Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 810
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731921

RESUMEN

The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding to them, in vivo studies are required to understand the physiological significance and contribution of environmental factors to the regulation of PipX complexes. Here, we have used the NanoBiT complementation system to analyse the regulation of complex formation in Synechococcus elongatus PCC 7942 between PipX and each of its two best-characterized partners, PII and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in Synechococcus elongatus. The demonstration of a positive role of PII on PipX-NtcA complexes during their initial response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals additional regulatory complexities in the PipX interaction network, opening a path for future research on cyanobacteria.


Asunto(s)
Proteínas Bacterianas , Synechococcus , Synechococcus/metabolismo , Synechococcus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Adenosina Trifosfato/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Unión al ADN , Factores de Transcripción
2.
Proc Natl Acad Sci U S A ; 121(20): e2312892121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713622

RESUMEN

Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus, the two most abundant phototrophs on Earth, thrive in oligotrophic oceanic regions. While it is well known that specific lineages are exquisitely adapted to prevailing in situ light and temperature regimes, much less is known of the molecular machinery required to facilitate occupancy of these low-nutrient environments. Here, we describe a hitherto unknown alkaline phosphatase, Psip1, that has a substantially higher affinity for phosphomonoesters than other well-known phosphatases like PhoA, PhoX, or PhoD and is restricted to clade III Synechococcus and a subset of high light I-adapted Prochlorococcus strains, suggesting niche specificity. We demonstrate that Psip1 has undergone convergent evolution with PhoX, requiring both iron and calcium for activity and likely possessing identical key residues around the active site, despite generally very low sequence homology. Interrogation of metagenomes and transcriptomes from TARA oceans and an Atlantic Meridional transect shows that psip1 is abundant and highly expressed in picocyanobacterial populations from the Mediterranean Sea and north Atlantic gyre, regions well recognized to be phosphorus (P)-deplete. Together, this identifies psip1 as an important oligotrophy-specific gene for P recycling in these organisms. Furthermore, psip1 is not restricted to picocyanobacteria and is abundant and highly transcribed in some α-proteobacteria and eukaryotic algae, suggesting that such a high-affinity phosphatase is important across the microbial taxonomic world to occupy low-P environments.


Asunto(s)
Fosfatasa Alcalina , Prochlorococcus , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/genética , Prochlorococcus/genética , Prochlorococcus/metabolismo , Fósforo/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Synechococcus/genética , Synechococcus/metabolismo , Filogenia , Agua de Mar/microbiología
3.
J Proteome Res ; 23(5): 1689-1701, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565891

RESUMEN

Cyanobacteria are the oldest prokaryotic photoautotrophic microorganisms and have evolved complicated post-translational modification (PTM) machinery to respond to environmental stress. Lysine 2-hydroxyisobutyrylation (Khib) is a newly identified PTM that is reported to play important roles in diverse biological processes, however, its distribution and function in cyanobacteria have not been reported. Here, we performed the first systematic studies of Khib in a model cyanobacterium Synechococcus sp. strain PCC 7002 (Syn7002) using peptide prefractionation, pan-Khib antibody enrichment, and high-accuracy mass spectrometry (MS) analysis. A total of 1875 high-confidence Khib sites on 618 proteins were identified, and a large proportion of Khib sites are present on proteins in the cellular metabolism, protein synthesis, and photosynthesis pathways. Using site-directed mutagenesis and functional studies, we showed that Khib of glutaredoxin (Grx) affects the efficiency of the PS II reaction center and H2O2 resistance in Syn7002. Together, this study provides novel insights into the functions of Khib in cyanobacteria and suggests that reversible Khib may influence the stress response and photosynthesis in both cyanobacteria and plants.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Synechococcus , Lisina/metabolismo , Synechococcus/metabolismo , Synechococcus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Peróxido de Hidrógeno/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Mutagénesis Sitio-Dirigida , Fotosíntesis , Cianobacterias/metabolismo , Cianobacterias/genética , Espectrometría de Masas
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38431846

RESUMEN

Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.


Asunto(s)
Bacteriófagos , Synechococcus , Synechococcus/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas Portadoras
5.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38513256

RESUMEN

Recent studies have demonstrated regional differences in marine ecosystem C:N:P with implications for carbon and nutrient cycles. Due to strong co-variance, temperature and nutrient stress explain variability in C:N:P equally well. A reductionistic approach can link changes in individual environmental drivers with changes in biochemical traits and cell C:N:P. Thus, we quantified effects of temperature and nutrient stress on Synechococcus chemistry using laboratory chemostats, chemical analyses, and data-independent acquisition mass spectrometry proteomics. Nutrient supply accounted for most C:N:Pcell variability and induced tradeoffs between nutrient acquisition and ribosomal proteins. High temperature prompted heat-shock, whereas thermal effects via the "translation-compensation hypothesis" were only seen under P-stress. A Nonparametric Bayesian Local Clustering algorithm suggested that changes in lipopolysaccharides, peptidoglycans, and C-rich compatible solutes may also contribute to C:N:P regulation. Physiological responses match field-based trends in ecosystem stoichiometry and suggest a hierarchical environmental regulation of current and future ocean C:N:P.


Asunto(s)
Ecosistema , Synechococcus , Synechococcus/genética , Synechococcus/metabolismo , Proteoma/metabolismo , Teorema de Bayes , Temperatura , Nitrógeno/metabolismo
6.
Bioresour Technol ; 396: 130432, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346593

RESUMEN

Cyanobacteria are the prospective biosolar cell factories to produce a range of bioproducts through CO2 sequestration. Farnesene is a sesquiterpene with an array of applications in biofuels, pest management, cosmetics, flavours and fragrances. This is the first time a codon-optimized farnesene synthase (AFS) gene is engineered into the genomic neutral site of Synechococcus elongatus UTEX 2973 for farnesene synthesis through its endogenous methylerythritol phosphate (MEP) pathway, rendering UTEX AFS strain. Similarly, bottleneck gene(s) of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate synthase (dxs) and/or fusion of isopentenyl diphosphate isomerase and farnesyl diphosphate synthase (idispA) were engineered engendering UTEX AFS::dxs, UTEX AFS::idispA and UTEX AFS::dxs::idispA strains. UTEX AFS::dxs::idispA achieves farnesene productivity of 2.57 mg/L/day, the highest among engineered cyanobacterial strains studied so far. It demonstrates farnesene production, which is 31.3-times higher than the UTEX AFS strain. Moreover, the engineered strains show similar productivity over a three-month period, stipulating the genetic stability of the strains.


Asunto(s)
Sesquiterpenos , Synechococcus , Dióxido de Carbono/metabolismo , Estudios Prospectivos , Sesquiterpenos/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Ingeniería Metabólica
7.
Plant Physiol ; 194(2): 634-661, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37770070

RESUMEN

Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.


Asunto(s)
Lisina Acetiltransferasas , Synechococcus , Lisina Acetiltransferasas/genética , Lisina Acetiltransferasas/metabolismo , Lisina/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Acetilación
8.
Plant Cell Physiol ; 65(1): 120-127, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37856257

RESUMEN

The two-component system (TCS) is a conserved signal transduction module in bacteria. The Hik2-Rre1 system is responsible for transcriptional activation upon high-temperature shift as well as plastoquinone-related redox stress in the cyanobacterium Synechococcus elongatus PCC 7942. As heat-induced de novo protein synthesis was previously shown to be required to quench the heat-activated response, we investigated the underlying mechanism in this study. We found that the heat-inducible transcription activation was alleviated by the overexpression of dnaK2, which is an essential homolog of the highly conserved HSP70 chaperone and whose expression is induced under the control of the Hik2-Rre1 TCS. Phosphorylation of Rre1 correlated with transcription of the regulatory target hspA. The redox stress response was found to be similarly repressed by dnaK2 overexpression. Considered together with the previous information, we propose a negative feedback mechanism of the Hik2-Rre1-dependent stress response that maintains the cellular homeostasis mediated by DnaK2.


Asunto(s)
Proteínas Bacterianas , Synechococcus , Retroalimentación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Respuesta al Choque Térmico , Proteínas HSP70 de Choque Térmico/genética , Regulación Bacteriana de la Expresión Génica
9.
Metab Eng ; 81: 38-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37925065

RESUMEN

Photosynthetic organisms need to balance the rate of photosynthesis with the utilization of photosynthetic products by downstream reactions. While such "source/sink" pathways are well-interrogated in plants, analogous regulatory systems are unknown or poorly studied in single-celled algal and cyanobacterial species. Towards the identification of energy/sugar sensors in cyanobacteria, we utilized an engineered strain of Synechococcus elongatus PCC 7942 that allows experimental manipulation of carbon status. We conducted a screening of all two-component systems (TCS) and serine/threonine kinases (STKs) encoded in S. elongatus PCC 7942 by analyzing phenotypes consistent with sucrose-induced relaxation of sink inhibition. We narrowed the candidate sensor proteins by analyzing changes observed after sucrose feeding. We show that a clustered TCS network containing RpaA, CikB, ManS and NblS are involved in the regulation of genes related to photosynthesis, pigment synthesis, and Rubisco concentration in response to sucrose. Altogether, these results highlight a regulatory TCS group that may play under-appreciated functions in carbon partitioning and energy balancing in cyanobacteria.


Asunto(s)
Carbono , Synechococcus , Carbono/metabolismo , Fotosíntesis , Synechococcus/genética , Synechococcus/metabolismo , Sacarosa/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-37977490

RESUMEN

Glyceroglycolipids are the primary thylakoid membrane lipids in cyanobacteria. Their diverse bioactivities have led to extensive utilization in the biomedical industry. In this study, we elucidated the role of ERA (E. coli Ras-like protein) in augmenting glyceroglycolipid synthesis and bolstering stress resilience in Synechococcus elongatus PCC 7942 during phosphate starvation. Notably, the ERA overexpression strain (ERA OE) outperformed the wild-type (WT) strain under phosphate-starved conditions, displaying an average 13.9 % increase in biomass over WT during the entire growth period, peaking at 0.185 g L-1 of dry cell weight on day 6. Lipidomic analysis using UHPLC-MS/MS techniques revealed that ERA OE exhibited a higher total glyceroglycolipid content compared to WT under phosphate starvation, representing a 7.95 % increase over WT and constituting a maximum of 5.07 % of dry cell weight on day 6. Transcriptomic analysis identified a significant up-regulation of the gldA gene (encoding glycerol dehydrogenase) involved in glycerolipid metabolism due to overexpression of ERA during phosphate starvation. These findings suggest a potential mechanism by which ERA regulates glyceroglycolipid synthesis through the up-regulation of GldA, thereby enhancing phosphate starvation tolerance in S. elongatus PCC 7942. Furthermore, lipidomic analysis revealed that ERA facilitated the production of glyceroglycolipid molecules containing C16:1 and C18:1 fatty acids. Additionally, ERA redirected lipid flux and promoted glyceroglycolipid accumulation while attenuating triacylglycerol production under phosphate starvation. This study represents the first demonstration of pivotal role of ERA in enhancing glyceroglycolipid synthesis and phosphate starvation tolerance in cyanobacteria, offering new insights into the effective utilization of glyceroglycolipids in various applications.


Asunto(s)
Fosfatos , Synechococcus , Fosfatos/metabolismo , Escherichia coli/metabolismo , Espectrometría de Masas en Tándem , Synechococcus/genética , Synechococcus/metabolismo
11.
J Biol Chem ; 300(2): 105590, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141759

RESUMEN

Far-red light photoacclimation, or FaRLiP, is a facultative response exhibited by some cyanobacteria that allows them to absorb and utilize lower energy light (700-800 nm) than the wavelengths typically used for oxygenic photosynthesis (400-700 nm). During this process, three essential components of the photosynthetic apparatus are altered: photosystem I, photosystem II, and the phycobilisome. In all three cases, at least some of the chromophores found in these pigment-protein complexes are replaced by chromophores that have red-shifted absorbance relative to the analogous complexes produced in visible light. Recent structural and spectroscopic studies have elucidated important features of the two photosystems when altered to absorb and utilize far-red light, but much less is understood about the modified phycobiliproteins made during FaRLiP. We used single-particle, cryo-EM to determine the molecular structure of a phycobiliprotein core complex comprising allophycocyanin variants that absorb far-red light during FaRLiP in the marine cyanobacterium Synechococcus sp. PCC 7335. The structure reveals the arrangement of the numerous red-shifted allophycocyanin variants and the probable locations of the chromophores that serve as the terminal emitters in this complex. It also suggests how energy is transferred to the photosystem II complexes produced during FaRLiP. The structure additionally allows comparisons with other previously studied allophycocyanins to gain insights into how phycocyanobilin chromophores can be tuned to absorb far-red light. These studies provide new insights into how far-red light is harvested and utilized during FaRLiP, a widespread cyanobacterial photoacclimation mechanism.


Asunto(s)
Aclimatación , Proteínas Bacterianas , Modelos Moleculares , Ficobiliproteínas , Luz Roja , Synechococcus , Complejo de Proteína del Fotosistema II/metabolismo , Synechococcus/química , Synechococcus/metabolismo , Ficobiliproteínas/química , Aclimatación/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Estructura Terciaria de Proteína
12.
Proc Natl Acad Sci U S A ; 120(47): e2315701120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37972069

RESUMEN

The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacterium Synechococcus isolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures. Curiously, the genomes of all 11 isolates were almost identical (average nucleotide identities of >99.99%, with >99% of the genome aligning) and no differences in gene content or single nucleotide variants were associated with either cool or warm temperature phenotypes. Despite a very high level of genomic similarity, sequenced epigenomes for two strains showed differences in methylation on genes associated with photosynthesis. These corresponded to measured differences in photophysiology, suggesting a potential pathway for future mechanistic research into thermal microdiversity. Our study demonstrates that present-day marine microbial populations can harbor cryptic but environmentally relevant thermotypes which may increase their resilience to future rising temperatures.


Asunto(s)
Synechococcus , Synechococcus/metabolismo , Ecotipo , Temperatura , Frío , Nucleótidos/metabolismo , Agua de Mar/microbiología
13.
Sci Rep ; 13(1): 19944, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968300

RESUMEN

Chitin is an abundant, carbon-rich polymer in the marine environment. Chitinase activity has been detected in spent media of Synechococcus WH7803 cultures-yet it was unclear which specific enzymes were involved. Here we delivered a CRISPR tool into the cells via electroporation to generate loss-of-function mutants of putative candidates and identified ChiA as the enzyme required for the activity detected in the wild type.


Asunto(s)
Quitinasas , Synechococcus , Synechococcus/genética , Synechococcus/metabolismo , Quitina/metabolismo , Quitinasas/genética , Quitinasas/metabolismo
14.
Mol Plant ; 16(12): 1927-1936, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37853692

RESUMEN

Hexadecameric form I Rubisco, which consisting consists of eight large (RbcL) and eight small (RbcS) subunits, is the most abundant enzyme on earth. Extensive efforts to engineer an improved Rubisco to speed up its catalytic efficiency and ultimately increase agricultural productivity. However, difficulties with correct folding and assembly in foreign hosts or in vitro have hampered the genetic manipulation of hexadecameric Rubisco. In this study, we reconstituted Synechococcus sp. PCC6301 Rubisco in vitro using the chaperonin system and assembly factors from cyanobacteria and Arabidopsis thaliana (At). Rubisco holoenzyme was produced in the presence of cyanobacterial Rubisco accumulation factor 1 (Raf1) alone or both AtRaf1 and bundle-sheath defective-2 (AtBsd2) from Arabidopsis. RbcL released from GroEL is assembly capable in the presence of ATP, and AtBsd2 functions downstream of AtRaf1. Cryo-EM structures of RbcL8-AtRaf18, RbcL8-AtRaf14-AtBsd28, and RbcL8 revealed that the interactions between RbcL and AtRaf1 are looser than those between prokaryotic RbcL and Raf1, with AtRaf1 tilting 7° farther away from RbcL. AtBsd2 stabilizes the flexible regions of RbcL, including the N and C termini, the 60s loop, and loop 6. Using these data, combined with previous findings, we propose the possible biogenesis pathways of prokaryotic and eukaryotic Rubisco.


Asunto(s)
Arabidopsis , Synechococcus , Chaperonas Moleculares/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
15.
ACS Synth Biol ; 12(10): 3008-3019, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37728873

RESUMEN

Fructose is an important monosaccharide product widely applied in the food, medicine, and chemical industries. Currently, fructose is mainly manufactured with plant biomass-sourced polysaccharides through multiple steps of digestion, conversion, separation, and purification. The development of cyanobacterial metabolic engineering provides an attractive alternative route for the one-step direct production of fructose utilizing carbon dioxide and solar energy. In this work, we developed a paradigm for engineering cyanobacterial chassis cells into efficient cell factories for the photosynthetic production of fructose. In a representative cyanobacterial strain, Synechococcus elongatus PCC 7942, knockout of fructokinase effectively activated the synthesis and secretion of fructose in hypersaline conditions, independent of any heterologous transporters. The native sucrose synthesis pathway was identified as playing a primary role in fructose synthesis. Through combinatory optimizations on the levels of metabolism, physiology, and cultivation, the fructose yield of the Synechococcus cell factories was stepwise improved to 3.9 g/L. Such a paradigm was also adopted to engineer another Synechococcus strain, the marine species Synechococcus sp. PCC 7002, and facilitated an even higher fructose yield of over 6 g/L. Finally, the fructose synthesized and secreted by the cyanobacterial photosynthetic cell factories was successfully extracted and prepared from the culture broth in the form of products with 86% purity through multistep separation-purification operations. This work demonstrated a paradigm for systematically engineering cyanobacteria for photosynthetic production of desired metabolites, and it also confirmed the feasibility and potential of cyanobacterial photosynthetic biomanufacturing as a simple and efficient route for fructose production.


Asunto(s)
Fructosa , Synechococcus , Fructosa/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Fotosíntesis , Ingeniería Metabólica , Metabolismo de los Hidratos de Carbono , Sacarosa/metabolismo , Dióxido de Carbono/metabolismo
16.
Plant Cell Physiol ; 64(12): 1590-1600, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37706547

RESUMEN

Cyanobacteria are promising photosynthetic organisms owing to their ease of genetic manipulation. Among them, Synechococcus elongatus UTEX 2973 exhibits faster growth, higher biomass production efficiency and more robust stress tolerance compared with S. elongatus PCC 7942. This is due to specific genetic differences, including four single-nucleotide polymorphisms (SNPs) in three genes. One of these SNPs alters an amino acid at position 252 of the FoF1 ATP synthase α-subunit from Tyr to Cys (αY252C) in S. elongatus 7942. This change has been shown to significantly affect growth rate and stress tolerance, specifically in S. elongatus. Furthermore, experimental substitutions with several other amino acids have been shown to alter the ATP synthesis rate in the cell. In the present study, we introduced identical amino acid substitutions into Synechocystis sp. PCC 6803 at position 252 to elucidate the amino acid's significance and generality across cyanobacteria. We investigated the resulting impact on growth, intracellular enzyme complex levels, intracellular ATP levels and enzyme activity. The results showed that the αY252C substitution decreased growth rate and high-light tolerance. This indicates that a specific bulkiness of this amino acid's side chain is important for maintaining cell growth. Additionally, a remarkable decrease in the membrane-bound enzyme complex level was observed. However, the αY252C substitution did not affect enzyme activity or intracellular ATP levels. Although the mechanism of growth suppression remains unknown, the amino acid at position 252 is expected to play an important role in enzyme complex formation.


Asunto(s)
Synechococcus , Synechocystis , Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Synechococcus/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Fotosíntesis/genética , Adenosina Trifosfato/metabolismo
17.
Metab Eng ; 80: 12-24, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678664

RESUMEN

The capability of cyanobacteria to produce sucrose from CO2 and light has a remarkable societal and biotechnological impact since sucrose can serve as a carbon and energy source for a variety of heterotrophic organisms and can be converted into value-added products. However, most metabolic engineering efforts have focused on understanding local pathway alterations that drive sucrose biosynthesis and secretion in cyanobacteria rather than analyzing the global flux re-routing that occurs following induction of sucrose production by salt stress. Here, we investigated global metabolic flux alterations in a sucrose-secreting (cscB-overexpressing) strain relative to its wild-type Synechococcus elongatus 7942 parental strain. We used targeted metabolomics, 13C metabolic flux analysis (MFA), and genome-scale modeling (GSM) as complementary approaches to elucidate differences in cellular resource allocation by quantifying metabolic profiles of three cyanobacterial cultures - wild-type S. elongatus 7942 without salt stress (WT), wild-type with salt stress (WT/NaCl), and the cscB-overexpressing strain with salt stress (cscB/NaCl) - all under photoautotrophic conditions. We quantified the substantial rewiring of metabolic fluxes in WT/NaCl and cscB/NaCl cultures relative to WT and identified a metabolic bottleneck limiting carbon fixation and sucrose biosynthesis. This bottleneck was subsequently mitigated through heterologous overexpression of glyceraldehyde-3-phosphate dehydrogenase in an engineered sucrose-secreting strain. Our study also demonstrates that combining 13C-MFA and GSM is a useful strategy to both extend the coverage of MFA beyond central metabolism and to improve the accuracy of flux predictions provided by GSM.


Asunto(s)
Ingeniería Metabólica , Synechococcus , Cloruro de Sodio/metabolismo , Metabolismo de los Hidratos de Carbono , Synechococcus/genética , Synechococcus/metabolismo , Sacarosa/metabolismo , Fotosíntesis
18.
Nat Commun ; 14(1): 4742, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550278

RESUMEN

The field of engineered living materials lies at the intersection of materials science and synthetic biology with the aim of developing materials that can sense and respond to the environment. In this study, we use 3D printing to fabricate a cyanobacterial biocomposite material capable of producing multiple functional outputs in response to an external chemical stimulus and demonstrate the advantages of utilizing additive manufacturing techniques in controlling the shape of the fabricated photosynthetic material. As an initial proof-of-concept, a synthetic riboswitch is used to regulate the expression of a yellow fluorescent protein reporter in Synechococcus elongatus PCC 7942 within a hydrogel matrix. Subsequently, a strain of S. elongatus is engineered to produce an oxidative laccase enzyme; when printed within a hydrogel matrix the responsive biomaterial can decolorize a common textile dye pollutant, indigo carmine, potentially serving as a tool in environmental bioremediation. Finally, cells are engineered for inducible cell death to eliminate their presence once their activity is no longer required, which is an important function for biocontainment and minimizing environmental impact. By integrating genetically engineered stimuli-responsive cyanobacteria in volumetric 3D-printed designs, we demonstrate programmable photosynthetic biocomposite materials capable of producing functional outputs including, but not limited to, bioremediation.


Asunto(s)
Synechococcus , Synechococcus/genética , Synechococcus/metabolismo , Fotosíntesis , Biología Sintética/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Metabólica/métodos , Hidrogeles/metabolismo
19.
Bioresour Technol ; 387: 129677, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37579861

RESUMEN

An engineered Synechococcus elongatus UTEX 2973-IspS.IDI is used to enhance isoprene production through geranyl diphosphate synthase (CrtE) inhibition and process parameters (light intensity, NaHCO3 and growth temperature) optimization approach. A cumulative isoprene production of 1.21 mg/gDCW was achieved with productivity of 12.6 µg/gDCW/h in culture supplemented with 20 µg/mL alendronate. This inhibition strategy improvises the cumulative isoprene production 5.76-fold in presence of alendronate. The maximum cumulative production of isoprene is observed to be 5.22 and 6.20 mg/gDCW (54.4 and 64.6 µg/gDCW/h) at statistical and artificial neural network genetic algorithm (ANN-GA) optimized conditions, respectively. The overall increase of isoprene production is found to be 29.52-fold using an integrated approach of inhibition and ANN-GA optimization in comparison to unoptimized cultures without alendronate. This study reveals that alendronate use as a potential inhibitor and machine learning based optimization is a better approach in comparison to statistical optimization to enhance the isoprene production.


Asunto(s)
Alendronato , Synechococcus , Alendronato/metabolismo , Redes y Vías Metabólicas , Synechococcus/metabolismo , Ingeniería Metabólica
20.
Cells ; 12(10)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37408264

RESUMEN

The growth of bacterial populations has been described as a dynamic process of continuous reproduction and cell death. However, this is far from the reality. In a well fed, growing bacterial population, the stationary phase inevitably occurs, and it is not due to accumulated toxins or cell death. A population spends the most time in the stationary phase, where the phenotype of the cells alters from the proliferating ones, and only the colony forming unit (CFU) decreases after a while, not the total cell concentration. A bacterial population can be considered as a virtual tissue as a result of a specific differentiation process, in which the exponential-phase cells develop to stationary-phase cells and eventually reach the unculturable form. The richness of the nutrient had no effect on growth rate or on stationary cell density. The generation time seems not to be a constant value, but it depended on the concentration of the starter cultures. Inoculations with serial dilutions of stationary populations reveal a so-called minimal stationary cell concentration (MSCC) point, up to which the cell concentrations remain constant upon dilutions; that seems to be universal among unicellular organisms.


Asunto(s)
División Celular , Citocinesis , Synechococcus , Synechococcus/crecimiento & desarrollo , Synechococcus/metabolismo , Técnicas de Cultivo Celular por Lotes , Proteómica , Medios de Cultivo/metabolismo , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...