RESUMEN
The objective of this study was to develop and validate a novel microfluidic paper-based analytical device (µPADpH) for determining the pH levels in foods. Anthocyanins from red cabbage aqueous extract (RCAE) were used as its analytical sensor. Whatman No. 1 filter paper was the most suitable for the device due to its porosity and fiber organization, which allows for maximum color intensity and minimal color heterogeneity of the RCAE in the detection zone of the µPADpH. To ensure the color stability of the RCAE for commercial use of the µPADpH, gum arabic was added. The geometric design of the µPADpH, including the channel length and separation zone diameter, was systematically optimized using colored food. The validation showed that the µPADpH did not differ from the pH meter when analyzing natural foods. However, certain additives in processed foods were found to increase the pH values.
Asunto(s)
Antocianinas , Brassica , Goma Arábiga , Antocianinas/química , Antocianinas/análisis , Brassica/química , Concentración de Iones de Hidrógeno , Goma Arábiga/química , Papel , Técnicas Analíticas Microfluídicas/instrumentaciónRESUMEN
E6 and E7 oncogenes are pivotal in the carcinogenic transformation in HPV infections and efficient diagnostic methods can ensure the detection and differentiation of HPV genotype. This study describes the development and validation of an electrochemical, label-free genosensor coupled with a microfluidic system for detecting the E6 and E7 oncogenes in cervical scraping samples. The nanostructuring employed was based on a cysteine and graphene quantum dots layer that provides functional groups, surface area, and interesting electrochemical properties. Biorecognition tests with cervical scraping samples showed differentiation in the voltammetric response. Low-risk HPV exhibited a lower biorecognition response, reflected in ΔI% values of 82.33 % ± 0.29 for HPV06 and 80.65 % ± 0.68 for HPV11 at a dilution of 1:100. Meanwhile, high-risk, HPV16 and HPV18, demonstrated ΔI% values of 96.65 % ± 1.27 and 93 % ± 0.026, respectively, at the same dilution. Therefore, the biorecognition intensity followed the order: HPV16 >HPV18 >HPV06 >HPV11. The limit of detection and the limit of quantification of E6E7 microfluidic LOC-Genosensor was 26 fM, and 79.6 fM. Consequently, the E6E7 biosensor is a valuable alternative for clinical HPV diagnosis, capable of detecting the potential for oncogenic progression even in the early stages of infection.
Asunto(s)
Técnicas Biosensibles , Proteínas Oncogénicas Virales , Técnicas Biosensibles/métodos , Humanos , Proteínas Oncogénicas Virales/genética , Femenino , Límite de Detección , Proteínas E7 de Papillomavirus/genética , Cuello del Útero/virología , Grafito/química , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/virología , Técnicas Electroquímicas/métodos , Proteínas Represoras/genética , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Puntos Cuánticos/química , Dispositivos Laboratorio en un Chip , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificaciónRESUMEN
An innovative integrated paper-based microdevice was developed for protein separation by isoelectric focusing (IEF), allowing for robust design thanks to a 3D-printed holder integrating separation channel, reservoirs, and electrodes. To reach robustness and precision, the optimization focused on the holder geometry, the paper nature, the reservoir design, the IEF medium, and various focusing parameters. A well-established and stable pH gradient was obtained on a glass-fiber paper substrate with simple sponge reservoirs, and the integration of the electrodes in the holder led to a straightforward system. The separation medium composed of water/glycerol (85/15, v/v) allowed for reducing medium evaporation while being an efficient medium for most hydrophobic and hydrophilic proteins, compatible with mass spectrometry detection for further proteomics developments. To our knowledge, this is the first report of the use of glycerol solutions as a separation medium in a paper-based microdevice. Analytical performances regarding pH gradient generation, pI determination, separation efficiency, and resolution were estimated while varying the IEF experimental parameters. The overall process led to an efficient separation within 25 min. Then, this methodology was applied to a sample composed of saliva doped with proteins. A minimal matrix effect was evidenced, underscoring the practical viability of our platform. This low-cost, versatile and robust paper-based IEF microdevice opens the way to various applications, ranging from sample pre-treatment to integration in an overall proteomic-on-a-chip device.
Asunto(s)
Glicerol , Focalización Isoeléctrica , Papel , Proteínas , Focalización Isoeléctrica/instrumentación , Focalización Isoeléctrica/métodos , Proteínas/análisis , Proteínas/aislamiento & purificación , Glicerol/química , Glicerol/análisis , Concentración de Iones de Hidrógeno , Diseño de Equipo , Humanos , Dispositivos Laboratorio en un Chip , Saliva/química , Técnicas Analíticas Microfluídicas/instrumentación , Proteómica/métodos , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Leukocyte count is routinely performed for diagnostic purposes and is rapidly emerging as a significant biomarker for a wide array of diseases. Additionally, leukocytes have demonstrated considerable promise in novel cell-based immunotherapies. However, the direct retrieval of leukocytes from whole blood is a significant challenge due to their low abundance compared to erythrocytes. Here, we introduce a microfluidic-based platform that isolates and recovers leukocytes from diluted whole blood in a single step. Our platform utilizes a novel, sheathless method to initially sediment and focus blood cells into a dense stream while flowing through a tubing before entering the microfluidic device. A hexagonal-shaped structure, patterned at the device's inlet, directs all the blood cells against the channel's outer walls. The focused cells are then separated based on their size using the deterministic lateral displacement (DLD) microfluidic technique. We evaluated various parameters that could influence leukocyte separation, including different focusing structures (assessed both computationally and experimentally), the orientation of the tubing-chip interface, the effects of blood sample hematocrit (dilution), and flow rate. Our device demonstrated the ability to isolate leukocytes from diluted blood with a separation efficiency of 100%, a recovery rate of 76%, and a purity of 80%, while maintaining a cell viability of 98%. The device operates for over 30 min at a flow rate of 2 µL min-1. Furthermore, we developed a handheld pressure controller to drive fluid flow, enhancing the operability of our platform outside of central laboratories and enabling near-patient testing. Our platform can be integrated with downstream cell-based assays and analytical methods that require high leukocyte purity (80%), ranging from cell counting to diagnostics and cell culture applications.
Asunto(s)
Separación Celular , Leucocitos , Técnicas Analíticas Microfluídicas , Leucocitos/citología , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Separación Celular/instrumentación , Diseño de Equipo , Dispositivos Laboratorio en un ChipRESUMEN
Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.
Asunto(s)
Técnicas Analíticas Microfluídicas , Nanopartículas , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química , Dispositivos Laboratorio en un ChipRESUMEN
Whisky adulteration is a prevalent practice driven by the high cost of these beverages. Counterfeiters commonly dilute whisky with less expensive alcoholic beverages, water, food additives, drugs or pharmaceuticals. Paracetamol (PAR), an analgesic drug that mitigates hangovers and headaches, is commonly used to adulterate whisky. Currently, the primary method for quantifying PAR levels is high-performance liquid chromatography, but this technique is both time consuming and usually generates more residues. In this context, the utilization of miniaturized and portable analytical devices becomes imperative for conducting point-of-care/need analyses. These devices offer several advantages, including portability, user-friendliness, low cost, and minimal material wastage. This study proposes the selective distance-based PAR quantification on whisky samples using a paper-based microfluidic analytical device (µPAD). Colorimetric detection on paper-based platforms offers great benefits such as affordability, portability, and the ability to detect PAR without complicated instrumentation. The optimal detection conditions were achieved by introducing 5 µL of a mixture containing 7.5 mmol L-1 of Fe(III) and K3[Fe(CN)6] into the detection zone, along with 12 µL of whisky samples into the sample zone. The method exhibited linear behavior within the concentration range from 15 to 120 mg L-1, with a determination coefficient of 0.998. PAR was quantified in adulterated samples. The results obtained with the paper-based devices were compared with a referenced method, and no significant differences were observed at a confidence level of 95%. The µPAD allowed to determine ca. 1 drop of pharmaceutical medicine PAR of 200 mg mL-1 in 1 L of solution, demonstrating excellent sensitivity. This method offers cost-effective and rapid analysis, reducing the consumption of samples, reagents, and wastes. Consequently, it could be considered a viable and portable alternative for analyzing beverages at criminal scenes, customs, and police operations, thereby enhancing the field of forensics.
Asunto(s)
Acetaminofén , Técnicas Analíticas Microfluídicas , Compuestos Férricos , Microfluídica , PapelRESUMEN
Liquid biopsy has progressed to its current use to diagnose and monitor cancer. Despite the recent advances in investigating cancer detection and diagnosis strategies, there is still a room for improvements in capturing CTCs. We developed an efficient CTC detection system by integrating gold nanoparticles with a microfluidic platform, which can achieve CTC capture within 120 min. Here, we report our development of a simple and effective way to isolate CTCs using antibodies attached on gold nanoparticles to the surface of a lateral filter array (LFA) microdevice. Our method was optimized using three pancreatic tumor cell lines, enabling the capture with high efficiency (90% ± 3.2%). The platform was further demonstrated for isolating CTCs from patients with metastatic pancreatic cancer. Our method and platform enables the production of functionalized, patterned surfaces that interact with tumor cells, enhancing the selective capture of CTCs for biological assays.
Asunto(s)
Nanopartículas del Metal , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Microfluídica/métodos , Células Neoplásicas Circulantes/metabolismo , Oro , Línea Celular TumoralRESUMEN
Microfluidic droplet screens serve as an innovative platform for high-throughput biotechnology, enabling significant advancements in discovery, product optimization, and analysis. This review sheds light on the emerging trends of interaction assays in microfluidic droplets, underscoring the unique suitability of droplets for these applications. Encompassing a diverse range of biological entities such as antibodies, enzymes, DNA, RNA, various microbial and mammalian cell types, drugs, and other molecules, these assays demonstrate their versatility and scope. Recent methodological breakthroughs have escalated these screens to novel scales of bioanalysis and biotechnological product design. Moreover, we highlight pioneering advancements that extend droplet-based screens into new domains: cargo delivery within human bodies, application of synthetic gene circuits in natural environments, 3D printing, and the development of droplet structures responsive to environmental signals. The potential of this field is profound and only set to increase.
Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Animales , Humanos , Biotecnología , MamíferosRESUMEN
Immune cells play a major role in the development of cancer, from being able to inhibit it by secreting pro-inflammatory mediators, to assist in its development by secreting growth factors, immunosuppressive mediators, and ECM-modifying enzymes. Therefore, the ex vivo analysis of the secretion function of immune cells can be employed as a reliable prognostic biomarker in cancer. However, one limiting factor in current approaches to probe the ex vivo secretion function of cells is their low throughput and the consumption of large quantities of sample. Microfluidics provides a unique advantage, by being able to integrate different components, such as cell culture and biosensors in a monolithic microdevice; it can increase the analytical throughput and leverage it with its intrinsic low sample requirement. Furthermore, the integration of fluid control elements also allows this analysis to be highly automatable, leading to increases in consistency in the results. Here, we describe an approach to analyze the ex vivo secretion function of immune cells using a highly integrated microfluidic device.
Asunto(s)
Técnicas Analíticas Microfluídicas , Neoplasias , Humanos , Microfluídica/métodos , Técnicas de Cultivo de Célula , Dispositivos Laboratorio en un ChipRESUMEN
Digital microfluidics (DMF) is a versatile lab-on-a-chip platform that allows integration with several types of sensors and detection techniques, including colorimetric sensors. Here, we propose, for the first time, the integration of DMF chips into a mini studio containing a 3D-printed holder with previously fixed UV-LEDs to promote sample degradation on the chip surface before a complete analytical procedure involving reagent mixture, colorimetric reaction, and detection through a webcam integrated on the equipment. As a proof-of-concept, the feasibility of the integrated system was successfully through the indirect analysis of S-nitrosocysteine (CySNO) in biological samples. For this purpose, UV-LEDs were explored to perform the photolytic cleavage of CySNO, thus generating nitrite and subproducts directly on DMF chip. Nitrite was then colorimetrically detected based on a modified Griess reaction, in which reagents were prepared through a programable movement of droplets on DMF devices. The assembling and the experimental parameters were optimized, and the proposed integration exhibited a satisfactory correlation with the results acquired using a desktop scanner. Under the optimal experimental conditions, the obtained CySNO degradation to nitrite was 96%. Considering the analytical parameters, the proposed approach revealed linear behavior in the CySNO concentration range between 12.5 and 400 µmol L-1 and a limit of detection equal to 2.8 µmol L-1. Synthetic serum and human plasma samples were successfully analyzed, and the achieved results did not statistically differ from the data recorded by spectrophotometry at the confidence level of 95%, thus indicating the huge potential of the integration between DMF and mini studio to promote complete analysis of lowmolecular weight compounds.
Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Microfluídica/métodos , Colorimetría , NitritosRESUMEN
This paper describes the design and construction of dual microfluidic paper-based analytical devices (dual-µPADs) as a lab-on-paper platform involving a "do-it-yourself" fabrication protocol. The device comprises a colorimetric and electrochemical module to obtain a dual-mode signal readout sensing strategy. A 3D pen polymeric resin was used to prepare graphite carbon-based electrodes and hydrophobic barriers on paper substrates. The proposed carbon-based ink was employed to manufacture electrodes on paper based on a stencil-printing approach, which were further characterized by electrochemical and morphological analyses. The analytical performance of the dual-µPADs was simultaneously evaluated for lactate, pH, nitrite, and salivary amylase (sAA) analysis. To demonstrate the proof-of-concept, saliva samples collected from both healthy individuals and those with periodontitis were successfully tested to demonstrate the feasibility of the proposed devices. Samples collected from individuals previously diagnosed with periodontitis showed high levels of nitrite and sAA (> 94 µmol L-1 and > 610 U mL-1) in comparison with healthy individuals (≤ 16 µmol L-1 and 545 U mL-1). Moreover, periodontitis saliva resulted in acid solution and almost null lactate levels. Notably, this protocol supplies a simple way to manufacture dual-µPADs, a versatile platform for sensitive detecting of biomarkers in saliva playing a crucial role towards the point-of-care diagnosis of periodontal disease.
Asunto(s)
Técnicas Analíticas Microfluídicas , Enfermedades Periodontales , Periodontitis , Humanos , Nitritos/análisis , Dispositivos Laboratorio en un Chip , Colorimetría/métodos , Carbono , PapelRESUMEN
Temperature is a critical-yet sometimes overlooked-parameter in microfluidics. Microfluidic devices can experience heating inside their channels during operation due to underlying physicochemical phenomena occurring therein. Such heating, whether required or not, must be monitored to ensure adequate device operation. Therefore, different techniques have been developed to measure and control temperature in microfluidic devices. In this contribution, the operating principles and applications of these techniques are reviewed. Temperature-monitoring instruments revised herein include thermocouples, thermistors, and custom-built temperature sensors. Of these, thermocouples exhibit the widest operating range; thermistors feature the highest accuracy; and custom-built temperature sensors demonstrate the best transduction. On the other hand, temperature control methods can be classified as external- or integrated-methods. Within the external methods, microheaters are shown to be the most adequate when working with biological samples, whereas Peltier elements are most useful in applications that require the development of temperature gradients. In contrast, integrated methods are based on chemical and physical properties, structural arrangements, which are characterized by their low fabrication cost and a wide range of applications. The potential integration of these platforms with the Internet of Things technology is discussed as a potential new trend in the field.
Asunto(s)
Técnicas Analíticas Microfluídicas , Temperatura , Microfluídica/métodos , Dispositivos Laboratorio en un ChipRESUMEN
Thread-based microfluidic analytical devices have received growing attention since threads have some advantages over other materials. Compared to paper, threads are also capable of spontaneously transporting fluid due to capillary action, but they have superior mechanical strength and do not require hydrophobic barriers. Therefore, thread-based microfluidic devices can be inexpensively fabricated with no need for external pumps or sophisticated microfabrication apparatus. Despite these outstanding features, achieving a controlled and continuous flow rate is still a challenging task, mainly due to fluid evaporation. Here, we overcome this challenge by inserting a cotton thread into a polyethylene tube aiming to minimize fluid evaporation. Also, a cotton piece was inserted into the outlet reservoir to improve the wicking ability of the device. This strategy enabled the fabrication of an innovative electrochemical thread in a tubing microfluidic device that was capable to hold a consistent flow rate (0.38 µL s-1) for prolonged periods, allowing up to 100 injections in a single device by simply replacing the cotton piece in the outlet reservoir. The proposed device displayed satisfactory analytical performance for selected model analytes (dopamine, hydrogen peroxide, and tert-butylhydroquinone), in addition to being successfully used for quantification of nitrite in spiked artificial saliva samples. Beyond the flow rate improvement, this "thread-in-tube" strategy ensured the protection of the fluid from external contamination while making it easier to connect the electrode array to the microchannels. Thus, we envision that the thread in a tube strategy could bring interesting improvements to thread-based microfluidic analytical devices.
Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Electrodos , Peróxido de Hidrógeno , TextilesRESUMEN
Biomarkers are relevant indicators of the physiological state of an individual. Although biomarkers can be found in diseased tissue and different biofluids, sampling from blood plasma is relatively easy and less invasive. Among the molecular biomarkers that can be found circulating in plasma are proteins, metabolites, nucleic acids, and exosomes. Some of these plasma-circulating biomarkers are now employed for patient stratification in a broad range of diseases with high sensitivity and specificity and are useful in early diagnosis, initial risk assessment, and therapy selection. However, there is a pressing need to develop novel approaches for biomarker analysis that can be translated into clinical or other settings without complex methodologies or instrumentation. Microfluidics has been touted as a promising technology to carry out this task because it offers high-throughput, automation, multiplexed detection, and portability, possibly overcoming the bottleneck that prevent the translation of novel biomarkers to the point-of-care (POC). Here, we provide a review of the microfluidic systems that have been engineered to detect circulating molecular biomarkers in blood plasma. We also review the different microfluidic approaches for plasma enrichment, which are now being integrated with microfluidic-based biomarker analyzers. Such integration should lead to cost-effective solutions in in vitro diagnostics, with special relevance to POC platforms.
Asunto(s)
Técnicas Analíticas Microfluídicas , Ácidos Nucleicos , Biomarcadores , Humanos , Microfluídica/métodos , Sistemas de Atención de Punto , Proteínas/análisisRESUMEN
Under controlled dispersion conditions, sample injection towards a detector opened essential fields for the Analytical Chemistry fast development methods. Flow injection analysis (FIA) and batch injection analysis (BIA) systems are crucial for injecting the sample in these analytical methods. The BIA system eliminated the flow manifold, with samples injected directly onto the detector inside the batch injection cell. Paper was slightly evaluated coupled to FIA, and no reports were found associated with BIA. Still, it can potentially reduce the BIA manifold by removing the batch injection cell based on the capillarity properties to disperse the injected solution over the detection system. Hence, this article reported the first work coupling batch-injection analysis and microfluidic paper-based analytical device (BIA-µPAD) with pencil-drawn electrodes directly attached to the paper using a CO2 laser pre-treated chromatographic paper. The laser pretreatment of the paper (optimized conditions: 6.5% laser power, 12 mm s-1 scan rate, and 12 mm output distance) was essential to enhance the electrochemical response for ferri/ferrocyanide redox couple and paracetamol (PAR), as shown by spectroscopic and electrochemical techniques. The proposed BIA-µPAD was evaluated using pharmaceutical paracetamol samples as proof-of-concept (optimized conditions: 15 µL injected volume and 6.4 µL s-1 dispensing rate), obtaining good linearity (R = 0.9961) and recovery values ranging from 95 to 103%. Repeatability (n = 16) and reproducibility (n = 9) tests with 1 mmol L-1 PAR also presented well relative standard deviation (RSD) results of 5.1% and 6.6%, respectively. A sampling frequency of 76 h-1 was obtained, which is a similar value compared with conventional BIA apparatus. Limits of detection and quantification were estimated in 0.046 and 0.154 mmol L-1, respectively. Additionally, an improvement in the current response and the sample throughput was observed when comparing FIA and BIA-µPADs, attesting the applicability of the proposed device and opening for new possibilities related to paper-based devices coupled with flow techniques.
Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas Electroquímicas , Electrodos , Dispositivos Laboratorio en un Chip , Papel , Reproducibilidad de los ResultadosRESUMEN
Insulator-based microfluidic devices are attractive for handling biological samples due to their simple fabrication, low-cost, and efficiency in particle manipulation. However, their widespread application is limited by the high operation voltages required to achieve particle trapping. We present a theoretical, numerical, and experimental study that demonstrates these voltages can be significantly reduced (to sub-100 V) in direct-current insulator-based electrokinetic (DC-iEK) devices for micron-sized particles. To achieve this, we introduce the concept of the amplification factor-the fold-increase in electric field magnitude due to the presence of an insulator constriction-and use it to compare the performance of different microchannel designs and to direct our design optimization process. To illustrate the effect of using constrictions with smooth and sharp features on the amplification factor, geometries with circular posts and semi-triangular posts were used. These were theoretically approximated in two different systems of coordinates (bipolar and elliptic), allowing us to provide, for the first time, explicit electric field amplification scaling laws. Finite element simulations were performed to approximate the 3D insulator geometries and provide a parametric study of the effect of changing different geometrical features. These simulations were used to predict particle trapping voltages for four different single-layer microfluidic devices using two particle suspensions (2 and 6.8 µm in size). The general agreement between our models demonstrates the feasibility of using the amplification factor, in combination with nonlinear electrokinetic theory, to meet the prerequisites for the development of portable DC-iEK microfluidic systems.
Asunto(s)
Técnicas Analíticas Microfluídicas , Electricidad , Electroforesis , Dispositivos Laboratorio en un Chip , Microfluídica , Tamaño de la PartículaRESUMEN
Preclinical tests for evaluating potential drug candidates using conventional protocols can be exhaustive and high-cost processes. Microfluidic technologies that can speed up this process and allow fast screening of drugs are promising alternatives. This work presents the design, concept, and operational conditions of a simple, modular, and reversible sealing microdevice useful for drug screening. This microdevice allows for the operation of 4 parallel simultaneous conditions and can also generate a diffusive concentration gradient in sextuplicates. We used laminated polydimethylsiloxane (PDMSLAM) and glass as building materials as proof of concept. The PDMSLAM parts can be reused since they can be easily sterilized. We cultured MCF-7 (Michigan Cancer Foundation-7) breast cancer cells. Cells were exposed to a doxorubicin diffusive concentration gradient for 3 h. They were monitored by automated microscopy, and after data processing, it was possible to determine cell viability as a function of doxorubicin concentration. The reversible sealing enabled the recovery of the tested cells and image acquisition. Therefore, this microdevice is a promising tool for drug screening that allows assessing the cellular behavior in dynamic conditions and the recovery of cells for afterward processing and imaging.
Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Supervivencia Celular , Doxorrubicina/farmacología , Evaluación Preclínica de Medicamentos , MicrofluídicaRESUMEN
Electrokinetically driven insulator-based microfluidic devices represent an attractive option to manipulate particle suspensions. These devices can filtrate, concentrate, separate, or characterize micro and nanoparticles of interest. Two decades ago, inspired by electrode-based dielectrophoresis, the concept of insulator-based dielectrophoresis (iDEP) was born. In these microfluidic devices, insulating structures (i.e., posts, membranes, obstacles, or constrictions) built within the channel are used to deform the spatial distribution of an externally generated electric field. As a result, particles suspended in solution experience dielectrophoresis (DEP). Since then, it has been assumed that DEP is responsible for particle trapping in these devices, regardless of the type of voltage being applied to generate the electric field-direct current (DC) or alternating current. Recent findings challenge this assumption by demonstrating particle trapping and even particle flow reversal in devices that prevent DEP from occurring (i.e., unobstructed long straight channels stimulated with a DC voltage and featuring a uniform electric field). The theory introduced to explain those unexpected observations was then applied to conventional "DC-iDEP" devices, demonstrating better prediction accuracy than that achieved with the conventional DEP-centered theory. This contribution summarizes contributions made during the last two decades, comparing both theories to explain particle trapping and highlighting challenges to address in the near future.
Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Electroforesis , Dispositivos Laboratorio en un ChipRESUMEN
To increase milk production, antibiotics are administered to animals to provide weight gain and to prevent or treat diseases. The inappropriate use of these substances can lead to antibiotic resistance and allergic reactions and toxic effects to milk consumers. We describe the development of a simple, fast, portable, and low-cost microfluidic paper-based analytical device (µPAD) to quantify sulfonamides in milk using the inhibition of the colorimetric reaction between carbonic anhydrase (CA) and 4-nitrophenyl acetate. The main advantages presented by the µPAD include reproducible batch production, simple application, and precise analysis without previous treatment. The µPAD displayed good linearity (R2 ≥ 0.986) in a wide range of sulfonamides in milk (2.5 to 40.0 µmol L-1), being selective for the drugs even in a highly complex matrix. We expect that this device allows in situ monitoring of milk quality, reducing the prejudicial conditions associated with high concentrations of sulfonamides in milk.
Asunto(s)
Anhidrasas Carbónicas/química , Colorimetría/métodos , Leche/química , Papel , Sulfonamidas/química , Animales , Anhidrasas Carbónicas/metabolismo , Bovinos , Colorimetría/instrumentación , Concentración de Iones de Hidrógeno , Técnicas Analíticas Microfluídicas , Leche/metabolismo , Nitrofenoles/química , Nitrofenoles/metabolismo , Sulfonamidas/metabolismoRESUMEN
O desenvolvimento de estudos genéticos e de microdispositivos biológicos tem proporcionado a ampliação do conhecimento sobre os complexos eventos que envolvem a reprodução animal. O desafio ainda é imensurável, mas a criação e surgimentos de novas perspectivas para a pesquisa básica tem-se feito presente. Neste trabalho revisamos de maneira suscinta algumas abordagens recentes, utilizadas pela pesquisa básica, sobretudo com o objetivo de lançar luz sobre o desenvolvimento folicular e oocitário. Dessa forma, essa revisão pretende fornecer uma visão geral do uso das tecnologias ômicas e sistema de microfluídica como auxiliadores na compreensão da foliculogênese. Adicionalmente serão apresentadas particularidades inerentes à fisiologia da gametogênese, que incluem ação de microorganismos e mitocôndrias, além do importante papel da comunicação intercelular através das vesículas extracelulares.
The development of genetic studies and biological microdevices has expanded knowledge about the complex events involving animal reproduction. The challenge is still immeasurable, but the creation and emergence of new perspectives for basic research have been present. This paper briefly reviews some recent approaches used in basic research, mainly to shed light on follicular and oocyte development. Thus, this review intends to provide an overview of the use of omics technologies and microfluidics systems as aids in understanding folliculogenesis. Also, it will present particulars inherent in the physiology of gametogenesis, which include microorganisms and mitochondria, in addition to the important role of intercellular communication through extracellular vesicles.