Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
Comput Biol Med ; 174: 108471, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608324

RESUMEN

This report aims to examine the effects of impact velocity, impact depth, and impact orientation on the Cu-Ta weld joint of the explosive welding process via MD simulation. The findings indicate that the residual shear stress in the welded block mostly increases as the impact velocity rises. The bottom Ta block is more severely distorted than the higher Cu block due to the impact direction. During the tensile test, three stress zones can be identified including the low-stress Cu block, the high-stress Ta block, and the medium-stress weld joint in the middle of the samples. The weld joint position is lower than the median line of the welded block. The Cu-Ta welded block with 500 m/s impact velocities had the highest ultimate tensile strength (UTS) value of 6.49 GPa. With increasing impact depth, the atomic strain level, residual shear stress, and weld joint dimensions all noticeably increase. The Cu-Ta welded block with an impact depth of 7.5 Å has the greatest UTS values, measuring 11.65 GPa, because of its well-crystal structure. Changing the impact orientation does not result in a dramatic change in atomic strain. Orientation (001) vs (001) has the highest strain and stress rates. With an impact orientation of (110) vs. (111), the Cu-Ta welded block gets the highest UTS value of 8.03 GPa compared to other orientations.


Asunto(s)
Cobre , Cobre/química , Resistencia a la Tracción , Simulación de Dinámica Molecular , Soldadura , Estrés Mecánico , Sustancias Explosivas/química
2.
Macromol Rapid Commun ; 45(10): e2300730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38407503

RESUMEN

Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.


Asunto(s)
Polímeros , Polímeros/química , Porosidad , Estructuras Metalorgánicas/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Polvos/química , Sustancias Explosivas/análisis , Sustancias Explosivas/química , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Propiedades de Superficie
3.
Chemosphere ; 350: 141023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141674

RESUMEN

Energetics used in military exercises can potentially contaminate ground and surface waters. This study was conducted to evaluate the movement of Composition B, a formulation that includes TNT (2,4,6-trinitrotoluene), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), in runoff. Mechanisms of transport we examined include movement of energetics dissolved in runoff, as particles and adsorbed to suspended sediment, and in infiltration. Rainfall simulations were conducted under controlled conditions with two rainfall rates (approximately 30 and 50 mm h-1), two soils with different infiltration capacities, and four energetic particle sizes (4.75-9.51 mm, 2.83-4.75 mm, 2-2.83 mm, and <2 mm). Particles remaining on the soil surface after rainfall were measured as well as energetics dissolved in runoff, in suspended sediment, and in infiltration. Greater concentrations of TNT than RDX and HMX were found dissolved in runoff due to its higher solubility and dissolution rates. We also found that particle transport in runoff increased with decrease in particle size. Smaller particle sizes also led to greater transport dissolved in solution. Relationships were found relating runoff and sediment yield to the transport of RDX and TNT. The results of this study allow improved prediction of Composition B transport in runoff and therefore its contamination potential.


Asunto(s)
Sustancias Explosivas , Trinitrotolueno , Sustancias Explosivas/química , Azocinas/química , Trinitrotolueno/análisis , Triazinas/química , Suelo
4.
Luminescence ; 38(11): 1904-1911, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37559555

RESUMEN

The spatial arrangement of molecules plays a crucial role in determining the macroscopic properties of functional materials. Coordinated polymers (CPs) formed by self-assembly of organic isomeric ligands and metals offer unique performance characteristics. In this study, we present the investigation of a one-dimensional CP, named CIT-E, composed of tetraphenylethene pyridine derivative (TPE-2by-2-E) ligands and copper iodide. The resulting CP exhibits a one-dimensional bead chain structure with exceptional thermal and chemical stability. By leveraging the competitive absorption between CIT-E and the explosive analog 2,4-dinitroaniline, we achieve detection of the explosive through changes in the absorption intensity of the excitation light source and subsequent fluorescence response. The CP demonstrates high selectivity and anti-interference ability in detecting 2,4-dinitroaniline in aqueous solution, with a detection linear range of 0.1 to 300 µM and a detection limit of 0.05 µM, surpassing the national third-level emission standard. These findings highlight the potential of CP CIT-E as a promising material for the detection of explosive nitroaromatic compounds.


Asunto(s)
Sustancias Explosivas , Sustancias Explosivas/química , Polímeros/química , Fluorescencia , Cobre , Yoduros , Piridinas
5.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569443

RESUMEN

Binders mixed with explosives to form polymer-bonded explosives (PBXs) can reduce the sensitivity of the base explosive by improving interfacial interactions. The interface formed between the binder and matrix explosive also affects the thermal conductivity. Low thermal conductivity may result in localized heat concentration inside the PBXs, causing the detonation of the explosive. To investigate the binder-explosive interfacial interactions and thermal conductivity, PBXs with polyurethane as the binder and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-trinitrotoluene (CL-20/TNT) co-crystal as the matrix explosive were investigated through molecular dynamics (MD) simulations and reverse non-equilibrium molecular dynamics (rNEMD) simulation. The analysis of the pair correlation function revealed that there are hydrogen bonding interactions between Estane5703 and CL-20/TNT. The length of the trigger bonds was adopted as a theoretical criterion of sensitivity, and the effect of polymer binders on the sensibility of PBXs was correlated by analyzing the interfacial trigger bonds and internal trigger bonds of PBXs for the first time. The results indicated that the decrease in sensitivity of CL-20/TNT mainly comes from the CL-20/TNT contact with Estane5703. Therefore, the sensitivity of CL-20/TNT-based PBXs can be further reduced by increasing the contact area between CL-20/TNT and Estane5703. The thermal conductivity of PBXs composed of Estane5703 and CL-20/TNT (0 0 1), (0 1 0) and (1 0 0) crystal planes, respectively, were calculated through rNEMD simulations, and the results showed that only the addition of Estane5703 to the (1 0 0) crystal plane can improve the thermal conductivity of PBX100.


Asunto(s)
Sustancias Explosivas , Trinitrotolueno , Sustancias Explosivas/química , Simulación de Dinámica Molecular , Polímeros/química , Conductividad Térmica , Trinitrotolueno/análisis , Trinitrotolueno/química
6.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835326

RESUMEN

It is an arduous and meaningful challenge to design and develop new energetic materials with lower sensitivity and higher energy. How to skillfully combine the characteristics of low sensitivity and high energy is the key problem in designing new insensitive high-energy materials. Taking a triazole ring as a framework, a strategy of N-oxide derivatives containing isomerized nitro and amino groups was proposed to answer this question. Based on this strategy, some 1,2,4-triazole N-oxide derivatives (NATNOs) were designed and explored. The electronic structure calculation showed that the stable existence of these triazole derivatives was due to the intramolecular hydrogen bond and other interactions. The impact sensitivity and the dissociation enthalpy of trigger bonds directly indicated that some compounds could exist stably. The crystal densities of all NATNOs were larger than 1.80 g/cm3, which met the requirement of high-energetic materials for crystal density. Some NATNOs (9748 m/s for NATNO, 9841 m/s for NATNO-1, 9818 m/s for NATNO-2, 9906 m/s for NATNO-3, and 9592 m/s for NATNO-4) were potential high detonation velocity energy materials. These study results not only indicate that the NATNOs have relatively stable properties and excellent detonation properties but also prove that the strategy of nitro amino position isomerization coupled with N-oxide is an effective means to develop new energetic materials.


Asunto(s)
Sustancias Explosivas , Óxidos , Óxidos/química , Sustancias Explosivas/química , Triazoles/química , Termodinámica
8.
Dalton Trans ; 52(4): 1000-1008, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36601899

RESUMEN

Five new high-pressure phases (I4̄3d-Y4N3, R3c-Y2N3, P1̄-II-YN4, P1̄-YN6, and P31c-YN8) are proposed by the crystal structure prediction. A series of polynitrogen forms were achieved in the nitrogen-rich Y-N compounds, including diatomic N2, an isolated N8 chain, an infinite N chain with an N6 unit, and an infinite N layer with bent N18 rings. The high energy densities of P1̄-II-YN4 (1.98 kJ g-1), P1̄-YN6 (2.35 kJ g-1), and P31c-YN8 (3.77 kJ g-1) make them potential high energy density materials. More importantly, P1̄-II-YN4, P1̄-YN6, and P31c-YN8 exhibit excellent explosive performance, with detonation pressures 4-8 times that of TNT (19 GPa) and detonation velocities 1-2 times that of TNT (6.90 km s-1). The electronic structure and bonding properties show that the high stability of Y-N compounds originates from the strong N-N covalent bond and the weak Y-N ionic bond interaction. The increase in the transferred charge quantity as the pressure decreased is more conducive to stabilizing the polymeric nitrogen structure, which leads to the metastable properties of P1̄-II-YN4 and P1̄-YN6 under ambient conditions. Finally, the infrared (IR) spectra of P1̄-II-YN4, P1̄-YN6, and P31c-YN8 are calculated to provide a reference in experimental synthesis.


Asunto(s)
Sustancias Explosivas , Compuestos de Nitrógeno , Nitrógeno/química , Termodinámica , Sustancias Explosivas/química
9.
J Chem Inf Model ; 63(3): 753-769, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36695777

RESUMEN

The drop-weight impact test is an experiment that has been used for nearly 80 years to evaluate handling sensitivity of high explosives. Although the results of this test are known to have large statistical uncertainties, it is one of the most common tests due to its accessibility and modest material requirements. In this paper, we compile a large data set of drop-weight impact sensitivity test results (mainly performed at Los Alamos National Laboratory), along with a compendium of molecular and chemical descriptors for the explosives under test. These data consist of over 500 unique explosives, over 1000 repeat tests, and over 100 descriptors, for a total of about 1500 observations. We use random forest methods to estimate a model of explosive handling sensitivity as a function of chemical and molecular properties of the explosives under test. Our model predicts well across a wide range of explosive types, spanning a broad range of explosive performance and sensitivity. We find that properties related to explosive performance, such as heat of explosion, oxygen balance, and functional group, are highly predictive of explosive handling sensitivity. Yet, models that omit many of these properties still perform well. Our results suggest that there is not one or even several factors that explain explosive handling sensitivity, but that there are many complex, interrelated effects at play.


Asunto(s)
Sustancias Explosivas , Sustancias Explosivas/química , Calor , Oxígeno
10.
Molecules ; 27(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500463

RESUMEN

ZIF-67 is a three-dimensional zeolite imidazole ester framework material with a porous rhombic dodecahedral structure, a large specific surface area and excellent thermal stability. In this paper, the catalytic effect of ZIF-67 on five kinds of energetic materials, including RDX, HMX, CL-20, AP and the new heat-resistant energetic compound DAP-4, was investigated. It was found that when the mass fraction of ZIF-67 was 2%, it showed excellent performance in catalyzing the said compounds. Specifically, ZIF-67 reduced the thermal decomposition peak temperatures of RDX, HMX, CL-20 and DAP-4 by 22.3 °C, 18.8 °C, 4.7 °C and 10.5 °C, respectively. In addition, ZIF-67 lowered the low-temperature and high-temperature thermal decomposition peak temperatures of AP by 27.1 °C and 82.3 °C, respectively. Excitingly, after the addition of ZIF-67, the thermal decomposition temperature of the new heat-resistant high explosive DAP-4 declined by approximately 10.5 °C. In addition, the kinetic parameters of the RDX+ZIF-67, HMX+ZIF-67, CL-20+ZIF-67 and DAP-4+ZIF-67 compounds were analyzed. After the addition of the ZIF-67 catalyst, the activation energy of the four energetic materials decreased, especially HMX+ZIF-67, whose activation energy was approximately 190 kJ·mol-1 lower than that reported previously for HMX. Finally, the catalytic mechanism of ZIF-67 was summarized. ZIF-67 is a potential lead-free, green, insensitive and universal EMOFs-based energetic burning rate catalyst with a bright prospect for application in solid propellants in the future.


Asunto(s)
Sustancias Explosivas , Zeolitas , Electrones , Sustancias Explosivas/química , Zeolitas/química , Cinética , Temperatura
11.
Molecules ; 27(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36558147

RESUMEN

Melt-cast explosive 2,4-dinitroanisole (DNAN) crystal and its cocrystals DNAN/1,3-dinitrobenzene (DNB) and DNAN/2-nitroaniline (NA) were used to identify the effects of cocrystallization on the crystal structure, non-covalent interactions, and melting points of the DNAN crystal through density functional theory and molecular dynamics. The components DNB and NA with subtle structure variations between the nitro group and amino group can significantly affect the non-covalent interactions, especially the π-π stacking and H-bonds, which can lead to different crystal stacking styles. The melting points of the DNAN crystal are decreased through the cocrystallization, which expands the utilization of the DNAN-based melt cast explosives. Our study deciphers the effects caused by the cocrystallization on the structure and properties of melt cast explosives and may help to design and optimize novel melt-cast explosives.


Asunto(s)
Sustancias Explosivas , Sustancias Explosivas/química , Anisoles/química , Compuestos de Anilina
12.
Anal Chem ; 94(50): 17662-17669, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36472413

RESUMEN

Since peroxide-based explosives (PBEs) lack reactive functional groups, they cannot be determined directly by most detection methods and are often detected indirectly by converting them to H2O2. However, H2O2 may originate from many sources, causing false positives in PBE detection. Here, we developed a novel electrochemical sensor for the direct sensitive and selective determination of PBEs such as triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) using electrochemical modification of the glassy carbon (GC) electrode with PBE-memory polycarbazole (PCz) films decorated with gold nanoparticles (AuNPs) by cyclic voltammetry (CV). The prepared electrodes were named TATP-memory-GC/PCz/AuNPs (used for TATP determination) and HMTD-memory-GC/PCz/AuNPs (used for HMTD detection). The calibration lines of TATP and HMTD were found in the concentration range of 0.1-1.0 mg L-1 using the net current intensities of differential pulse voltammetry (DPV) versus analyte concentrations. The limit of detection (LOD) commonly found was 15 µg L-1 for TATP and HMTD. The sensor electrodes could separately determine intact TATP and HMTD in the presence of nitro-aromatic, nitramine, and nitrate ester energetic materials. The proposed electrochemical sensing method was not interfered by electroactive substances such as paracetamol, caffeine, acetylsalicylic acid, aspartame, d-glucose, and detergent (containing perborate and percarbonate) used as camouflage materials for PBEs. This is the first molecularly imprinted polymeric electrode for PBEs accomplishing such low LODs, and the DPV method was statistically validated in contaminated clay soil samples against the GC-MS method for TATP and a spectrophotometric method for HMTD using t- and F-tests.


Asunto(s)
Sustancias Explosivas , Nanopartículas del Metal , Oro , Peróxido de Hidrógeno , Sustancias Explosivas/química , Carbono , Peróxidos , Electrodos
13.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077400

RESUMEN

The trinitromethyl moiety is a useful group for the design and development of novel energetic compounds with high nitrogen and oxygen content. In this work, by using an improved nitration method, the dinitromethyl precursor was successfully nitrated to the trinitromethyl product (2), and its structure was thoroughly characterized by FTIR, NMR, elemental analysis, differential scanning calorimetry, and single-crystal X-ray diffraction. Compound 2 has a high density (1.897 g cm-3), high heat of formation (984.8 kJ mmol-1), and a high detonation performance (D: 9351 m s-1, P: 37.46 GPa) that may find useful applications in the field of high energy density materials.


Asunto(s)
Sustancias Explosivas , Oxadiazoles , Cristalografía por Rayos X , Sustancias Explosivas/química , Nitrógeno , Oxadiazoles/química , Oxígeno/química
14.
Anal Methods ; 14(35): 3467-3473, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36052824

RESUMEN

Here, we have synthesised three luminescent Al MOFs i.e., Al-NTP, Al-FDA, and Al-TDA, using common metal ions (AlCl3·6H2O) with different carboxylic acid organic linkers (5-nitroisophthalic acid, 2,5-furan dicarboxylic acid, and 2,5-thiophenedicarboxylic acid) in a semi-aqueous medium. The structural analysis of Al-MOFs has been confirmed through powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and absorption spectroscopy. Afterward, the optical properties of all three Al-MOFs were confirmed using photoluminescence spectroscopy and demonstrated for the detection of nitroaromatic explosives. We have observed host-guest interaction through a quenching mechanism. Among the three synthesised Al-MOFs, Al-NTP MOF exhibit 0.014 ppm lowest limit of detection in chloroform at room temperature. Our comparative study results reveal that the selection of the organic linker and solvent plays a critical role in MOF based sensing applications.


Asunto(s)
Sustancias Explosivas , Cloroformo , Sustancias Explosivas/análisis , Sustancias Explosivas/química , Furanos , Polvos , Solventes
15.
J Chem Inf Model ; 62(20): 4873-4887, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-35998331

RESUMEN

Motivated by the challenging of deep learning on the low data regime and the urgent demand for intelligent design on highly energetic materials, we explore a correlated deep learning framework, which consists of three recurrent neural networks (RNNs) correlated by the transfer learning strategy, to efficiently generate new energetic molecules with a high detonation velocity in the case of very limited data available. To avoid the dependence on the external big data set, data augmentation by fragment shuffling of 303 energetic compounds is utilized to produce 500,000 molecules to pretrain RNN, through which the model can learn sufficient structure knowledge. Then the pretrained RNN is fine-tuned by focusing on the 303 energetic compounds to generate 7153 molecules similar to the energetic compounds. In order to more reliably screen the molecules with a high detonation velocity, the SMILE enumeration augmentation coupled with the pretrained knowledge is utilized to build an RNN-based prediction model, through which R2 is boosted from 0.4446 to 0.9572. The comparable performance with the transfer learning strategy based on an existing big database (ChEMBL) to produce the energetic molecules and drug-like ones further supports the effectiveness and generality of our strategy in the low data regime. High-precision quantum mechanics calculations further confirm that 35 new molecules present a higher detonation velocity and lower synthetic accessibility than the classic explosive RDX, along with good thermal stability. In particular, three new molecules are comparable to caged CL-20 in the detonation velocity. All the source codes and the data set are freely available at https://github.com/wangchenghuidream/RNNMGM.


Asunto(s)
Sustancias Explosivas , Redes Neurales de la Computación , Sustancias Explosivas/química , Programas Informáticos
16.
Molecules ; 27(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35566254

RESUMEN

Although it is well-known that nitroaromatic compounds quench the fluorescence of different conjugated polymers and form colored Meisenheimer complexes with proper nucleophiles, the potential of paper as a substrate for those macromolecules can be further developed. This work undertakes this task, impregnating paper strips with a fluorene-phenylene copolymer with quaternary ammonium groups, a bisfluorene-based cationic polyelectrolyte, and poly(2-(dimethylamino)ethyl methacrylate) (polyDMAEMA). Cationic groups make the aforementioned polyfluorenes attachable to paper, whose surface possesses a slightly negative charge and avoid interference from cationic quenchers. While conjugated polymers had their fluorescence quenched with nitroaromatic vapors in a non-selective way, polyDMAEMA-coated papers had a visual response that was selective to 2,4,6-trinitrotoluene (TNT), and that could be easily identified, and even quantified, under natural light. Far from implying that polyfluorenes should be ruled out, it must be taken into account that TNT-filled mines emit vapors from 2,4-dinitrotoluene (DNT) and dinitrobenzene isomers, which are more volatile than TNT itself. Atmospheres with only 790 ppbv TNT or 277 ppbv DNT were enough to trigger a distinguishable response, although the requirement for certain exposure times is an important limitation.


Asunto(s)
Sustancias Explosivas , Trinitrotolueno , Aminas , Dinitrobencenos , Sustancias Explosivas/química , Gases , Polímeros/química
17.
Int J Mol Sci ; 23(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35628315

RESUMEN

A computational study promises insight into molecular crystals consisting of the tetrahedral form of N4 molecules (Td-N4). Here, our efforts are focused on theoretically predicting the existence of the molecular crystals consisting of Td-N4 molecules. On the basis of the first principles of Born-Oppenheimer molecular dynamics under constant temperature and pressure, and geometry optimizations under hydrostatic pressures without any constrained parameters, molecular crystals consisting of Td-N4 molecules were confirmed to be dynamically and thermally metastable. Our analysis shows that, with high detonation performance and high stability, these Td-N4 molecular crystals can indeed be potential candidates as high-energy density explosives.


Asunto(s)
Sustancias Explosivas , Nitrógeno , Sustancias Explosivas/química , Presión Hidrostática , Temperatura
18.
Molecules ; 27(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35408551

RESUMEN

Inspired by the recent cocrystallization and theory of energetic materials, we theoretically investigated the intermolecular vibrational energy transfer process and the non-covalent intermolecular interactions between explosive compounds. The intermolecular interactions between 2,4,6-trinitrotoluene (TNT) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and between 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and CL-20 were studied using calculated two-dimensional infrared (2D IR) spectra and the independent gradient model based on the Hirshfeld partition (IGMH) method, respectively. Based on the comparison of the theoretical infrared spectra and optimized geometries with experimental results, the theoretical models can effectively reproduce the experimental geometries. By analyzing cross-peaks in the 2D IR spectra of TNT/CL-20, the intermolecular vibrational energy transfer process between TNT and CL-20 was calculated, and the conclusion was made that the vibrational energy transfer process between CL-20 and TNTII (TNTIII) is relatively slower than between CL-20 and TNTI. As the vibration energy transfer is the bridge of the intermolecular interactions, the weak intermolecular interactions were visualized using the IGMH method, and the results demonstrate that the intermolecular non-covalent interactions of TNT/CL-20 include van der Waals (vdW) interactions and hydrogen bonds, while the intermolecular non-covalent interactions of HMX/CL-20 are mainly comprised of vdW interactions. Further, we determined that the intermolecular interaction can stabilize the trigger bond in TNT/CL-20 and HMX/CL-20 based on Mayer bond order density, and stronger intermolecular interactions generally indicate lower impact sensitivity of energetic materials. We believe that the results obtained in this work are important for a better understanding of the cocrystal mechanism and its application in the field of energetic materials.


Asunto(s)
Sustancias Explosivas , Trinitrotolueno , Transferencia de Energía , Sustancias Explosivas/química , Enlace de Hidrógeno , Trinitrotolueno/química , Vibración
19.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 133-139, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35411852

RESUMEN

A cocrystal explosive comprising 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 1-methyl-2,4,5-trinitroimidazole (MTNI) (molar ratio, 1:1) was synthesized. The structure of the cocrystal was characterized by single-crystal X-ray diffraction. Its structure was further determined by powder X-ray diffraction, infrared spectroscopy and differential scanning calorimetry which showed that its morphology was different from the morphology of the mechanical mixture of two raw materials. The decomposition temperature of the cocrystal is lower than that of CL-20 and MTNI. The calculated detonation performance is slightly lower than that of HMX, but the cocrystal has excellent sensitivity performance relative to that of CL-20, even lower than that of RDX. These features make this cocrystal ideal to be used in applications with low-sensitivity requirements.


Asunto(s)
Sustancias Explosivas , Rastreo Diferencial de Calorimetría , Cristalización/métodos , Cristalografía por Rayos X , Sustancias Explosivas/química , Difracción de Rayos X
20.
Chempluschem ; 87(3): e202200049, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35324090

RESUMEN

3-Bromomethyl-3-hydroxymethyloxetane represents an inexpensive and versatile precursor for the synthesis of 3,3-disubstituted oxetane derivatives. In the present work, its synthesis was improved and energetic oxetanes based on the explosive LLM-116 (4-amino-3,5-dinitro-1H-pyrazole) prepared. Reaching detonation velocities and pressures of up to 7335 ms-1 and 20.9 GPa in combination with a high thermostability and insensitivity, these surpass the prior art by far. Next to a symmetric LLM-116 derivative, three asymmetric compounds were prepared using azido-, nitrato- and tetrazolyl-moieties. All compounds were intensively characterized by vibrational-, mass- and multinuclear (1 H, 13 C, 14 N) NMR spectroscopy, differential scanning calorimetry and elemental analysis. The molecular structures were elucidated by single crystal X-ray diffraction. Hirshfeld analysis allowed to estimate their sensitivity next to a practical evaluation using BAM standard procedures. Their performance was calculated using the EXPLO5 V6.04 code and a small-scale shock reactivity test and initiation test demonstrated their insensitivity and performance.


Asunto(s)
Sustancias Explosivas , Cristalografía por Rayos X , Éteres Cíclicos , Sustancias Explosivas/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...