ubiquitinas/genética , Rayos Ultravioleta/efectos adversos
10.
J Biochem Mol Toxicol ; 26(11): 429-38, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22972498

RESUMEN

H2AX plays an important role in chromatin reorganization implicated in DNA repair and apoptosis under various DNA damaging conditions. In this study, the interaction between TOPORS (topoisomerase I-binding protein) and H2AX was verified using mammalian cell extracts exposed to diverse DNA damaging stresses such as ionizing radiation, doxorubicin, camptothecin, and hydrogen peroxide. In vitro assays for ubiquitination revealed that TOPORS functions as a novel E3 ligase for H2AX ubiquitination. TOPORS was found to be dissociated from H2AX proteins when cells were exposed to oxidative stress, but not replication-inducing DNA damaging stress. The protein stability of H2AX was decreased when TOPORS was ectopically expressed in cells, and oxidative stresses such as hydrogen peroxide and ionizing radiation induced recovery of the H2AX protein level. Therefore, these biochemical data suggest that TOPORS plays a key role in the turnover of H2AX protein, discriminating the type of DNA damaging stress.


Asunto(s)
Cromatina , Roturas del ADN de Doble Cadena , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Antineoplásicos/farmacología , Camptotecina/farmacología , Línea Celular , Cromatina/efectos de los fármacos , Cromatina/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Doxorrubicina/farmacología , Rayos gamma/efectos adversos , Células HEK293 , Histonas/genética , Humanos , Peróxido de Hidrógeno/farmacología , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Estabilidad Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de la radiación , Proteínas Recombinantes de Fusión/metabolismo , Sumoilación/efectos de los fármacos , Sumoilación/efectos de la radiación , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/efectos de la radiación
11.
DNA Repair (Amst) ; 10(12): 1243-51, 2011 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21968059

RESUMEN

The two Siz/PIAS SUMO E3 ligases Siz1 and Siz2 are responsible for the vast majority of sumoylation in Saccharomyces cerevisiae. We found that siz1Δ siz2Δ mutants are sensitive to ultra-violet (UV) light. Epistasis analysis showed that the SIZ genes act in the nucleotide excision repair (NER) pathway, and suggested that they participate both in global genome repair (GGR) and in the Rpb9-dependent subpathway of transcription-coupled repair (TCR), but have minimal role in Rad26-dependent TCR. Quantitative analysis of NER at the single-nucleotide level showed that siz1Δ siz2Δ is deficient in repair of both the transcribed and non-transcribed strands of the DNA. These experiments confirmed that the SIZ genes participate in GGR. Their role in TCR remains unclear. It has been reported previously that mutants deficient for the SUMO conjugating enzyme Ubc9 contain reduced levels of Rad4, the yeast homolog of human XPC. However, our experiments do not support the conclusion that SUMO conjugation affects Rad4 levels. We found that several factors that participate in NER are sumoylated, including Rad4, Rad16, Rad7, Rad1, Rad10, Ssl2, Rad3, and Rpb4. Although Rad16 was heavily sumoylated, elimination of the major SUMO attachment sites in Rad16 had no detectable effect on UV resistance or removal of DNA lesions. SUMO attachment to most of these NER factors was significantly increased by DNA damage. Furthermore, SUMO-modified Rad4 accumulated in NER mutants that block the pathway downstream of Rad4, suggesting that SUMO becomes attached to Rad4 at a specific point during its functional cycle. Collectively, these results suggest that SIZ-dependent sumoylation may modulate the activity of multiple proteins to promote efficient NER.


Asunto(s)
Reparación del ADN , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genoma Fúngico/genética , Genoma Fúngico/efectos de la radiación , Cinética , Mutación , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Sumoilación/efectos de la radiación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA