Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.832
Filtrar
1.
J Biol Chem ; 299(11): 105286, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742925

RESUMEN

The twin arginine translocation (Tat) pathway transports folded protein across the cytoplasmic membrane in bacteria, archaea, and across the thylakoid membrane in plants as well as the inner membrane in some mitochondria. In plant chloroplasts, the Tat pathway utilizes the protonmotive force (PMF) to drive protein translocation. However, in bacteria, it has been shown that Tat transport depends only on the transmembrane electrical potential (Δψ) component of PMF in vitro. To investigate the comprehensive PMF requirement in Escherichia coli, we have developed the first real-time assay to monitor Tat transport utilizing the NanoLuc Binary Technology in E. coli spheroplasts. This luminescence assay allows for continuous monitoring of Tat transport with high-resolution, making it possible to observe subtle changes in transport in response to different treatments. By applying the NanoLuc assay, we report that, under acidic conditions (pH = 6.3), ΔpH, in addition to Δψ, contributes energetically to Tat transport in vivo in E. coli spheroplasts. These results provide novel insight into the mechanism of energy utilization by the Tat pathway.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Sistema de Translocación de Arginina Gemela , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/fisiología , Fuerza Protón-Motriz , Mediciones Luminiscentes , Técnicas Bacteriológicas/instrumentación , Técnicas Bacteriológicas/métodos , Metabolismo Energético , Esferoplastos/efectos de los fármacos , Esferoplastos/metabolismo , Ionóforos/farmacología
2.
Microbiol Spectr ; 10(5): e0065522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36073825

RESUMEN

Coxiella burnetii, the etiological agent of Q fever, is an intracellular zoonotic pathogen transmitted via the respiratory route. Once released from infected animals, C. burnetii can travel long distances through air before infecting another host. As such, the ability to detect the presence of C. burnetii in air is important. In this study, three air samplers, AirPort MD8, BioSampler, and the Coriolis Micro, were assessed against a set of predetermined criteria in the presence of three different aerosolized C. burnetii concentrations. Two liquid collection media, phosphate-buffered saline (PBS) and alkaline polyethylene glycol (Alk PEG), were tested with devices requiring a collection liquid. Samples were tested by quantitative polymerase chain reaction assay (qPCR) targeting the single-copy com1 gene or multicopy insertion element IS1111. All air samplers performed well at detecting airborne C. burnetii across the range of concentrations tested. At high nebulized concentrations, AirPort MD8 showed higher, but variable, recovery probabilities. While the BioSampler and Coriolis Micro recovered C. burnetii at lower concentrations, the replicates were far more repeatable. At low and intermediate nebulized concentrations, results were comparable in the trials between air samplers, although the AirPort MD8 had consistently higher recovery probabilities. In this first study validating air samplers for their ability to detect aerosolized C. burnetii, we found that while all samplers performed well, not all samplers were equal. It is important that these results are further validated under field conditions. These findings will further inform efforts to detect airborne C. burnetii around known point sources of infection. IMPORTANCE Coxiella burnetii causes Q fever in humans and coxiellosis in animals. It is important to know if C. burnetii is present in the air around putative sources as it is transmitted via inhalation. This study assessed air samplers (AirPort MD8, BioSampler, and Coriolis Micro) for their efficacy in detecting C. burnetii. Our results show that all three devices could detect aerosolized bacteria effectively; however, at high concentrations the AirPort performed better than the other two devices, showing higher percent recovery. At intermediate and low concentrations AirPort detected at a level higher than or similar to that of other samplers. Quantification of samples was hindered by the limit of quantitation of the qPCR assay. Compared with the other two devices, the AirPort was easier to handle and clean in the field. Testing air around likely sources (e.g., farms, abattoirs, and livestock saleyards) using validated sampling devices will help better estimate the risk of Q fever to nearby communities.


Asunto(s)
Microbiología del Aire , Técnicas Bacteriológicas , Coxiella burnetii , Coxiella burnetii/aislamiento & purificación , Técnicas Bacteriológicas/instrumentación
3.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163759

RESUMEN

Changes in bacterial physiology caused by the combined action of the magnetic force and microgravity were studied in Escherichia coli grown using a specially developed device aboard the International Space Station. The morphology and metabolism of E. coli grown under spaceflight (SF) or combined spaceflight and magnetic force (SF + MF) conditions were compared with ground cultivated bacteria grown under standard (control) or magnetic force (MF) conditions. SF, SF + MF, and MF conditions provided the up-regulation of Ag43 auto-transporter and cell auto-aggregation. The magnetic force caused visible clustering of non-sedimenting bacteria that formed matrix-containing aggregates under SF + MF and MF conditions. Cell auto-aggregation was accompanied by up-regulation of glyoxylate shunt enzymes and Vitamin B12 transporter BtuB. Under SF and SF + MF but not MF conditions nutrition and oxygen limitations were manifested by the down-regulation of glycolysis and TCA enzymes and the up-regulation of methylglyoxal bypass. Bacteria grown under combined SF + MF conditions demonstrated superior up-regulation of enzymes of the methylglyoxal bypass and down-regulation of glycolysis and TCA enzymes compared to SF conditions, suggesting that the magnetic force strengthened the effects of microgravity on the bacterial metabolism. This strengthening appeared to be due to magnetic force-dependent bacterial clustering within a small volume that reinforced the effects of the microgravity-driven absence of convectional flows.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Técnicas Bacteriológicas/instrumentación , Proteínas de Escherichia coli/genética , Escherichia coli/fisiología , Proteínas de Transporte de Membrana/genética , Técnicas Bacteriológicas/métodos , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Glucólisis , Glioxilatos/metabolismo , Fenómenos Magnéticos , Oxígeno/metabolismo , Piruvaldehído/metabolismo , Vuelo Espacial , Ingravidez
4.
Braz. j. biol ; 82: 1-5, 2022. ilus, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468500

RESUMEN

The loop is a material classically used in the laboratory for the purpose of plate streaking and handling biological materials. However, metal loops techniques might be time consuming, considering the amount of time spent to guarantee its cooling process through each inoculation. Furthermore, plastic loops may also represent environmental issues during its production and discard process and can also represent higher costs for the laboratory. Thus, in situations of limited resources, even the simplest materials can be restricted due to logistical and budgetary issues, especially in developing countries. Inspired by demands like these, facing an occasional shortage of supply of laboratory plastic handles, we hereby present a quality control for sterilization methods and cost-effectiveness studies towards the use of wooden sticks in a Latin American country and we discuss the possibility of the large-scale use of this technique.


A alça calibrada é um material usado classicamente em laboratório para fins de inoculação em placas e manuseio de materiais biológicos. No entanto, as técnicas de alças metálicas podem consumir muito tempo, considerando a quantidade de tempo gasto para garantir seu processo de resfriamento a cada inoculação. Além disso, alças de plástico também podem representar questões ambientais durante o processo de produção e descarte e também podem representar custos mais altos para o laboratório. Assim, em situações de recursos limitados, até os materiais mais simples podem ser restringidos devido a questões logísticas e orçamentárias, especialmente nos países em desenvolvimento. Inspirados por demandas como essas, diante de uma escassez ocasional de suprimentos de alças de plástico de laboratório, apresentamos um controle de qualidade para métodos de esterilização e estudos de custo-efetividade para o uso de varas de madeira em um país latino-americano e discutimos a possibilidade de grande uso em escala dessa técnica.


Asunto(s)
Administración de Residuos/economía , Administración de Residuos/métodos , Técnicas Bacteriológicas/economía , Técnicas Bacteriológicas/instrumentación , Técnicas Microbiológicas/economía , Técnicas Microbiológicas/instrumentación
5.
Microbiologyopen ; 10(6): e1244, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34964289

RESUMEN

The human microbiome has begun to emerge as a potential forensic tool, with varied applications ranging from unique identification to investigative leads that link individuals and/or locations. The relative abundance of the combined DNA of the microbiome, compared to human nuclear DNA, may expand potential sources of biological evidence, especially in cases with transfer or low-copy number DNA samples. This work sought to determine the optimal swab type for the collection and analysis of microorganisms. A bacterium (Proteus mirabilis) was deposited by pipette onto four swab types (cotton, flocked, dental applicators, and dissolvable), and extraction and real-time PCR quantitation of the bacterial DNA were performed, which allowed for absolute microbial DNA recovery and comparison of yields across the four sampling substrates. Flocked swabs had the highest yield (~1240 ng) compared to the cotton swabs (~184 ng), dental applicators (~533 ng), and dissolvable swabs (~430 ng). The collection efficiency was further evaluated for cotton and flocked swabs using dried microbial samples spotted onto non-porous surfaces (treated wood, glass, plastic, and tile). Flocked swabs performed consistently better across wood, glass, and tile, but showed decreased recovery from plastic. The cotton swabs failed in the recovery of P. mirabilis DNA across all surfaces. Knowing the appropriate sampling substrate will be useful as others continue to investigate the use of the microbiome as a forensics tool.


Asunto(s)
Técnicas Bacteriológicas/instrumentación , ADN Bacteriano/análisis , Microbiota , Proteus mirabilis/aislamiento & purificación , Manejo de Especímenes/instrumentación , ADN Bacteriano/aislamiento & purificación , Humanos , Proteus mirabilis/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34561308

RESUMEN

Bacterial suspensions show turbulence-like spatiotemporal dynamics and vortices moving irregularly inside the suspensions. Understanding these ordered vortices is an ongoing challenge in active matter physics, and their application to the control of autonomous material transport will provide significant development in microfluidics. Despite the extensive studies, one of the key aspects of bacterial propulsion has remained elusive: The motion of bacteria is chiral, i.e., it breaks mirror symmetry. Therefore, the mechanism of control of macroscopic active turbulence by microscopic chirality is still poorly understood. Here, we report the selective stabilization of chiral rotational direction of bacterial vortices in achiral circular microwells sealed by an oil/water interface. The intrinsic chirality of bacterial swimming near the top and bottom interfaces generates chiral collective motions of bacteria at the lateral boundary of the microwell that are opposite in directions. These edge currents grow stronger as bacterial density increases, and, within different top and bottom interfaces, their competition leads to a global rotation of the bacterial suspension in a favored direction, breaking the mirror symmetry of the system. We further demonstrate that chiral edge current favors corotational configurations of interacting vortices, enhancing their ordering. The intrinsic chirality of bacteria is a key feature of the pairing order transition from active turbulence, and the geometric rule of pairing order transition may shed light on the strategy for designing chiral active matter.


Asunto(s)
Bacterias , Técnicas Bacteriológicas/métodos , Modelos Biológicos , Bacterias/citología , Técnicas Bacteriológicas/instrumentación , Escherichia coli/citología , Escherichia coli/fisiología , Suspensiones
7.
NPJ Biofilms Microbiomes ; 7(1): 62, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344902

RESUMEN

Currently, three major circumstances threaten the management of bacterial infections: increasing antimicrobial resistance, expansion of chronic biofilm-associated infections, and lack of an appropriate approach to treat them. To date, the development of accelerated drug susceptibility testing of biofilms and of new antibiofouling systems has not been achieved despite the availability of different methodologies. There is a need for easy-to-use methods of testing the antibiotic susceptibility of bacteria that form biofilms and for screening new possible antibiofilm strategies. Herein, we present a microfluidic platform with an integrated interdigitated sensor (BiofilmChip). This new device allows an irreversible and homogeneous attachment of bacterial cells of clinical origin, even directly from clinical specimens, and the biofilms grown can be monitored by confocal microscopy or electrical impedance spectroscopy. The device proved to be suitable to study polymicrobial communities, as well as to measure the effect of antimicrobials on biofilms without introducing disturbances due to manipulation, thus better mimicking real-life clinical situations. Our results demonstrate that BiofilmChip is a straightforward tool for antimicrobial biofilm susceptibility testing that could be easily implemented in routine clinical laboratories.


Asunto(s)
Antibacterianos/farmacología , Técnicas Bacteriológicas/métodos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antiinfecciosos/farmacología , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/tratamiento farmacológico , Técnicas Bacteriológicas/instrumentación , Atención a la Salud , Humanos , Laboratorios Clínicos , Pruebas de Sensibilidad Microbiana , Microfluídica , Mycobacterium tuberculosis , Pseudomonas aeruginosa , Staphylococcus aureus
8.
Eur J Clin Microbiol Infect Dis ; 40(12): 2593-2596, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34363530

RESUMEN

A comparative analysis of the performance of the new selective chromogenic CHROMagar™-Serratia culture medium for detection and isolation of Serratia marcescens was undertaken. A total of 134 clinical isolates (95 S. marcescens with and without carbapenemase production and 39 non-S. marcescens isolates) and 96 epidemiological samples (46 rectal swabs and 50 from environmental surfaces) were studied. Diagnostic values when compared with CHROMagar™-Orientation medium were 96.8% sensitivity, 100% specificity, 100% positive predictive value and 88.5% negative predictive value. In conclusion, CHROMagar™-Serratia shows an excellent ability for differentiation of S. marcescens among clinical isolates and in environmental samples.


Asunto(s)
Técnicas Bacteriológicas/métodos , Medios de Cultivo/química , Infecciones por Serratia/microbiología , Serratia marcescens/crecimiento & desarrollo , Serratia marcescens/aislamiento & purificación , Agar/química , Agar/metabolismo , Técnicas Bacteriológicas/instrumentación , Compuestos Cromogénicos/química , Compuestos Cromogénicos/metabolismo , Medios de Cultivo/metabolismo , Humanos , Infecciones por Serratia/diagnóstico , Serratia marcescens/metabolismo
9.
Viruses ; 13(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452328

RESUMEN

Bacteriophage receptor binding proteins (RBPs) are employed by viruses to recognize specific surface structures on bacterial host cells. Recombinant RBPs have been utilized for detection of several pathogens, typically as fusions with reporter enzymes or fluorescent proteins. Identification of Bacillus anthracis, the etiological agent of anthrax, can be difficult because of the bacterium's close relationship with other species of the Bacillus cereussensu lato group. Here, we facilitated the identification of B. anthracis using two implementations of enzyme-linked phage receptor binding protein assays (ELPRA). We developed a single-tube centrifugation assay simplifying the rapid analysis of suspect colonies. A second assay enables identification of suspect colonies from mixed overgrown solid (agar) media derived from the complex matrix soil. Thus, these tests identified vegetative cells of B. anthracis with little processing time and may support or confirm pathogen detection by molecular methods such as polymerase chain reaction.


Asunto(s)
Carbunco/microbiología , Bacillus anthracis/aislamiento & purificación , Proteínas Bacterianas/química , Técnicas Bacteriológicas/métodos , Receptores de Bacteriógrafos/química , Mediciones Luminiscentes/métodos , Fagos de Bacillus/genética , Fagos de Bacillus/fisiología , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Bacillus anthracis/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas/instrumentación , Receptores de Bacteriógrafos/genética , Receptores de Bacteriógrafos/metabolismo , Genes Reporteros , Humanos , Luciferasas/química , Luciferasas/genética , Luciferasas/metabolismo , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microbiología del Suelo , Proteína Fluorescente Roja
10.
J Microbiol Methods ; 188: 106294, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34333046

RESUMEN

Standard methods of monitoring the growth kinetics of anaerobic microorganisms are generally impractical when there is a protracted or indeterminate period of active growth, and when high numbers of samples or replications are required. As part of our studies of the adaptive evolution of a simple anaerobic syntrophic mutualism, requiring the characterization of many isolates and alternative syntrophic pairings, we developed a multiplexed growth monitoring system using a combination of commercially available electronics and custom designed circuitry and materials. This system automatically monitors up to 64 sealed, and as needed pressurized, culture tubes and reports the growth data in real-time through integration with a customized relational database. The utility of this system was demonstrated by resolving minor differences in growth kinetics associated with the adaptive evolution of a simple microbial community comprised of a sulfate reducing bacterium, Desulfovibrio vulgaris, grown in syntrophic association with Methanococcus maripaludis, a hydrogenotrophic methanogen.


Asunto(s)
Bacterias Anaerobias/crecimiento & desarrollo , Técnicas Bacteriológicas/métodos , Recolección de Datos/métodos , Gases , Técnicas Bacteriológicas/instrumentación , Recolección de Datos/instrumentación , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Ensayos Analíticos de Alto Rendimiento , Cinética , Methanococcus/crecimiento & desarrollo , Dispositivos Ópticos , Simbiosis
11.
Braz J Microbiol ; 52(4): 1951-1957, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34424510

RESUMEN

The World Health Organization advocates that sputum specimens submitted to tuberculosis (TB) diagnostic should be processed within 48 h after collection and be stored under cooling. We aimed to assess the performance of OMNIgene • SPUTUM reagent in maintaining viable specimens of Mycobacterium tuberculosis complex (MTBC) during transportation of sputum samples without refrigeration, in comparison to the standard protocol of the National TB Control Program. Sputum samples obtained in southeastern Brazil (June 2017 to July 2018) from 100 sequential patients with positive acid-fast bacillus smear microscopy were divided into two portions. Portion 1 continued to be cooled (standard protocol, STA), but portion 2 was added to OMNIgene • SPUTUM reagent (alternative protocol, OMS) until concomitant further processing. Both portions of all samples were cultured using MGIT and tested by Xpert MTB/RIF assay. Growth of MTBC in the first 42 days was detected in 96% of the cultures under the STA and 88% under the OMS. Intervals between processing and detecting MTBC growth in the two portions significantly differed (p = 0.0001). Portions under the two protocols showed similar results in the MTBC detection by Xpert assay and culture contamination by non-MTBC. The OMNIgene reagent liquefies and decontaminates sputum leading to a decrease in processing time. Although there was a small delay in mycobacterial growth, the OMNIgene reagent can be useful in specimens transported from collection sites over a long distance to centralized testing centers, maintaining viable MTBC for at least 8 days at room temperature.


Asunto(s)
Técnicas Bacteriológicas , Viabilidad Microbiana , Mycobacterium tuberculosis , Esputo , Tuberculosis , Técnicas Bacteriológicas/instrumentación , Técnicas Bacteriológicas/métodos , Humanos , Indicadores y Reactivos , Mycobacterium tuberculosis/genética , Sensibilidad y Especificidad , Esputo/microbiología , Tuberculosis/diagnóstico , Tuberculosis/microbiología
12.
Methods Mol Biol ; 2341: 79-88, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264463

RESUMEN

The Rotary Cell Culture System (RCCS) is an apparatus that was originally designed by NASA engineers to simulate microgravity conditions for growth of both eukaryotic and bacterial cell cultures. The RCCS growth environment is also characterized by low fluid shear stress, thereby also providing an in vitro growth condition relevant to certain in vivo environments encountered during bacterial infection. This chapter describes a method for growing Staphylococcus aureus under simulated microgravity conditions using the RCCS and disposable High Aspect Ratio Vessels (HARVs). Small samples can be removed and replaced with fresh media during the experiment (continuous sampling method) or the whole culture can be removed at the end of the experiment (end-point sampling method) for larger sample volumes required for follow-up studies such as RNAseq or proteomics.


Asunto(s)
Técnicas Bacteriológicas/métodos , Staphylococcus aureus/crecimiento & desarrollo , Simulación de Ingravidez/instrumentación , Técnicas Bacteriológicas/instrumentación , Perfilación de la Expresión Génica , Proteómica , Análisis de Secuencia de ARN , Resistencia al Corte
13.
Methods Mol Biol ; 2314: 1-58, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34235647

RESUMEN

Building upon the foundational research of Robert Koch, who demonstrated the ability to grow Mycobacterium tuberculosis for the first time in 1882 using media made of coagulated bovine serum, microbiologists have continued to develop new and more efficient ways to grow mycobacteria. Presently, all known mycobacterial species can be grown in the laboratory using either axenic culture techniques or in vivo passage in laboratory animals. This chapter provides conventional protocols to grow mycobacteria for diagnostic purposes directly from clinical specimens, as well as in research laboratories for scientific purposes. Detailed protocols used for production of M. tuberculosis in large scale (under normoxic and hypoxic conditions) in bioreactors and for production of obligate intracellular pathogens such as Mycobacterium leprae and "Mycobacterium lepromatosis" using athymic nude mice and armadillos are provided.


Asunto(s)
Técnicas Bacteriológicas , Infecciones por Mycobacterium/microbiología , Mycobacterium/crecimiento & desarrollo , Animales , Armadillos , Técnicas Bacteriológicas/instrumentación , Reactores Biológicos , Modelos Animales de Enfermedad , Humanos , Ratones Desnudos , Viabilidad Microbiana , Mycobacterium/aislamiento & purificación , Mycobacterium leprae/crecimiento & desarrollo , Mycobacterium leprae/aislamiento & purificación , Factores de Tiempo
14.
Mikrochim Acta ; 188(8): 258, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34268648

RESUMEN

Pathogenic bacteria have become a huge threat to social health and economy for their frighteningly infectious and lethal capacity. It is quite important to make a diagnosis in advance to prevent infection or allow a rapid treatment after infection. Noble metal nanoparticles, due to their unique physicochemical properties, especially optical properties, have drawn a great attention during the past decades and have been widely applied into all kinds of fields related to human health. By utilizing these noble metal nanoparticles, optical diagnosis platforms towards pathogenic bacteria have emerged continually, providing highly sensitive, selective, and particularly facile detection tools for clinic or point-of-care diagnosis. This review summarizes the recent development in this field. It begins with a brief introduction of pathogenic bacteria and noble metal nanoparticles. And then, optical detection methods are systematically discussed in three distinct aspects. In addition to these proof-of-concept methods, corresponding algorithms and point-of-care detection devices are also described. Finally, the review ends up with subjective views on present limitations and some appropriate advice for future research directions.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Bacteriológicas/métodos , Técnicas de Química Analítica/métodos , Nanopartículas del Metal/química , Técnicas Bacteriológicas/instrumentación , Técnicas de Química Analítica/instrumentación , Metales Pesados/química , Pruebas en el Punto de Atención
15.
BMC Microbiol ; 21(1): 213, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34266382

RESUMEN

BACKGROUND: Burkholderia pseudomallei is the bacterial causative agent of melioidosis, a difficult disease to diagnose clinically with high mortality if not appropriately treated. Definitive diagnosis requires isolation and identification of the organism. With the increased adoption of MALDI-TOF MS for the identification of bacteria, we established a method for rapid identification of B. pseudomallei using the Vitek MS, a system that does not currently have B. pseudomallei in its in-vitro diagnostic database. RESULTS: A routine direct spotting method was employed to create spectra and SuperSpectra. An initial B. pseudomallei SuperSpectrum was created at Shoklo Malaria Research Unit (SMRU) from 17 reference isolates (46 spectra). When tested, this initial SMRU SuperSpectrum was able to identify 98.2 % (54/55) of Asian isolates, but just 46.7 % (35/75) of Australian isolates. Using spectra (430) from different reference and clinical isolates, two additional SMRU SuperSpectra were created. Using the combination of all SMRU SuperSpectra with seven existing SuperSpectra from Townsville, Australia 119 (100 %) Asian isolates and 31 (100 %) Australian isolates were correctly identified. In addition, no misidentifications were obtained when using these 11 SuperSpectra when tested with 34 isolates of other bacteria including the closely related species Burkholderia thailandensis and Burkholderia cepacia. CONCLUSIONS: This study has established a method for identification of B. pseudomallei using Vitek MS, and highlights the impact of geographical differences between strains for identification using this technique.


Asunto(s)
Burkholderia pseudomallei/química , Burkholderia pseudomallei/aislamiento & purificación , Melioidosis/diagnóstico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Técnicas Bacteriológicas/instrumentación , Técnicas Bacteriológicas/normas , Melioidosis/microbiología , Reproducibilidad de los Resultados , Especificidad de la Especie
16.
Elife ; 102021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34219648

RESUMEN

Uropathogenic Escherichia coli (UPEC) proliferate within superficial bladder umbrella cells to form intracellular bacterial communities (IBCs) during early stages of urinary tract infections. However, the dynamic responses of IBCs to host stresses and antibiotic therapy are difficult to assess in situ. We develop a human bladder-chip model wherein umbrella cells and bladder microvascular endothelial cells are co-cultured under flow in urine and nutritive media respectively, and bladder filling and voiding mimicked mechanically by application and release of linear strain. Using time-lapse microscopy, we show that rapid recruitment of neutrophils from the vascular channel to sites of infection leads to swarm and neutrophil extracellular trap formation but does not prevent IBC formation. Subsequently, we tracked bacterial growth dynamics in individual IBCs through two cycles of antibiotic administration interspersed with recovery periods which revealed that the elimination of bacteria within IBCs by the antibiotic was delayed, and in some instances, did not occur at all. During the recovery period, rapid proliferation in a significant fraction of IBCs reseeded new foci of infection through bacterial shedding and host cell exfoliation. These insights reinforce a dynamic role for IBCs as harbors of bacterial persistence, with significant consequences for non-compliance with antibiotic regimens.


Urinary tract infections are one of the most common reasons people need antibiotics. These bacterial infections are typically caused by uropathogenic Escherichia coli (also known as UPEC), which either float freely in the urine and wash away when the bladder empties, or form communities inside cells that the bladder struggles to clear. It is possible that the bacteria living within cells are also more protected from the immune system and antibiotics. But this is hard to study in animal models. To overcome this, Sharma et al. built a 'bladder-chip' which mimics the interface between the blood vessels and the tissue layers of the human bladder. Similar chip devices have also been made for other organs. However, until now, no such model had been developed for the bladder. On the chip created by Sharma et al. is a layer of bladder cells which sit at the bottom of a channel filled with diluted human urine. These cells were infected with UPEC, and then imaged over time to see how the bacteria moved, interacted with the bladder cells, and aggregated together. Immune cells from human blood were then added to a vascular channel underneath the bladder tissue, which is coated with endothelial cells that normally line blood vessels. The immune cells rapidly crossed the endothelial barrier and entered the bladder tissue, and swarmed around sites of infection. In some instances, they released the contents of their cells to form net-like traps to catch the bacteria. But these traps failed to remove the bacteria living inside bladder cells. Antibiotics were then added to the urine flowing over the bladder cells as well as the vascular channel, similar to how drugs would be delivered in live human tissue. Sharma et al. discovered that the antibiotics killed bacteria residing in bladder cells slower than bacteria floating freely in the urine. Furthermore, they found that bacteria living in tightly packed communities within bladder cells were more likely to survive treatment and go on to re-infect other parts of the tissue. Antibiotic resistance is a pressing global challenge, and recurrent urinary tract infections are a significant contributor. The bladder-chip presented here could further our understanding of how these bacterial infections develop in vivo and how good antibiotics are at removing them. This could help researchers identify the best dosing and treatment strategies, as well as provide a platform for rapidly testing new antibiotic drugs and other therapies.


Asunto(s)
Técnicas Bacteriológicas/instrumentación , Dispositivos Laboratorio en un Chip , Vejiga Urinaria/irrigación sanguínea , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena , Línea Celular Tumoral , Técnicas de Cocultivo , Células Endoteliales/fisiología , Humanos , Neutrófilos/fisiología
17.
Sci Rep ; 11(1): 14775, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285253

RESUMEN

Infection diagnosis and antibiotic susceptibility testing (AST) are pertinent clinical microbiology practices that are in dire need of improvement, due to the inadequacy of current standards in early detection of bacterial response to antibiotics and affordability of contemporarily used methods. This paper presents a novel way to conduct AST which hybridizes disk diffusion AST with microwave resonators for rapid, contactless, and non-invasive sensing and monitoring. In this research, the effect of antibiotic (erythromycin) concentrations on test bacterium, Escherichia coli (E. coli) cultured on solid agar medium (MH agar) are monitored through employing a microwave split-ring resonator. A one-port microwave resonator operating at a 1.76 GHz resonant frequency, featuring a 5 mm2 sensitive sensing region, was designed and optimized to perform this. Upon introducing uninhibited growth of the bacteria, the sensor measured 0.005 dB/hr, with a maximum change of 0.07 dB over the course of 15 hours. The amplitude change decreased to negligible values to signify inhibited growth of the bacteria at higher concentrations of antibiotics, such as a change of 0.005 dB in resonant amplitude variation while using 45 µg of antibiotic. Moreover, this sensor demonstrated decisive results of antibiotic susceptibility in under 6 hours and shows great promise to expand automation to the intricate AST workflow in clinical settings, while providing rapid, sensitive, and non-invasive detection capabilities.


Asunto(s)
Antibacterianos/farmacología , Técnicas Biosensibles/instrumentación , Medios de Cultivo/farmacología , Escherichia coli/crecimiento & desarrollo , Técnicas Bacteriológicas/instrumentación , Medios de Cultivo/química , Pruebas Antimicrobianas de Difusión por Disco , Campos Electromagnéticos , Eritromicina/farmacología , Escherichia coli/efectos de los fármacos , Microondas
18.
J Med Microbiol ; 70(5)2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34048334

RESUMEN

Introduction. Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) are the most common pathogens from the genus Staphylococcus causing biofilm-associated infections. Generally, biofilm-associated infections represent a clinical challenge. Bacteria in biofilms are difficult to eradicate due to their resistance and serve as a reservoir for recurring persistent infections.Gap Statement. A variety of protocols for in vitro drug activity testing against staphylococcal biofilms have been introduced. However, there are often fundamental differences. All these differences in methodical approaches can then be reflected in the form of discrepancies between results.Aim. In this study, we aimed to develop optimal conditions for staphylococcal biofilm formation on pegs. The impact of peg surface modification was also studied.Methodology. The impact of tryptic soy broth alone or supplemented with foetal bovine serum (FBS) or human plasma (HP), together with the impact of the inoculum density of bacterial suspensions and the shaking versus the static mode of cultivation, on total biofilm biomass production in SA and SE reference strains was studied. The surface of pegs was modified with FBS, HP, or poly-l-lysine (PLL). The impact on total biofilm biomass was evaluated using the crystal violet staining method and statistical data analysis.Results. Tryptic soy broth supplemented with HP together with the shaking mode led to crucial potentiation of biofilm formation on pegs in SA strains. The SE strain did not produce biofilm biomass under the same conditions on pegs. Preconditioning of peg surfaces with FBS and HP led to a statistically significant increase in biofilm biomass formation in the SE strain.Conclusion. Optimal cultivation conditions for robust staphylococcal biofilm formation in vitro might differ among different bacterial strains and methodical approaches. The shaking mode and supplementation of cultivation medium with HP was beneficial for biofilm formation on pegs for SA (ATCC 29213) and methicillin-resistant SA (ATCC 43300). Peg conditioning with HP and PLL had no impact on biofilm formation in either of these strains. Peg coating with FBS showed an adverse effect on the biofilm formation of these strains. By contrast, there was a statistically significant increase in biofilm biomass production on pegs coated with FBS and HP for SE (ATCC 35983).


Asunto(s)
Técnicas Bacteriológicas/instrumentación , Biopelículas/crecimiento & desarrollo , Staphylococcus/fisiología , Animales , Técnicas Bacteriológicas/métodos , Biopelículas/clasificación , Biopelículas/efectos de los fármacos , Biomasa , Medios de Cultivo/química , Medios de Cultivo/farmacología , Matriz Extracelular de Sustancias Poliméricas/clasificación , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos , Humanos , Especificidad de la Especie , Staphylococcus/clasificación , Staphylococcus/efectos de los fármacos
19.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805483

RESUMEN

Using two different types of impedance biochips (PS5 and BS5) with ring top electrodes, a distinct change of measured impedance has been detected after adding 1-5 µL (with dead or live Gram-positive Lysinibacillus sphaericus JG-A12 cells to 20 µL DI water inside the ring top electrode. We relate observed change of measured impedance to change of membrane potential of L. sphaericus JG-A12 cells. In contrast to impedance measurements, optical density (OD) measurements cannot be used to distinguish between dead and live cells. Dead L. sphaericus JG-A12 cells have been obtained by adding 0.02 mg/mL of the antibiotics tetracycline and 0.1 mg/mL chloramphenicol to a batch with OD0.5 and by incubation for 24 h, 30 °C, 120 rpm in the dark. For impedance measurements, we have used batches with a cell density of 25.5 × 108 cells/mL (OD8.5) and 270.0 × 108 cells/mL (OD90.0). The impedance biochip PS5 can be used to detect the more resistive and less capacitive live L. sphaericus JG-A12 cells. Also, the impedance biochip BS5 can be used to detect the less resistive and more capacitive dead L. sphaericus JG-A12 cells. An outlook on the application of the impedance biochips for high-throughput drug screening, e.g., against multi-drug-resistant Gram-positive bacteria, is given.


Asunto(s)
Técnicas Bacteriológicas/instrumentación , Técnicas Bacteriológicas/métodos , Espectroscopía Dieléctrica/métodos , Viabilidad Microbiana , Bacillaceae , Espectroscopía Dieléctrica/instrumentación , Electrodos , Dispositivos Laboratorio en un Chip , Microscopía/métodos , Microscopía de Fuerza Atómica , Silicio
20.
Food Chem ; 358: 129907, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33930712

RESUMEN

Rapid detection of pathogenic bacteria particularly in food samples demands efficient separation and enrichment strategies. Here, hydrophilic temperature-responsive boronate affinity magnetic nanocomposites were established for selective enrichment of bacteria. The thermo-responsive polymer brushes were developed by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide (NIPAm) and allyl glycidyl ether (AGE), followed by a reaction of epoxy groups, and incorporation of fluorophenylboronic acid. The physical and chemical characteristics of the magnetic nanocomposites were analyzed systematically. After optimization, S. aureus and Salmonella spp. showed high binding capacities of 32.14 × 106 CFU/mg and 50.98 × 106 CFU/mg in 0.01 M PBS (pH 7.4) without bacteria death. Bacterial bindings can be controlled by altering temperature and the application of competing monosaccharides. The nanocomposite was then utilized to enrich S. aureus and Salmonella spp. from the spiked tap water, 25% milk, and turbot extraction samples followed by multiplex polymerase chain reaction (mPCR), which resulted in high bacteria enrichment, and demonstrated great potential in separation of bacteria from food samples.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología de Alimentos/instrumentación , Microbiología de Alimentos/métodos , Nanocompuestos/química , Acrilamidas/química , Animales , Bacterias/metabolismo , Técnicas Bacteriológicas/instrumentación , Técnicas Bacteriológicas/métodos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Fenómenos Magnéticos , Leche/microbiología , Polimerizacion , Polímeros/química , Salmonella/aislamiento & purificación , Salmonella/metabolismo , Staphylococcus aureus/metabolismo , Temperatura , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...