Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.081
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124265, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38626674

RESUMEN

In recent years, extensive research has been directed towards understanding the interactions between various zinc complexes with DNA, specifically delving into their intercalation and binding behaviors. The binding of zinc complexes to DNA is particularly intriguing due to their distinctive intercalating capabilities. This study unveils a remarkable phenomenon observed with a specific Zn complex, ([B-Zn-N3], where B is a Schiff base ligand), during DNA intercalation investigations in the popular DMSO-Water binary solvent mixture. An unanticipated observation revealed time-dependent changes in the UV-visible absorption spectroscopic studies, coupled with the existence of an isosbestic point. This observation questions the stability of the intercalating agent itself during the intercalation process. The emergence of a decomposed product during the intercalation study has been confirmed through various analytical techniques, including CHN analysis, MALDI mass, XPS, Raman spectroscopy, and Powder XRD. The change in the chemical species on intercalation is further substantiated by theoretical studies, adding depth to our understanding of the intricate dynamics at play during DNA intercalation with the [B-Zn-N3] complex in the DMSO-Water system.


Asunto(s)
ADN , Dimetilsulfóxido , Sustancias Intercalantes , Agua , Dimetilsulfóxido/química , Sustancias Intercalantes/química , ADN/química , ADN/metabolismo , Agua/química , Espectrometría Raman , Zinc/química , Espectrofotometría Ultravioleta , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Bases de Schiff/química
2.
J Chem Phys ; 160(12)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38526107

RESUMEN

Proflavine (PF), an acridine DNA intercalating agent, has been widespread applied as an anti-microbial and topical antiseptic agent due to its ability to suppress DNA replication. On the other hand, various studies show that PF intercalation to DNA can increase photogenotoxicity and has potential chances to induce carcinomas of skin appendages. However, the effects of PF intercalation on the photophysical and photochemical properties of DNA have not been sufficiently explored. In this study, the excited state dynamics of the PF intercalated d(GC)9 • d(GC)9 and d(AT)9 • d(AT)9 DNA duplex are investigated in an aqueous buffer solution. Under 267 nm excitation, we observed ultrafast charge transfer (CT) between PF and d(GC)9 • d(GC)9 duplex, generating a CT state with an order of magnitude longer lifetime compared to that of the intrinsic excited state reported for the d(GC)9 • d(GC)9 duplex. In contrast, no excited state interaction was detected between PF and d(AT)9 • d(AT)9. Nevertheless, a localized triplet state with a lifetime over 5 µs was identified in the PF-d(AT)9 • d(AT)9 duplex.


Asunto(s)
Sustancias Intercalantes , Proflavina , Proflavina/química , Análisis Espectral , Sustancias Intercalantes/química , ADN/química
3.
Methods Enzymol ; 695: 221-232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38521586

RESUMEN

Cytosine rich sequences can form intercalated, i-motif DNA structures stabilized by hemi-protonated cytosine:cytosine base pairing. These sequences are often located in regulatory regions of genes such as promoters. Ligands targeting i-motif structures may provide potential leads for treatments for genetic disease. The focus on ligands interacting with i-motif DNA has been increasing in recent years. Here, we describe the fluorescent intercalator displacement (FID) assay using thiazole orange binding i-motif DNA and assess the binding affinity of a ligand to the i-motif DNA by displacing thiazole orange. This provides a time and cost-effective high throughput screening of ligands against secondary DNA structures for hit identification.


Asunto(s)
ADN , Sustancias Intercalantes , Sustancias Intercalantes/química , Ligandos , ADN/metabolismo , Emparejamiento Base , Citosina/química
4.
Comput Biol Chem ; 109: 108029, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387123

RESUMEN

Cancer is a global public health problem characterized by deviations in the mechanisms that control cell proliferation, resulting in mutations and variations in the structure of DNA. The mechanisms of action of chemotherapeutic drugs are related to their interactions and binding with DNA; consequently, the development of antineoplastic agents that target DNA has extensively focused on use of acridine, a heterocyclic molecule that binds to deoxyribonucleic acid via intercalation, a process that modifies DNA and makes replication impossible. In this context, this study aimed to computationally investigate how acridine intercalators interact with DNA by evaluating the mechanism of interactions, binding, and interaction energies using quantum mechanics calculations. Molecular electrostatic potential (MEP) analysis revealed that acridine has well- distributed negative charges in the center of the molecule, indicative of a dominant electron-rich region. Acridine exhibits well-defined π orbitals (HOMO and LUMO) on the aromatic rings, suggesting that charge transfer occurs within the molecule and may be responsible for the pharmacological activity of the compound. Structural analysis revealed that acridine interacts with DNA mainly through hydrogen bonds between HAcridine… ODNA with bond lengths ranging from 2.370 Što 3.472 Å. The Binding energy (ΔEBind) showed that acridine interacts with DNA effectively for all complexes and the electronic energy results (E+ZPE) for complexes revealed that the complexes are more stable when the DNA-centered acridine molecule. The Laplacian-analysis topological QTAIM parameter (∇2ρ(r)) and total energy (H(r)) categorized the interactions as being non-covalent in nature. The RGD peak distribution in the NCI analysis reveals the presence of van der Waals interactions, predominantly between the intercalator and DNA. Accordingly, we confirm that acridine/DNA interactions are relevant for understanding how the intercalator acts within nucleic acids.


Asunto(s)
Antineoplásicos , Sustancias Intercalantes , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/química , Modelos Moleculares , Acridinas/farmacología , ADN/química , Antineoplásicos/farmacología
5.
Nucleic Acids Res ; 52(8): 4151-4166, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38340348

RESUMEN

In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.


Asunto(s)
Cromatina , ADN-Topoisomerasas de Tipo II , Sustancias Intercalantes , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II , Cromatina/metabolismo , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/química , ADN-Topoisomerasas de Tipo II/metabolismo , ARN Polimerasa II/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Histonas/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Daño del ADN , ADN/metabolismo , ADN/química , ARN Polimerasa I/metabolismo , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa III/metabolismo , Transcripción Genética/efectos de los fármacos , Carbazoles , Dicetopiperazinas
6.
Nucleic Acids Res ; 52(1): 59-72, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38000393

RESUMEN

DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently, DNA occurs in closed topological forms where topology and supercoiling add a global constraint to the interplay of binding-induced deformations and strain-modulated binding. Here, we present a quantitative model with a straight-forward numerical implementation of how the global constraints introduced by DNA topology modulate binding. We focus on fluorescent intercalators, which unwind DNA and enable direct quantification via fluorescence detection. Our model correctly describes bulk experiments using plasmids with different starting topologies, different intercalators, and over a broad range of intercalator and DNA concentrations. We demonstrate and quantitatively model supercoiling-dependent binding in a single-molecule assay, where we directly observe the different intercalator densities going from supercoiled to nicked DNA. The single-molecule assay provides direct access to binding kinetics and DNA supercoil dynamics. Our model has broad implications for the detection and quantification of DNA, including the use of psoralen for UV-induced DNA crosslinking to quantify torsional tension in vivo, and for the modulation of DNA binding in cellular contexts.


Asunto(s)
ADN Superhelicoidal , ADN , Fluorescencia , Sustancias Intercalantes/química , Plásmidos/genética
7.
Bioorg Chem ; 142: 106953, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37925887

RESUMEN

Herein, a series of isatin tethered indolo[2,3-b]quinoxaline hybrids was synthesized by considering the pharmacophoric features of known DNA intercalators and topoisomerase II inhibitors. The anti-proliferative properties of the synthesized compounds were evaluated against ovarian cancer cell lines (SKOV-3 and Hey A8). Four of the compounds exhibited promising anti-proliferative activities, with one of them being 10-fold more potent than cisplatin against drug-resistant Hey A8 cells. Further investigations were carried out to determine the DNA intercalating affinities of the most active compounds as potential mechanisms for their anti-proliferative activities. ADMET in silico studies were performed to assess the physicochemical, pharmacokinetics, and toxicity parameters of active compounds. This study, to the best of our knowledge, is the first report on the potential of isatin-indoloquinoxaline hybrids as structural blueprints for the development of new DNA intercalators. Additionally, it explores their potential to circumvent platinum-based resistance in ovarian cancer.


Asunto(s)
Antineoplásicos , Isatina , Neoplasias Ováricas , Humanos , Femenino , Isatina/farmacología , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/química , Línea Celular Tumoral , Antineoplásicos/química , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , ADN/metabolismo , Relación Estructura-Actividad
8.
Bioorg Med Chem ; 94: 117438, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37757605

RESUMEN

Six monomeric (1a-1f) and five dimeric (2a-2e) derivatives of the triphenylmethane dye crystal violet (CV) have been prepared. Evaluation of the binding of these compounds to CT DNA by competitive fluorescent intercalator displacement (FID) assays, viscosity experiments, and UV and CD spectroscopy suggest that monomeric derivative 1a and dimeric derivative 2d likely associate with the major groove of DNA, while dimeric derivatives 2a and 2e likely associate with the minor groove of DNA. Additional evidence for the groove occupancy assignments of these derivatives was obtained from ITC experiments and from differential inhibition of DNA cleavage by the major groove binding restriction enzyme BamHI, as revealed by agarose gel electrophoresis. The data indicate that major groove ligands may be optimally constructed from dye units containing a sterically bulky 3,5-dimethyl-N,N-dimethylaniline group; furthermore, the groove-selectivity of olefin-tethered dimer 2d suggests that stereoelectronic interactions (n â†’ π*) between the ligand and DNA are also an important design consideration in the crafting of major-groove binding ligands.


Asunto(s)
ADN , Violeta de Genciana , Modelos Moleculares , ADN/química , Análisis Espectral , Sustancias Intercalantes/química , Conformación de Ácido Nucleico
9.
Org Biomol Chem ; 21(28): 5799-5808, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37401249

RESUMEN

A disulfide-functionalized photoactive DNA ligand is presented that enables the control of its DNA-binding properties by a combination of a photocycloaddition reaction and the redox reactivity of the sulfide/disulfide functionalities. In particular, the initially applied ligand binds to DNA by a combination of intercalation and groove-binding of separate benzo[b]quinolizinium units. The association to DNA is interrupted by an intramolecular [4 + 4] photocycloaddition to the non-binding head-to-head cyclomers. In turn, the subsequent cleavage of these cyclomers with dithiothreitol (DTT) regains temporarily a DNA-intercalating benzoquinolizinium ligand that is eventually converted into a non-binding benzothiophene. As a special feature, this sequence of controlled deactivation, recovery and internal shut-off of DNA-binding properties can be performed directly in the presence of DNA.


Asunto(s)
ADN , Sustancias Intercalantes , Ligandos , Sustancias Intercalantes/química , Oxidación-Reducción , ADN/química
10.
Inorg Chem ; 62(23): 8948-8959, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37248070

RESUMEN

A combined quantum-mechanical and classical molecular dynamics study of a recent Ru(II) complex with potential dual anticancer action is reported here. The main basis for the multiple action relies on the merocyanine ligand, whose electronic structure allows the drug to be able to absorb within the therapeutic window and in turn efficiently generate 1O2 for photodynamic therapy application and to intercalate within two nucleobases couples establishing reversible electrostatic interactions with DNA. TDDFT outcomes, which include the absorption spectrum, triplet states energy, and spin-orbit matrix elements, evidence that the photosensitizing activity is ensured by an MLCT state at around 660 nm, involving the merocyanine-based ligand, and by an efficient ISC from such state to triplet states with different characters. On the other hand, the MD exploration of all the possible intercalation sites within the dodecamer B-DNA evidences the ability of the complex to establish several electrostatic interactions with the nucleobases, thus potentially inducing DNA damage, though the simulation of the absorption spectra for models extracted by each MD trajectory shows that the photosensitizing properties of the complex remain unaltered. The computational results support that the anti-tumor effect may be related to multiple mechanisms of action.


Asunto(s)
Fotoquimioterapia , Rutenio , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/química , Ligandos , Daño del ADN , Rutenio/farmacología , Rutenio/química
11.
Sci Rep ; 13(1): 5395, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012345

RESUMEN

Cancer as an acquired genetic disease is based on changes both in the genome itself and in transcription processes. Accordingly, it is at the DNA level that it makes sense to search for and design agents capable of effective and selective anticancer action. In this study, we used an iterative approach based on a molecular dynamics simulation to design a highly selective DNA-intercalating agent called HASDI. To confirm its selective affinity to DNA, we conducted two simulation experiments: HASDI in a complex with a DNA fragment of the EBNA1 gene (it targets 16 nucleotide pairs of this gene) and HASDI in a complex with a random DNA fragment of the KCNH2 gene. The molecular dynamics simulation was carried out in the GROMACS 2019 package. The binding energy was calculated by gmx_MMPBSA 1.5.2. The further analysis was performed using the built-in utilities of GROMACS, gmx_MMPBSA and also XMGRACE and Pymol 1.8. As a result, we determined that the EBNA1-50nt/HASDI complex was stable throughout the whole simulation trajectory. HASDI, due to the presence of a linker modified depending on a specific pair of nitrogenous bases, formed an average of 32 hydrogen bonds with a sequence of 16 nucleotide pairs. Phenazine rings were stably intercalated every 2 base pairs. The root-mean-square deviation of HASDI in such a complex fluctuated around the value of 6.5 Å and had no tendency to increase. The calculated value of the binding free energy was - 235.3 ± 7.77 kcal/mol. The KCNH2-50nt/HASDI complex, as an example of the intercalation of the designed structure into a random part of the human genome, maintained the stability of its position at a level comparable to the EBNA1-50nt/HASDI complex. The phenazine rings were constantly intercalated in their original positions, and the root-mean-square deviation fluctuated around one value, although it had a tendency to chaotic changes. At the same time, this complex was characterized by 17-19 hydrogen bonds, on average, and the binding free energy was - 193.47 ± 14.09 kcal/mol. Moreover, the DNA duplex had local single-nucleotide melting in the region of the 4th linker. According to a significant decrease in the number of hydrogen bonds, a decrease in energy gain, as well as a decrease in the stability of the DNA duplex characteristic of the KCNH2-50nt/HASDI complex compared to the target EBNA1-50nt/HASDI complex, the molecule we designed can be considered a potentially selective DNA polyintercalating agent capable of relatively accurate recognition of 16 base pairs.


Asunto(s)
ADN , Sustancias Intercalantes , Humanos , Sustancias Intercalantes/química , Secuencia de Bases , ADN/química , Simulación de Dinámica Molecular , Nucleótidos , Fenazinas , Conformación de Ácido Nucleico
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122438, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36758364

RESUMEN

A new mixed-ligand Cu(II) complex formulated as [Cu(dipic)(amp)(H2O)].H2O (dipic: pyridine-2,6-dicarboxylic acid, amp: 2-amino-4-methylpyridine), was synthesized and structurally characterized by FTIR spectroscopy, CHN analysis, and the single-crystal X-ray crystallographic method. The complex crystallizes in an orthorhombic space group Pna21, and the coordination environment around the metal center was found to be a pentacoordinate CuN2O2OW distorted square-pyramidal geometry. In order to systematically explore a detailed in vitro and in silico study of the DNA binding of the title complex, various biophysical (UV-Vis absorption spectroscopy, fluorescence, competitive binding with ethidium bromide) and theoretical (DFT, molecular docking simulation, and QM/MM) methods were applied which revealed that the complex could intercalate with the insertion of the amp ligand between the DNA base pairs. The experimental thermodynamic parameters of the interaction revealed the spontaneity of the process and the domination of the hydrophobic interactions in the association and stabilization of the DNA-Cu(II) complex adduct, which was in line with the docking and QM/MM data. In vitro cytotoxic potential of the complex against the human breast adenocarcinoma (MCF-7) cells was examined using MTT assay, which indicated that cancerous cells showed inhibition in presence of the complex.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Sustancias Intercalantes/química , Simulación del Acoplamiento Molecular , Ligandos , Complejos de Coordinación/química , Cobre/química , ADN/química , Antineoplásicos/farmacología
13.
Inorg Chem ; 61(38): 14947-14961, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094851

RESUMEN

The synthesis and photophysical characterization of two osmium(II) polypyridyl complexes, [Os(TAP)2dppz]2+ (1) and [Os(TAP)2dppp2]2+ (2) containing dppz (dipyrido[3,2-a:2',3'-c]phenazine) and dppp2 (pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline) intercalating ligands and TAP (1,4,5,8-tetraazaphenanthrene) ancillary ligands, are reported. The complexes exhibit complex electrochemistry with five distinct reductive redox couples, the first of which is assigned to a TAP-based process. The complexes emit in the near-IR (1 at 761 nm and 2 at 740 nm) with lifetimes of >35 ns with a low quantum yield of luminescence in aqueous solution (∼0.25%). The Δ and Λ enantiomers of 1 and 2 are found to bind to natural DNA and with AT and GC oligodeoxynucleotides with high affinities. In the presence of natural DNA, the visible absorption spectra are found to display significant hypochromic shifts, which is strongly evident for the ligand-centered π-π* dppp2 transition at 355 nm, which undergoes 46% hypochromism. The emission of both complexes increases upon DNA binding, which is observed to be sensitive to the Δ or Λ enantiomer and the DNA composition. A striking result is the sensitivity of Λ-2 to the presence of AT DNA, where a 6-fold enhancement of luminescence is observed and reflects the nature of the binding for the enantiomer and the protection from solution. Thermal denaturation studies show that both complexes are found to stabilize natural DNA. Finally, cellular studies show that the complexes are internalized by cultured mammalian cells and localize in the nucleus.


Asunto(s)
Sustancias Intercalantes , Rutenio , Animales , ADN/química , Sustancias Intercalantes/química , Ligandos , Mamíferos/metabolismo , Oligodesoxirribonucleótidos , Osmio , Fenantrolinas/química , Fenazinas/química , Rutenio/química
14.
Org Biomol Chem ; 20(45): 8873-8884, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36102841

RESUMEN

The low binding affinity of unmodified triplex-forming oligonucleotides (TFO) is the main drawback to their promising utilization in gene therapy. In the present study, we have synthesized DNA intercalator 5-(pyren-1-ylethynyl)indole Y, known as twisted intercalating nucleic acid (TINA), by a Cu-mediated Sonogashira palladium-catalyzed coupling reaction of 1-ethynylpyrene with 5-iodoindole at a high temperature under anaerobic conditions. Coupling with indole C-5 was far more preferable in obtaining stable TINA-indole than enamine site C-3, as neither hydration of the triple bond to ketones nor competitive Glaser-type homocoupling of acetylenes was observed. The insertion of the new TINA monomer Y as a bulge in the middle or at the 5'-end of the oligodeoxynucleotide sequence via a flexible butane-1,2-diol linker showed extraordinary binding potential, resulting in excellent thermal stabilization of Hoogsteen-type triplex- and duplex-deoxyribonucleic acid (DNA) structures which was detected by thermal denaturation studies and supported by circular dichroism (CD). Molecular dynamics AMBER* revealed the lowest energy conformation in which a pyrenyl residue of the TINA monomer Y stacks in the dsDNA part, while an indolyl unit intercalates between the nucleobases of the TFO pattern. Overall the torsionally rigid conjugated TINA system with a decent twisting of 15.1° around acetylene is confirmed here as a requirement for the best fit inside the intercalation site of the triplex, resulting in high TFO-dsDNA affinity.


Asunto(s)
Sustancias Intercalantes , Ácidos Nucleicos , Temperatura , Sustancias Intercalantes/química , Oligonucleótidos/química , Pirenos/química , ADN/química , Ácidos Nucleicos/química , Indoles , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico
15.
Chem Biol Drug Des ; 100(4): 580-598, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35822451

RESUMEN

Cancer is one of the most prevailing disease conditions, which occurs due to uncontrolled cell division either due to natural mutation to the genes or due to changes induced by physical, chemical, or biological carcinogens. According to WHO, it is the second leading cause of death worldwide and has reported 10 million deaths in 2020. Hence, there arises the need for better chemotherapies and DNA intercalators are one such emerging therapy for cancer. DNA intercalating agents reversibly intercalate with the double-helical structure of DNA by interacting with adjacent base pairs and disrupting the structure of DNA and thereby causing cell death. Here, we discuss the different classes of organo-intercalators used in cancer therapy describing their anticancer and intercalation ability by different methods along with their structure-activity relationship and mechanism of action.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/química , Carcinógenos , ADN/química , Humanos , Sustancias Intercalantes/química , Neoplasias/tratamiento farmacológico
16.
J Chem Inf Model ; 62(24): 6649-6666, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-35895094

RESUMEN

GC-rich sequences are recurring motifs in oncogenes and retroviruses and could be targeted by noncovalent major-groove therapeutic ligands. We considered the palindromic sequence d(G1G2C3G4C5C6)2, and designed several oligopeptide derivatives of the anticancer intercalator mitoxantrone. The stability of their complexes with an 18-mer oligonucleotide encompassing this sequence in its center was validated using polarizable molecular dynamics. We report the most salient structural features of two novel compounds, having a dialkylammonium group as a side chain on both arms. The anthraquinone ring is intercalated in the central d(CpG)2 sequence with its long axis perpendicular to that of the two base pairs. On each strand, this enables each ammonium group to bind in-register to O6/N7 of the two facing G bases upstream. We subsequently designed tris-intercalating derivatives, each dialkylammonium substituted with a connector to an N9-aminoacridine intercalator extending our target range from a six- to a ten-base-pair palindromic sequence, d(C1G2G3G4C5G6C7C8C9G10)2. The structural features of the complex of the most promising derivative are reported. The present design strategy paves the way for designing intercalator-oligopeptide derivatives with even higher selectivity, targeting an increased number of DNA bases, going beyond ten.


Asunto(s)
Sustancias Intercalantes , Oligopéptidos , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/química , Mitoxantrona/farmacología , ADN/química , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
17.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35562989

RESUMEN

In the present study, we continue our work related to the synthesis of 1,8-naphthalimide and carborane conjugates and the investigation of their anticancer activity and DNA-binding ability. For this purpose, a series of 4-carboranyl-1,8-naphthalimide derivatives, mitonafide, and pinafide analogs were synthesized using click chemistry, reductive amination, amidation, and Mitsunobu reactions. The calf thymus DNA (ct-DNA)-binding properties of the synthesized compounds were investigated by circular dichroism (CD), UV-vis spectroscopy, and thermal denaturation experiments. Conjugates 54-61 interacted very strongly with ct-DNA (∆Tm = 7.67-12.33 °C), suggesting their intercalation with DNA. They were also investigated for their in vitro effects on cytotoxicity, cell migration, cell death, cell cycle, and production of reactive oxygen species (ROS) in a HepG2 cancer cell line as well as inhibition of topoisomerase IIα activity (Topo II). The cytotoxicity of these eight conjugates was in the range of 3.12-30.87 µM, with the lowest IC50 value determined for compound 57. The analyses showed that most of the conjugates could induce cell cycle arrest in the G0/G1 phase, inhibit cell migration, and promote apoptosis. Two conjugates, namely 60 and 61, induced ROS production, which was proven by the increased level of 2'-deoxy-8-oxoguanosine in DNA. They were specifically located in lysosomes, and because of their excellent fluorescent properties, they could be easily detected within the cells. They were also found to be weak Topo II inhibitors.


Asunto(s)
Antineoplásicos , Sustancias Intercalantes , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Sustancias Intercalantes/química , Estructura Molecular , Naftalimidas/química , Especies Reactivas de Oxígeno/farmacología , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/farmacología
18.
Anal Chem ; 94(22): 7747-7751, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609246

RESUMEN

We developed a new electrochemical impedimetric method for the real-time detection of polymerase chain reactions (PCR) based on our recent discovery that the DNA intercalator, [Ru(bpy)2DPPZ]2+, anomalously enhances charge transfer between redox mediators, K4[Fe(CN)6]/K3[Fe(CN)6], and a carbon electrode. Three mM [Fe(CN)6]3-/4- and 5 µM [Ru(bpy)2DPPZ]2+ were added to the PCR solution, and electrochemical impedance spectroscopy (EIS) measurements were performed at each elongation heat cycle. The charge transfer resistance (Rct) was initially low due to the presence of [Ru(bpy)2DPPZ]2+ in the solution. As PCR progressed, amplicon dsDNA was produced exponentially, and intercalated [Ru(bpy)2DPPZ]2+ ions, which could be detected as a steep Rct, increased at specific heat cycles depending on the amount of template DNA. The Rct increase per heat cycle, ΔRct, showed a peak at the same heat cycle as optical detection, proving that PCR can be accurately monitored in real time by impedance measurement. This simple method will enable a cost-effective and portable PCR device.


Asunto(s)
Espectroscopía Dieléctrica , Sustancias Intercalantes , ADN/química , Espectroscopía Dieléctrica/métodos , Técnicas Electroquímicas , Sustancias Intercalantes/química , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Biophys J ; 121(19): 3745-3752, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35470110

RESUMEN

Small-molecule DNA-binding drugs have shown promising results in clinical use against many types of cancer. Understanding the molecular mechanisms of DNA binding for such small molecules can be critical in advancing future drug designs. We have been exploring the interactions of ruthenium-based small molecules and their DNA-binding properties that are highly relevant in the development of novel metal-based drugs. Previously we have studied the effects of the right-handed binuclear ruthenium threading intercalator ΔΔ-[µ-bidppz(phen)4Ru2]4+, or ΔΔ-P for short, which showed extremely slow kinetics and high-affinity binding to DNA. Here we investigate the left-handed enantiomer ΛΛ-[µ-bidppz(phen)4Ru2]4+, or ΛΛ-P for short, to study the effects of chirality on DNA threading intercalation. We employ single-molecule optical trapping experiments to understand the molecular mechanisms and nanoscale structural changes that occur during DNA binding and unbinding as well as the association and dissociation rates. Despite the similar threading intercalation binding mode of the two enantiomers, our data show that the left-handed ΛΛ-P complex requires increased lengthening of the DNA to thread, and it extends the DNA more than double the length at equilibrium compared with the right-handed ΔΔ-P. We also observed that the left-handed ΛΛ-P complex unthreads three times faster than ΔΔ-P. These results, along with a weaker binding affinity estimated for ΛΛ-P, suggest a preference in DNA binding to the chiral enantiomer having the same right-handed chirality as the DNA molecule, regardless of their common intercalating moiety. This comparison provides a better understanding of how chirality affects binding to DNA and may contribute to the development of enhanced potential cancer treatment drug designs.


Asunto(s)
Sustancias Intercalantes , Rutenio , ADN/química , Sustancias Intercalantes/química , Pinzas Ópticas , Rutenio/química , Estereoisomerismo
20.
Mar Drugs ; 20(3)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35323484

RESUMEN

Marine alkaloid fascaplysin and its derivatives are known to exhibit promising anticancer properties in vitro and in vivo. However, toxicity of these molecules to non-cancer cells was identified as a main limitation for their clinical use. Here, for the very first time, we synthesized a library of fascaplysin derivatives covering all possible substituent introduction sites, i.e., cycles A, C and E of the 12H-pyrido[1-2-a:3,4-b']diindole system. Their selectivity towards human prostate cancer versus non-cancer cells, as well as the effects on cellular metabolism, membrane integrity, cell cycle progression, apoptosis induction and their ability to intercalate into DNA were investigated. A pronounced selectivity for cancer cells was observed for the family of di- and trisubstituted halogen derivatives (modification of cycles A and E), while a modification of cycle C resulted in a stronger activity in therapy-resistant PC-3 cells. Among others, 3,10-dibromofascaplysin exhibited the highest selectivity, presumably due to the cytostatic effects executed via the targeting of cellular metabolism. Moreover, an introduction of radical substituents at C-9, C-10 or C-10 plus C-3 resulted in a notable reduction in DNA intercalating activity and improved selectivity. Taken together, our research contributes to understanding the structure-activity relationships of fascaplysin alkaloids and defines further directions of the structural optimization.


Asunto(s)
Antineoplásicos , Indoles , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular , ADN/metabolismo , Humanos , Indoles/química , Indoles/farmacología , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...