Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Intervalo de año de publicación
1.
An Acad Bras Cienc ; 96(suppl 1): e20230356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39016355

RESUMEN

Using Amazonian fruits to flavor kombuchas is a promising proposal, as it adds nutritional value to the drink. This work sought to develop kombucha flavored with Amazonian fruits and evaluate the bioactive compounds and antioxidant capacity of the formulations. Three kombucha formulations were prepared using green tea (Camellia sinensis) and three Amazonian fruits: cupuassu (Theobroma grandiflorum), tapereba (Spondias lutea L.) and bacuri (Platonia insignis). Kombucha fermentations were evaluated before and after the insertion of nectars through the analysis of phenolic compounds, vitamin C and antioxidant capacity. Analyzes of pH, total sugars, acetic acid, ethanol, and microbiological characterization of final formulations were also carried out. For the first fermentation, were found values of phenolic compounds and antioxidant capacity of 30.60 ± 0.93 mg EAG/L and 295.02 ± 5.59 µmol ET/mL, and the formulation with tapereba showed the highest values for total phenolic compounds (34.92 ± 12.25 mg EAG/L), antioxidant capacity (320.57 ± 9.53 µmol ET/mL) and vitamin C (198.25 mg/100g). Thus, the formulations developed had a crucial nutritional appeal to stimulate consumption by the population, in addition to enabling the valorization and addition of commercial value to the Amazonian fruits used.


Asunto(s)
Antioxidantes , Frutas , Fenoles , Antioxidantes/análisis , Frutas/química , Fenoles/análisis , Ácido Ascórbico/análisis , Fermentación , Té de Kombucha/análisis
2.
J Food Sci ; 89(6): 3430-3444, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38638068

RESUMEN

The utilization of coffee leaves in kombucha production has intrigued researchers; however, the lack of understanding regarding the characteristics of coffee leaf kombucha (CK) and its differentiation from black tea kombucha (BK) has impeded its application in the beverage industry. Therefore, this study aimed to characterize and compare the physiochemical properties, phytochemical compositions, antioxidant activity, and α-glucosidase inhibitory ability of kombucha prepared from the leaves of Coffea arabica (CK) and black tea (Camellia sinensis, BK) and their extracts (CT and BT). After fermentation, pH and the contents of total sugars, reducing sugars, and free amino acids of BK and CK were decreased, whereas the levels of total acids and organic acids, such as gluconic, lactic, and acetic acid were increased. Notably, the concentration of vitamin C in CK was 48.9% higher than that in BK. HPLC analysis exhibited that 5-caffeoylquinic acid in CT was significantly decreased by 48.0% in CK, whereas the levels of 3-caffeoylquinic acid and 4-caffeoylquinic acid were significantly increased after fermentation. The content of caffeine was significantly (p < 0.05) reduced by 9.5% and 22.0% in BK and CK, respectively, whereas the theobromine level was significantly increased in CK. Notably, CK has superior total phenolic and flavonoid contents and antioxidant activity than BK, whereas BK possesses higher α-glucosidase inhibitory capacity. Electronic nose analysis demonstrated that sulfur-containing organics were the main volatiles in both kombuchas, and fermentation significantly increased their levels. Our study indicates that coffee leaves are a promising resource for preparing kombucha. PRACTICAL APPLICATION: This article investigates the differences in physicochemical properties, bioactive constituents, antioxidant activity, and α-glucosidase inhibitory activity of kombucha preparation from black tea and coffee leaves. We have found that after fermentation BK had brighter soup color and higher α-glucosidase inhibitory capacity, whereas CK had higher levels of total phenols, flavonoids, vitamin C, and antioxidants and lower contents of sugars. This study provides valuable information for the preparation of CK with high-quality attributes and antioxidant activity.


Asunto(s)
Antioxidantes , Camellia sinensis , Coffea , Extractos Vegetales , Hojas de la Planta , Hojas de la Planta/química , Antioxidantes/análisis , Coffea/química , Camellia sinensis/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fermentación , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/análisis , Té de Kombucha/análisis , Café/química , Fitoquímicos/análisis , Té/química , Ácido Ascórbico/análisis , Fenoles/análisis , Cafeína/análisis , Ácido Quínico/análogos & derivados , Ácido Quínico/análisis , Flavonoides/análisis
3.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37496193

RESUMEN

The pellicle biofilm generated during the Kombucha tea fermentation process has, when dried, textile-like properties that may have real-life applications. However, pellicle yield can vary depending on inoculation and incubation conditions, which affects research investigations on the properties of the pellicle. To generate data on variability to help define optimum pellicle growth conditions, as part of a public engagement event about biofilm, a citizen science activity was hosted whereby visitors to a science festival were invited to select incubation conditions and inoculate different media with liquid or solid (pellicle). More than 220 samples were inoculated (in excess of 1200 visitors, mainly in family groups). The most popular incubation conditions were coconut water or tea medium, 30°C/room temperature and liquid inoculum. The most productive/reproducible in terms of yield and variability were tea medium, 30°C, and liquid inoculum, which reflect some of the conditions most used in the domestic setting for kombucha culture. The event provided both useful research data and generated public interest in a research area of which many will have been unaware. Interest in the results of the activity, available several weeks after the activity, was sustained using email contact and FlickR for the dissemination of images and data.


Asunto(s)
Ciencia Ciudadana , Té de Kombucha , Té de Kombucha/análisis , Biopelículas , Fermentación
4.
Food Chem ; 423: 136208, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163914

RESUMEN

Kombucha is widely recognized for its health benefits, and it facilitates high-quality transformation and utilization of tea during the fermentation process. Implementing on-line monitoring for the kombucha production process is crucial to promote the valuable utilization of low-quality tea residue. Near-infrared (NIR) spectroscopy, together with partial least squares (PLS), backpropagation neural network (BPANN), and their combination (PLS-BPANN), were utilized in this study to monitor the total sugar of kombucha. In all, 16 mathematical models were constructed and assessed. The results demonstrate that the PLS-BPANN model is superior to all others, with a determination coefficient (R2p) of 0.9437 and a root mean square error of prediction (RMSEP) of 0.8600 g/L and a good verification effect. The results suggest that NIR coupled with PLS-BPANN can be used as a non-destructive and on-line technique to monitor total sugar changes.


Asunto(s)
Té de Kombucha , Sistemas en Línea , Dinámicas no Lineales , Té de Kombucha/análisis , Azúcares/química , Azúcares/metabolismo , Fermentación , Espectroscopía Infrarroja Corta , Calibración , Modelos Lineales
5.
Ultrason Sonochem ; 94: 106339, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36842214

RESUMEN

The current work combines headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS) with multivariate analysis fusion metabonomics for examining metabolite profile changes. The correlation with metabolic pathways during the fermentation of kombucha tea were comprehensively explored. For optimizing the fermentation process, ultrasound-assisted factors were explored. A total of 132 metabolites released by fermented kombucha were detected by HS-SPME-GC/MS. We employed the principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to present the relationship between aroma components and fermentation time, of which the first two principal components respectively accounted for 60.3% and 6.5% of the total variance. Multivariate statistical analysis showed that during the fermentation of kombucha tea, there were significant differences in the phenotypes of metabolites in the samples, and 25 characteristic metabolites were selected as biomarkers. Leaf alcohol was first proposed as the characteristic volatile in the fermentation process of kombucha. Furthermore, we addressed the generation pathways of characteristic volatiles, their formation mechanisms, and the transformational correlation among them. Our findings provide a roadmap for future kombucha fermentation processing to enhance kombucha flavor and aroma.


Asunto(s)
Té de Kombucha , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Fermentación , Té de Kombucha/análisis , Odorantes/análisis , Metabolómica , Etanol/análisis , Redes y Vías Metabólicas , Compuestos Orgánicos Volátiles/análisis
6.
Crit Rev Food Sci Nutr ; 63(19): 3851-3866, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34698580

RESUMEN

Kombucha is a fermented nonalcoholic tea-based beverage produced through a symbiotic culture of bacteria and yeasts. In vitro studies have demonstrated antimicrobial, antioxidant, antiproliferative, and anti-carcinogenic properties of kombucha. However, no systematic reviews have evaluated the effects of kombucha in vivo. Thus, we aimed to evaluate the evidence that exists so far about kombucha consumption on comorbidities associated with obesity as well as on the gut microbiota. The search was conducted in accordance with PRISMA and the protocol was registered in PROSPERO (registration number: CRD42020158917). The MEDLINE/PubMed, Web of Science, LILACS, SciELO, Scopus, and Science Direct databases were used in the search considering the following terms: "kombucha" OR "kombucha tea" OR "kombucha teas" OR "tea, kombucha" OR "teas, kombucha" NOT "review." Fifteen studies were included in this review. The results suggest that kombucha consumption attenuates oxidative stress and inflammation, improves the liver detoxification process, and reduces intestinal dysbiosis. There is evidence that kombucha consumption is beneficial for the control and treatment of obesity and associated comorbidities, as well as for the modulation of the gut microbiota in vivo.


Asunto(s)
Microbioma Gastrointestinal , Té de Kombucha , Té de Kombucha/análisis , Té de Kombucha/microbiología , Bebidas , Levaduras , Obesidad , Fermentación ,
7.
mSystems ; 7(3): e0015722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35670539

RESUMEN

Despite the popularity of kombucha tea, the distribution of different microbes across kombucha ferments and how those microbes interact within communities are not well characterized. Using metagenomics, comparative genomics, synthetic community experiments, and metabolomics, we determined the taxonomic, ecological, and functional diversity of 23 distinct kombuchas from across the United States. Shotgun metagenomic sequencing demonstrated that the bacterium Komagataeibacter rhaeticus and the yeast Brettanomyces bruxellensis were the most common microbes in the sampled kombucha communities. To determine the specificity of bacterium-yeast interactions, we experimentally quantified microbial interactions within kombucha biofilms by measuring densities of interacting species and biofilm production. In pairwise combinations of bacteria and yeast, B. bruxellensis and individual strains of Komagataeibacter spp. were sufficient to form kombucha fermentations with robust biofilms, but Zygosaccharomyces bisporus, another yeast found in kombucha, did not stimulate bacteria to produce biofilms. Profiling the spent media of both yeast species using nuclear magnetic resonance spectroscopy suggested that the enhanced ability of B. bruxellensis to ferment and produce key metabolites in sucrose-sweetened tea may explain why it stimulates biofilm formation. Comparative genomics demonstrated that Komagataeibacter spp. with >99% genomic similarity can still have dramatic differences in biofilm production, with strong producers yielding five times more biofilm than the weakest producers. IMPORTANCE Through an integration of metagenomic and experimental approaches, our work reveals the diversity and nature of interactions among key taxa in kombucha microbiomes through the construction of synthetic microbial pairs. Manipulation of these microbes in kombucha has the potential to shape both the fermentation qualities of kombucha and the production of biofilms and is valuable for kombucha beverage producers, biofilm engineers, and synthetic ecologists.


Asunto(s)
Té de Kombucha , Té de Kombucha/análisis , Fermentación , Bebidas/microbiología , Bacterias/genética , Metagenoma
9.
Int J Food Microbiol ; 377: 109783, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35728418

RESUMEN

In the present review the latest research studies on Kombucha tea are summarized. Special attention has been paid on microbial population, chemical parameters, biocellulose production, and mainly, on the latest evidences of the biological activities of Kombucha tea. Kombucha tea is a fermented sweetened black or green tea which is obtained from a fermentative process driven by a symbiotic culture of yeast, acetic acid bacteria and lactic acid bacteria. In the last years, its consumption has increasingly grown due to its multiple and potential benefits on human health. This fact has motivated a significant increase in the number of research studies that are focused on the biological activities of this beverage. In this context, this review gathers the main studies that have analyzed the different properties of Kombucha tea (as antioxidant, antimicrobial, antidiabetic, antitumoral, anti-inflammatory, antihypertensive, hepatoprotective, hypocholesterolemic, and probiotic activities). It is highlighted that nowadays few human-based evidences are available to prove the beneficial effect of Kombucha tea on humans' health. In conclusion, further work on Kombucha tea is needed since nowadays few information is available on both clinical studies and the characterization of bioactive compounds and their properties.


Asunto(s)
Té de Kombucha , Fermentación , Humanos , Té de Kombucha/análisis , Consorcios Microbianos , Saccharomyces cerevisiae , Té/microbiología
10.
Food Chem ; 372: 131346, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34818748

RESUMEN

The symbiotic community of bacteria and yeast (SCOBY) of Kombucha beverage produces a floating film composed of bacterial cellulose, a distinctive biobased material. In this work, Kombucha fermentation was carried out in six different herbal infusions, where SCOBY was able to synthesise cellulosic films. Infusions of black and green tea, yerba mate, lavender, oregano and fennel added with sucrose (100 g/l) were used as culture media. In all cultures, film production resulted in a maximum after 21 days. Yield conversion, process productivity and antioxidant activity were quantified. Macroscopic and microscopic features of films were determined based on electronic microscopy, calorimetric and mechanical properties and hydration behaviour. Native films from yerba mate had a remarkable antioxidant activity of 93 ± 4% of radical inhibition due to plant polyphenols, which could prevent food oxidation. Results revealed that films retained natural bioactive substances preserving important physicochemical properties, essential for developing active materials.


Asunto(s)
Té de Kombucha , Bacterias , Celulosa , Fermentación , Té de Kombucha/análisis ,
11.
São Paulo; s.n; s.n; 2022. 61 p. tab, graf, ilus.
Tesis en Portugués | LILACS | ID: biblio-1415198

RESUMEN

Os casos de transtorno de ansiedade têm apresentado crescimento considerável desde o início do século XX, onde a terapia medicamentosa oferecida, geralmente apresenta efeito sedativo, portanto, a busca por tratamentos adjuvantes para tratar quadros de ansiedade se fazem necessários. Estudos indicam que a modulação da microbiota intestinal pode estar relacionada à regulação neural dos indivíduos através de diversas vias, incluindo a aplicação de cepas probióticas e consumo de alimentos fermentados tradicionais como iogurte e kombucha, colaborando para a melhoria da qualidade de vida destes pacientes. Este projeto teve como objetivo buscar os metabólitos e neurotransmissores presentes no kombucha a fim de verificar seu potencial psicobióticos e comparar as aplicações e metabólitos produzidos por cepas probióticas existentes no mercado e em alimentos fermentados tradicionais que atuem no eixo intestino-cérebro. Foram realizadas pesquisas em bases de dados online, como Pubmed, Web of Science, Scielo, Scopus e Google Scholar no período entre 2002 e 2022 relacionados aos possíveis efeitos dos probióticos em condições de ansiedade, bem como como os mecanismos que envolvem o eixo cérebro-intestino, seja por meio de testes em humanos e em modelos animais. As espécies mais testadas quanto ao seu potencial probiótico e ação nos transtornos de ansiedade encontradas foram Lactobacillus paracasei, L. casei, L. rhamnosus, Bifidobacterium infanti e B. longum. Cada gênero demonstra um grau diferente na redução da ansiedade dos indivíduos. Os alimentos potencialmente probióticos, incluindo alimentos fermentados tradicionais, além de atuar como complemento à terapia em quadros de ansiedade, tem relevância no setor socioeconômico


Anxiety disorder cases have shown considerable growth since the beginning of the 20th century, where the drug therapy offered usually has a sedative effect. Therefore, the search for adjuvant treatments to treat anxiety disorders is necessary. Studies indicate that the modulation of the intestinal microbiota may be related to the neural regulation of individuals in several ways, including the application of probiotic strains and consumption of traditional fermented foods such as yogurt and kombucha, contributing to the improvement of the quality of life of these patients. This project aimed to identify and compare the psychobiotic effect in the gut-brain axis of the metabolites and neurotransmitters produced by kombucha and commercial probiotic strains. The research was carried out in online databases, such as Pubmed, Web of Science, Scielo, Scopus, and Google Scholar in the period between 2002 and 2022 related to the possible effects of probiotics in anxiety conditions as the mechanisms that involve the brain-gut axis either through tests in humans or animal models. The species most tested for their probiotic potential and action on anxiety disorders were Lactobacillus paracasei, L. casei, L. rhamnosus, Bifidobacterium infanti, and B. longum. Each genus demonstrates a different degree of reducing individuals' anxiety. Potentially probiotic foods, including traditional fermented foods, acting as a complement to therapy in cases of anxiety, have relevance in the socioeconomic sector


Asunto(s)
Trastornos Fóbicos/patología , Té de Kombucha/análisis , Té de Kombucha/efectos adversos , Serotonina/análogos & derivados , Microbiota , Alimentos Fermentados/efectos adversos , Eje Cerebro-Intestino
12.
São Paulo; s.n; s.n; 2022. 94 p. tab, graf, ilus.
Tesis en Portugués | LILACS | ID: biblio-1396412

RESUMEN

Um dos maiores desafios no desenvolvimento de produtos probióticos é entender como os microrganismos interagem entre si e com o hospedeiro. Quando falamos em alimentos fermentados tradicionais, este obstáculo aumenta porque a matriz alimentar já possui um microbioma intrínseco. No entanto, também é conhecido que muitos microrganismos podem interagir e cooperar para sobreviver quando condições de estresse são encontradas. Assim, o objetivo deste trabalho foi isolar leveduras de quatro diferentes kombuchas em distintos momentos fermentativos e verificar a influência que leveduras isoladas de kombucha têm na manutenção da viabilidade da bactéria probiótica Bifidobacterium animalis subsp. lactis HN019 em condições de aerobiose. Meyerozyma guilliermondii, Candida albicans, Rhodotorula mucilaginosa e Pichia membranifaciens foram leveduras encontradas nas kombuchas, das quais as duas últimas favoreceram a manutenção da alta viabilidade de HN019 em cocultura por 14 dias. Observou-se a viabilidade da bactéria acima de 9 log ao longo de todo o experimento, o que não foi observado em monocultura. Ademais, utilizou-se de análise de autoagregação, hidrofobicidade, atividade enzimática de proteases e fosfolipases das leveuras para analisar seu potencial patogênico. Observou-se que R. mucilaginosa demonstrou características semelhantes à Saccharomyces cerevisiae subsp. boulardii, e sua interação benéfica com HN019 reforça a possibilidade de que esta levedura seja uma chave para a inserção da bactéria em uma kombucha probiótica. Análises metabólicas foram realizadas e encontrou-se uma vasta diversidade de dipeptídeos, principalmente os compostos de prolina, durante a cocultura da bactéria com as leveduras. Tais dipeptídeos apresentam importantes mecanismos de ação no controle biológico e quorum sensing de bactérias e leveduras, e supostamente regulam a manutenção das relações mutualísticas entre ambos microrganismo


One of the biggest challenges in the development of probiotic products is to understand how microorganisms interact with each other and with the host. When we talk about traditional fermented foods, this obstacle increases because the food matrix already has an intrinsic microbiome. However, it is also known that many microorganisms can interact and cooperate to survive when stressful situations are encountered. Thus, the objective of this work was to isolate yeasts from four different kombuchas at different fermentation times and to verify the influence that yeasts isolated from kombucha have on maintaining the viability of the probiotic bacterium Bifidobacterium animalis subsp. lactis HN019 under aerobic conditions. Meyerozyma guilliermondii, Candida albicans, Rhodotorula mucilaginosa and Pichia membranifaciens were yeasts found in kombuchas, of which the last two favored the maintenance of HN019 high viability in co-culture for 14 days. Bacteria viability above 9 log was observed throughout the experiment, which was not observed in monoculture. In addition, analysis of autoaggregation, hydrophobicity, enzyme activity of proteases and phospholipases of yeasts was used to analyze their pathogenic potential. It was observed that R. mucilaginosa demonstrated characteristics similar to Saccharomyces cerevisiae subsp. boulardii, and its beneficial interaction with HN019 reinforces the possibility that this yeast is a key to the insertion of the bacterium in a probiotic kombucha. Metabolic analysis were performed and a wide diversity of dipeptides, mainly proline-based, was found during the co-culture of the bacteria with the yeasts. Such dipeptides have important mechanisms of action in the biological control and quorum sensing of bacteria and yeast, and supposedly regulate the maintenance of mutualistic relationships between both microorganism


Asunto(s)
Levaduras/clasificación , Té de Kombucha/análisis , Alimentos Fermentados/análisis , Rhodotorula/clasificación , Técnicas de Cocultivo/métodos , Probióticos , Dipéptidos/agonistas , Microbiota , Bifidobacterium animalis/patogenicidad
13.
Braz. J. Pharm. Sci. (Online) ; 58: e20766, 2022. graf
Artículo en Inglés | LILACS | ID: biblio-1420428

RESUMEN

Abstract Kombucha (tea and biocelluose) has been used worldwide due to its high nutritional, functional, and economic potential. This fermented tea has been used in folk medicine to treat several pathological conditions and its biocellulose in the industrial sector. In this context, this paper presents a scientific literature review on the main phytochemicals of Kombucha and respective biological activities to assess their potential uses. The tea has presented a wide range of bioactive compounds such as amino acids, anions, flavonoids, minerals, polyphenols, vitamins, and microorganisms. Moreover, its biocellulose is rich in fibers. These compounds contribute to various biological responses such as antioxidant, hepatoprotective, antitumoral, antidiabetic, and antihypercholesterolemic effects. In this sense, both the tea and its biocellulose are promising for human use. Besides, Kombucha presents itself as a drink option for vegetarians and/or those seeking healthier diets, as its biocellulose can bring metabolic benefits. Our review demonstrates that both can be used as functional foods and/or sources of bioactive compounds for food and industrial applications.


Asunto(s)
Té de Kombucha/análisis , Té de Kombucha/efectos adversos , Alimentos Funcionales/clasificación , Fermentación , Fitoquímicos/antagonistas & inhibidores
14.
Nutrients ; 13(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960001

RESUMEN

Kombucha is a fermented tea made from a Symbiotic Culture of Bacteria and Yeast (SCOBY) with a long history of use as a health tonic. It is likely that most health benefits come from the tea and fermentation metabolites from specific microbial communities. Despite its growing importance as a functional health drink, the microbial ecosystem present in kombucha has not been fully documented. To characterize the microbial composition and biochemical properties of 'The Good Brew' original base kombucha, we used metagenomics amplicon (16S rRNA and ITS) sequencing to identify the microbial communities at the taxonomic level. We identified 34 genera with 200 microbial species yet described in kombucha. The dominance of organic acid producing microorganisms Acetobacter, Komagataeibacter and Starmerella are healthy for the human gut and their glucose metabolising activities have a putative role in preventing conditions such as diabetes and obesity. Kombucha contains high protein (3.31 µg/mL), high phenolic content (290.4 mg/100 mL) and low sugars (glucose: 1.87 g/L; sucrose 1.11 g/L; fructose: 0.05 g/L) as compared to green tea. The broad microbial diversity with proven health benefits for the human gut suggests kombucha is a powerful probiotic. These findings are important to improve the commercial value of kombucha and uncover the immense prospects for health benefits.


Asunto(s)
Té de Kombucha/análisis , Té de Kombucha/microbiología , Metagenómica/métodos , Microbiota , Acetobacter/aislamiento & purificación , Bacterias/clasificación , Fenómenos Químicos , Fermentación , Humanos , Fenoles/análisis , Probióticos/análisis , Proteínas/análisis , ARN Ribosómico 16S/genética , Té/química , Levaduras/clasificación
15.
Molecules ; 26(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576945

RESUMEN

Kombucha is a fermented beverage. Its consumption has significantly increased during the last decades due to its perceived beneficial effects. For this reason, it has become a highly commercialized drink that is produced industrially. However, kombucha is still also a homemade beverage, and the parameters which, besides its organoleptic characteristics, define the duration of its potential beneficial properties over time, are poorly known. Therefore, this study aimed to determine the effect of 9-month storage at 4 °C with 30-day sampling on the pH, total phenolic, and flavonoid contents, free radical scavenging properties of kombucha fermented from black tea. Our results highlighted that, after four months, the phenolic content decreased significantly from the initial value of 234.1 ± 1.4 µg GAE mL-1 to 202.9 ± 2.1 µg GAE mL-1, as well its antioxidant capacity tested by two in vitro models, DPPH, and ABTS assays. Concomitantly, the pH value increased from 2.82 to 3.16. The novel findings of this pilot study revealed that kombucha from sugared black tea can be stored at refrigerator temperature for four months. After this period the antioxidant properties of kombucha are no longer retained.


Asunto(s)
Depuradores de Radicales Libres/análisis , Té de Kombucha , Fenoles/análisis , , Antioxidantes/análisis , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Almacenamiento de Alimentos , Concentración de Iones de Hidrógeno , Té de Kombucha/análisis , Temperatura
16.
J Food Prot ; 84(11): 1878-1883, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34143179

RESUMEN

ABSTRACT: Kombucha is a sweetened tea beverage fermented by bacterial and yeast cultures. Sweeteners, such as glucose, sucrose, fructose, and others are converted by yeasts into ethanol and then by Acetobacter and other bacterial species into a weak acetic acid solution that is diluted, flavored, and packaged into glass or aluminum cans for consumer consumption. Naturally, fermented kombucha contains 0 to 3% alcohol by volume (ABV). However, kombucha containing ethanol is concerning for pregnant women and young children for whom low levels of ethanol consumption (<3% ABV) create adverse medical outcomes. In the province of British Columbia (BC), Canadian beverages containing >1% ABV are regulated as liquor. This study assessed ethanol concentrations in kombucha collected from processors and purchased at retail venues in BC. Ethanol values were compared with the place of manufacture (country or province) and place of purchase (grocery stores, restaurants, farmers' markets, recreational centers, and processors). Ethanol (n = 684) levels were measured by using a headspace gas chromatography-mass spectrometry method with a detection limit of 0.0002% ABV for ethanol. Overall, teas contained mean and median ethanol of 0.77 and 0.62% ABV, respectively, ranging from nondetectable up to 3.62% ABV. Four kombucha teas (0.6%) made by BC processors tested over 3% ABV, and 31.5% of samples contained ethanol that exceeded the BC regulatory limits for nonalcoholic beverages of 1% ABV. Kombucha manufactured in BC had significantly higher mean ethanol values (1.16% ABV) in comparison to all other places of manufacture. Similarly, mean ethanol tea values obtained from BC processors (1.2% ABV) and restaurants (1.01% ABV) were significantly higher than those obtained at other retail venues. This study demonstrates the potential for alcohol harm to at-risk populations consuming kombucha teas sold in BC.


Asunto(s)
Té de Kombucha , Bebidas/análisis , Colombia Británica , Niño , Preescolar , Etanol , Femenino , Fermentación , Humanos , Té de Kombucha/análisis , Embarazo ,
17.
Biosensors (Basel) ; 11(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810105

RESUMEN

In this work, we developed an enzymatic voltammetric biosensor for the determination of catechin and gallic acid in green tea and kombucha samples. The differential pulse voltammetry (DPV) methodology was optimized regarding the amount of crude enzyme extract, incubation time in the presence of the substrates, optimal pH, reuse of the biosensor, and storage time. Samples of green tea and kombucha were purchased in local markets in the city of Goiânia-GO, Brazil. High performance liquid chromatography (HPLC) and Folin-Ciocalteu spectrophotometric techniques were performed for the comparison of the analytical methods employed. In addition, two calibration curves were made, one for catechin with a linear range from 1 to 60 µM (I = -0.152 * (catechin) - 1.846), with a detection limit of 0.12 µM and a quantification limit of 0.38 µM and one for gallic acid with a linear range from 3 to 60 µM (I = -0.0415 * (gallic acid) - 0.0572), with a detection limit of 0.14 µM and a quantification limit of 0.42 µM. The proposed biosensor was efficient in the determination of phenolic compounds in green tea.


Asunto(s)
Técnicas Biosensibles , Hongos/aislamiento & purificación , Té de Kombucha/microbiología , Té/microbiología , Calibración , Catequina/análisis , Cromatografía Líquida de Alta Presión , Análisis de los Alimentos , Ácido Gálico/análisis , Té de Kombucha/análisis , Fenoles/análisis , Extractos Vegetales , Espectrofotometría , Té/química
18.
Food Chem ; 350: 129274, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33610849

RESUMEN

A novel functional kombucha using laver was developed by fermentation for 14 d at 25 °C through kombucha consortia of yeast and bacteria. The physicochemical characteristics, antioxidant effects, and nutraceutical properties of laver kombucha from infusion extracts (K-IE) and ultrasound-assisted extracts (K-UAE) were compared with those of black tea (K-BT) and green tea kombucha (K-GT). Tea kombucha showed higher amounts of total phenols and flavonoid content, and ferric reducing antioxidant power (FRAP) while K-UAE exhibited the highest content of organic acid, especially, α- ketoglutaric acid (224.97 mg/100 mL), and acetic acid (564.15 mg/100 mL) with highest titratable acidity, lower pH value and enhanced DPPH scavenging ability. Hence, laver has significant potential to be used as a substrate for developing new fermented beverages through ultrasound-assisted extraction.


Asunto(s)
Fermentación , Té de Kombucha/análisis , Té de Kombucha/microbiología , Porphyra/microbiología , Ácido Acético/análisis , Antioxidantes/análisis , Flavonoides/análisis , Fenoles/análisis
19.
J Food Sci ; 86(3): 740-748, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33580510

RESUMEN

Kombucha is a black tea-based, non-alcoholic beverage fermented by yeast and bacteria are known for its refreshing scent and taste and presents biological characteristics, namely antioxidant, antimicrobial and anti-inflammatory activity. The present study compared traditional kombucha prepared with black tea and green tea to kombuchas produced with several alternative substrates, including white tea, chrysanthemum, honeysuckle, and mint infusions. Throughout the fermentation process, liquid and gas chromatography analyzed sugars, ethanol, organic acids, and volatile compounds. Sugar consumption was substrate-dependent, with mint kombucha having the highest amount of residual sugar and honeysuckle having the lowest. Forty-six volatile organic compounds were detected, including alcohols, esters, acids, aldehydes, ketones, and other compounds. Twenty-two compounds were produced during the fermentation and identified in all kombuchas; some of these compounds represented fruity and floral aromas. Another 24 compounds were substrate specific. Notably, the herb-based kombuchas (chrysanthemum, honeysuckle, and mint) contained several compounds absent in the tea-based kombuchas and are associated with minty, cooling, and refreshing aromas. Mint and green tea kombucha attained the highest and lowest overall sensorial acceptance ratings, respectively. This study demonstrated herbal substrates' suitability to prepare kombucha gastronomically with volatile compound and flavor profiles distinct from tea-based kombuchas. PRACTICAL APPLICATION: The kombucha beverage is a low-caloric functional drink that is increasingly popular around the world. While it is traditionally produced with black or green tea, this paper explores its production based on other herbal and floral infusions. The kombucha analogs presented in this paper can provide consumers with healthy alternatives for sugary soft drinks while also offering a broader range of flavors.


Asunto(s)
Té de Kombucha/análisis , Tés de Hierbas/análisis , Antiinfecciosos/análisis , Antiinflamatorios/análisis , Antioxidantes/análisis , Bebidas/análisis , Camellia sinensis/química , Etanol/análisis , Fermentación , Sensación , Azúcares/análisis , Gusto , Té/química , Compuestos Orgánicos Volátiles/análisis
20.
Compr Rev Food Sci Food Saf ; 19(4): 2050-2070, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33337078

RESUMEN

Kombucha is a beverage made from sugared tea transformed by yeasts and acetic acid bacteria. Being originally homemade, it has become an industrially produced soft drink whose quality standards are poorly defined and whose production process is still not fully controlled. Based on current knowledge in beverages, links between kombucha's chemical composition and sensorial compounds are drawn. Macromolecules create turbidity, whereas uncharacterized tea pigments derivatives participate in the color. Residual sugars bring sweetness and organic acids produced by acetic acid bacteria form its characteristic sour taste. Acetic acid is also part of its aroma profile, although little data are available on the smell of kombucha. Carbon dioxide, potentially polyphenols, and residual ethanol are involved in the mouthfeel. In this review, after defining the key compounds that shape the characteristic sensory properties of kombucha, the impact of different production parameters is discussed. Water composition is determinant in the extraction of tea compounds along with the tea type and infusion duration and temperature. The type and amount of sweeteners play a role in the sweetness and influences the production kinetics. Similarly, the amount of inoculum and its microbial composition have an effect on the production, but the role of the vessels' geometry and temperature are also essential parameters that can be used to adjust the acidification phase's duration. Despite the amount of research carried out, further investigations of kombucha's sensory characteristics are needed. Such research could lead to a better definition of kombucha's quality and to an improved control over its production process.


Asunto(s)
Té de Kombucha/análisis , Té de Kombucha/microbiología , Bacterias , Fermentación , Odorantes , Gusto , Levaduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...