Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
Am J Physiol Renal Physiol ; 326(5): F814-F826, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545647

RESUMEN

Aquaporin 2 (AQP2) is a vasopressin (VP)-regulated water channel in the renal collecting duct. Phosphorylation and ubiquitylation of AQP2 play an essential role in controlling the cellular abundance of AQP2 and its accumulation on the plasma membrane in response to VP. Cullin-RING ubiquitin ligases (CRLs) are multisubunit E3 ligases involved in ubiquitylation and degradation of their target proteins, eight of which are expressed in the collecting duct. Here, we used an established cell model of the collecting duct (mpkCCD14 cells) to study the role of cullins in modulating AQP2. Western blotting identified Cul-1 to Cul-5 in mpkCCD14 cells. Treatment of cells for 4 h with a pan-cullin inhibitor (MLN4924) decreased AQP2 abundance, prevented a VP-induced reduction in AQP2 Ser261 phosphorylation, and attenuated VP-induced plasma membrane accumulation of AQP2 relative to the vehicle. AQP2 ubiquitylation levels were significantly higher after MLN4924 treatment compared with controls, and they remained higher despite VP treatment. Cullin inhibition increased ERK1/2 activity, a kinase that regulates AQP2 Ser261 phosphorylation, and VP-induced reductions in ERK1/2 phosphorylation were absent during MLN4924 treatment. Furthermore, the greater Ser261 phosphorylation and reduction in AQP2 abundance during MLN4924 treatment were attenuated during ERK1/2 inhibition. MLN4924 increased intracellular calcium levels via calcium release-activated calcium channels, inhibition of which abolished MLN4924 effects on Ser261 phosphorylation and AQP2 abundance. In conclusion, CRLs play a vital role in mediating some of the effects of VP to increase AQP2 plasma membrane accumulation and AQP2 abundance. Whether modulation of cullin activity can contribute to body water homeostasis requires further studies.NEW & NOTEWORTHY Aquaporin 2 (AQP2) is essential for body water homeostasis and is regulated by the antidiuretic hormone vasopressin. The posttranslational modification ubiquitylation is a key regulator of AQP2 abundance and plasma membrane localization. Here we demonstrate that cullin-RING E3 ligases play a vital role in mediating some of the effects of vasopressin to increase AQP2 abundance and plasma membrane accumulation. The results suggest that manipulating cullin activity could be a novel strategy to alter kidney water handling.


Asunto(s)
Acuaporina 2 , Proteínas Cullin , Ciclopentanos , Túbulos Renales Colectores , Pirimidinas , Ubiquitinación , Acuaporina 2/metabolismo , Proteínas Cullin/metabolismo , Animales , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/enzimología , Ubiquitinación/efectos de los fármacos , Fosforilación , Ratones , Vasopresinas/metabolismo , Vasopresinas/farmacología , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Calcio/metabolismo
2.
Am J Physiol Renal Physiol ; 320(3): F297-F307, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356953

RESUMEN

We reported that high salt (HS) intake stimulates renal collecting duct (CD) endothelin (ET) type B receptor (ETBR)/nitric oxide (NO) synthase 1ß (NOS1ß)-dependent NO production inhibiting the epithelial sodium channel (ENaC) promoting natriuresis. However, the mechanism underlying the HS-induced increase of NO production is unclear. Histone deacetylase 1 (HDAC1) responds to increased fluid flow, as can occur in the CD during HS intake. The renal inner medulla (IM), in particular the IMCD, has the highest NOS1 activity within the kidney. Hence, we hypothesized that HS intake provokes HDAC1 activation of NO production in the IM. HS intake for 1 wk significantly increased HDAC1 abundance in the IM. Ex vivo treatment of dissociated IM from HS-fed mice with a selective HDAC1 inhibitor (MS-275) decreased NO production with no change in ET-1 peptide or mRNA levels. We further investigated the role of the ET-1/ETBR/NOS1ß signaling pathway with chronic ETBR blockade (A-192621). Although NO was decreased and ET-1 levels were elevated in the dissociated IM from HS-fed mice treated with A-192621, ex vivo MS-275 did not further change NO or ET-1 levels suggesting that HDAC1-mediated NO production is regulated at the level or downstream of ETBR activation. In split-open CDs from HS-fed mice, patch clamp analysis revealed significantly higher ENaC activity after MS-275 pretreatment, which was abrogated by an exogenous NO donor. Moreover, flow-induced increases in mIMCD-3 cell NO production were blunted by HDAC1 or calcium inhibition. Taken together, these findings indicate that HS intake induces HDAC1-dependent activation of the ETBR/NO pathway contributing to the natriuretic response.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Túbulos Renales Colectores/enzimología , Natriuresis , Óxido Nítrico/metabolismo , Eliminación Renal , Cloruro de Sodio Dietético/administración & dosificación , Animales , Endotelina-1/metabolismo , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo I/metabolismo , Receptor de Endotelina B/metabolismo , Transducción de Señal , Cloruro de Sodio Dietético/orina
3.
Am J Physiol Renal Physiol ; 318(4): F956-F970, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32088968

RESUMEN

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for osmotic water reabsorption by kidney collecting ducts. In response to vasopressin, AQP2 traffics from intracellular vesicles to the apical plasma membrane of collecting duct principal cells, where it increases water permeability and, hence, water reabsorption. Despite continuing efforts, gaps remain in our knowledge of vasopressin-regulated AQP2 trafficking. Here, we studied the functions of two retromer complex proteins, small GTPase Rab7 and vacuolar protein sorting 35 (Vps35), in vasopressin-induced AQP2 trafficking in a collecting duct cell model (mpkCCD cells). We showed that upon vasopressin removal, apical AQP2 returned to Rab5-positive early endosomes before joining Rab11-positive recycling endosomes. In response to vasopressin, Rab11-associated AQP2 trafficked to the apical plasma membrane before Rab5-associated AQP2 did so. Rab7 knockdown resulted in AQP2 accumulation in early endosomes and impaired vasopressin-induced apical AQP2 trafficking. In response to vasopressin, Rab7 transiently colocalized with Rab5, indicative of a role of Rab7 in AQP2 sorting in early endosomes before trafficking to the apical membrane. Rab7-mediated apical AQP2 trafficking in response to vasopressin required GTPase activity. When Vps35 was knocked down, AQP2 accumulated in recycling endosomes under vehicle conditions and did not traffic to the apical plasma membrane in response to vasopressin. We conclude that Rab7 and Vps35 participate in AQP2 sorting in early endosomes under vehicle conditions and apical membrane trafficking in response to vasopressin.


Asunto(s)
Acuaporina 2/metabolismo , Endosomas/enzimología , Túbulos Renales Colectores/enzimología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Acuaporina 2/genética , Endosomas/efectos de los fármacos , Células HEK293 , Humanos , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/efectos de los fármacos , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones , Transporte de Proteínas , Proteolisis , Factores de Tiempo , Vasopresinas/farmacología , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
4.
Am J Physiol Renal Physiol ; 317(3): F547-F559, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31241990

RESUMEN

The collecting duct (CD) concentrates the urine, thereby maintaining body water volume and plasma osmolality within a normal range. The endocrine hormone arginine vasopressin acts in the CD to increase water permeability via the vasopressin 2 receptor (V2R)-aquaporin (AQP) axis. Recent studies have suggested that autocrine factors may also contribute to the regulation of CD water permeability. Nitric oxide is produced predominantly by nitric oxide synthase 1 (NOS1) in the CD and acts as a diuretic during salt loading. The present study sought to determine whether CD NOS1 regulates diuresis during changes in hydration status. Male and female control and CD NOS1 knockout (CDNOS1KO) mice were hydrated (5% sucrose water), water deprived, or acutely challenged with the V2R agonist desmopressin. In male mice, water deprivation resulted in decreased urine flow and increased plasma osmolality, copeptin concentration, and kidney AQP2 abundance independent of CD NOS1. In female control mice, water deprivation reduced urine flow, increased plasma osmolality and copeptin, but did not significantly change total AQP2; however, there was increased basolateral AQP3 localization. Surprisingly, female CDNOS1KO mice while on the sucrose water presented with symptoms of dehydration. Fibroblast growth factor 21, an endocrine regulator of sweetness preference, was significantly higher in female CDNOS1KO mice, suggesting that this was reducing their drive to drink the sucrose water. With acute desmopressin challenge, female CDNOS1KO mice failed to appropriately concentrate their urine, resulting in higher plasma osmolality than controls. In conclusion, CD NOS1 plays only a minor role in urine-concentrating mechanisms.


Asunto(s)
Deshidratación/enzimología , Diuresis , Capacidad de Concentración Renal , Túbulos Renales Colectores/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Animales , Fármacos Antidiuréticos/farmacología , Acuaporina 2/genética , Acuaporina 2/metabolismo , Acuaporina 3/genética , Acuaporina 3/metabolismo , Desamino Arginina Vasopresina/farmacología , Deshidratación/fisiopatología , Modelos Animales de Enfermedad , Diuresis/efectos de los fármacos , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Capacidad de Concentración Renal/efectos de los fármacos , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/genética , Estado de Hidratación del Organismo , Concentración Osmolar , Factores Sexuales , Transducción de Señal , Urodinámica , Privación de Agua
5.
Am J Physiol Renal Physiol ; 317(2): F435-F443, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31188029

RESUMEN

We have recently reported that type A intercalated cells of the collecting duct secrete Na+ by a mechanism coupling the basolateral type 1 Na+-K+-2Cl- cotransporter with apical type 2 H+-K+-ATPase (HKA2) functioning under its Na+/K+ exchange mode. The first aim of the present study was to evaluate whether this secretory pathway is a target of atrial natriuretic peptide (ANP). Despite hyperaldosteronemia, metabolic acidosis is not associated with Na+ retention. The second aim of the present study was to evaluate whether ANP-induced stimulation of Na+ secretion by type A intercalated cells might account for mineralocorticoid escape during metabolic acidosis. In Xenopus oocytes expressing HKA2, cGMP, the second messenger of ANP, increased the membrane expression, activity, and Na+-transporting rate of HKA2. Feeding mice with a NH4Cl-enriched diet increased urinary excretion of aldosterone and induced a transient Na+ retention that reversed within 3 days. At that time, expression of ANP mRNA in the collecting duct and urinary excretion of cGMP were increased. Reversion of Na+ retention was prevented by treatment with an inhibitor of ANP receptors and was absent in HKA2-null mice. In conclusion, paracrine stimulation of HKA2 by ANP is responsible for the escape of the Na+-retaining effect of aldosterone during metabolic acidosis.


Asunto(s)
Equilibrio Ácido-Base , Acidosis/enzimología , Factor Natriurético Atrial/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Túbulos Renales Colectores/enzimología , Sodio/orina , Acidosis/genética , Acidosis/fisiopatología , Acidosis/orina , Adaptación Fisiológica , Aldosterona/orina , Animales , GMP Cíclico/orina , Femenino , ATPasa Intercambiadora de Hidrógeno-Potásio/deficiencia , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Ratones Noqueados , Comunicación Paracrina , Ratas , Transducción de Señal , Xenopus laevis
6.
Am J Physiol Renal Physiol ; 316(2): F253-F262, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427219

RESUMEN

Hypertonicity increases water permeability, independently of vasopressin, in the inner medullary collecting duct (IMCD) by increasing aquaporin-2 (AQP2) membrane accumulation. We investigated whether protein kinase C (PKC) and adenosine monophosphate kinase (AMPK) are involved in hypertonicity-regulated water permeability. Increasing perfusate osmolality from 150 to 290 mosmol/kgH2O and bath osmolality from 290 to 430 mosmol/kgH2O significantly stimulated osmotic water permeability. The PKC inhibitors chelerythrine (10 µM) and rottlerin (50 µM) significantly reversed the increase in osmotic water permeability stimulated by hypertonicity in perfused rat terminal IMCDs. Chelerythrine significantly increased phosphorylation of AQP2 at S261 but not at S256. Previous studies show that AMPK is stimulated by osmotic stress. We tested AMPK phosphorylation under hypertonic conditions. Hypertonicity significantly increased AMPK phosphorylation in inner medullary tissues. Blockade of AMPK with Compound C decreased hypertonicity-stimulated water permeability but did not alter phosphorylation of AQP2 at S256 and S261. AICAR, an AMPK stimulator, caused a transient increase in osmotic water permeability and increased phosphorylation of AQP2 at S256. When inner medullary tissue was treated with the PKC activator phorbol dibutyrate (PDBu), the AMPK activator metformin, or both, AQP2 phosphorylation at S261 was decreased with PDBu or metformin alone, but there was no additive effect on phosphorylation with PDBu and metformin together. In conclusion, hypertonicity regulates water reabsorption by activating PKC. Hypertonicity-stimulated water reabsorption by PKC may be related to the decrease in endocytosis of AQP2. AMPK activation promotes water reabsorption, but the mechanism remains to be determined. PKC and AMPK do not appear to act synergistically to regulate water reabsorption.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Agua Corporal/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Proteína Quinasa C/metabolismo , Reabsorción Renal/efectos de los fármacos , Solución Salina Hipertónica/farmacología , Animales , Acuaporina 2/metabolismo , Endocitosis , Femenino , Túbulos Renales Colectores/enzimología , Masculino , Concentración Osmolar , Osmorregulación , Permeabilidad , Fosforilación , Ratas
7.
Am J Surg Pathol ; 42(3): 279-292, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29309300

RESUMEN

Renal medullary carcinomas (RMCs) and collecting duct carcinomas (CDCs) are rare subsets of lethal high-stage, high-grade distal nephron-related adenocarcinomas with a predilection for the renal medullary region. Recent findings have established an emerging group of fumarate hydratase (FH)-deficient tumors related to hereditary leiomyomatosis and renal cell carcinoma (HLRCC-RCCs) syndrome within this morphologic spectrum. Recently developed, reliable ancillary testing has enabled consistent separation between these tumor types. Here, we present the clinicopathologic features and differences in the morphologic patterns between RMC, CDC, and FH-deficient RCC in consequence of these recent developments. This study included a total of 100 cases classified using contemporary criteria and ancillary tests. Thirty-three RMCs (SMARCB1/INI1-deficient, hemoglobinopathy), 38 CDCs (SMARCB1/INI1-retained), and 29 RCCs defined by the FH-deficient phenotype (FH/2SC or FH/2SC with FH mutation, regardless of HLRCC syndromic stigmata/history) were selected. The spectrum of morphologic patterns was critically evaluated, and the differences between the morphologic patterns present in the 3 groups were analyzed statistically. Twenty-five percent of cases initially diagnosed as CDC were reclassified as FH-deficient RCC on the basis of our contemporary diagnostic approach. Among the different overlapping morphologic patterns, sieve-like/cribriform and reticular/yolk sac tumor-like patterns favored RMCs, whereas intracystic papillary and tubulocystic patterns favored FH-deficient RCC. The tubulopapillary pattern favored both CDCs and FH-deficient RCCs, and the multinodular infiltrating papillary pattern favored CDCs. Infiltrating glandular and solid sheets/cords/nested patterns were not statistically different among the 3 groups. Viral inclusion-like macronucleoli, considered as a hallmark of HLRCC-RCCs, were observed significantly more frequently in FH-deficient RCCs. Despite the overlapping morphology found among these clinically aggressive infiltrating high-grade adenocarcinomas of the kidney, reproducible differences in morphology emerged between these categories after rigorous characterization. Finally, we recommend that definitive diagnosis of CDC should only be made if RMC and FH-deficient RCC are excluded.


Asunto(s)
Biomarcadores de Tumor/deficiencia , Carcinoma de Células Renales/patología , Fumarato Hidratasa/deficiencia , Médula Renal/patología , Neoplasias Renales/patología , Túbulos Renales Colectores/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Australia , Biomarcadores de Tumor/genética , Biopsia , Brasil , Canadá , Carcinoma de Células Renales/clasificación , Carcinoma de Células Renales/enzimología , Carcinoma de Células Renales/genética , Niño , Análisis Mutacional de ADN , Diagnóstico Diferencial , Europa (Continente) , Femenino , Fumarato Hidratasa/genética , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Médula Renal/enzimología , Neoplasias Renales/clasificación , Neoplasias Renales/enzimología , Neoplasias Renales/genética , Túbulos Renales Colectores/enzimología , Masculino , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Fenotipo , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Estados Unidos , Adulto Joven
8.
Kidney Int ; 93(2): 390-402, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29054531

RESUMEN

Ammonium, stemming from renal ammoniagenesis, is a major urinary proton buffer and is excreted along the collecting duct. This process depends on the concomitant secretion of ammonia by the ammonia channel RhCG and of protons by the vacuolar-type proton-ATPase pump. Thus, urinary ammonium content and urinary acidification are tightly linked. However, mice lacking Rhcg excrete more alkaline urine despite lower urinary ammonium, suggesting an unexpected role of Rhcg in urinary acidification. RhCG and the B1 and B2 proton-ATPase subunits could be co-immunoprecipitated from kidney. In ex vivo microperfused cortical collecting ducts (CCD) proton-ATPase activity was drastically reduced in the absence of Rhcg. Conversely, overexpression of RhCG in HEK293 cells resulted in higher proton secretion rates and increased B1 proton-ATPase mRNA expression. However, in kidneys from Rhcg-/- mice the expression of only B1 and B2 subunits was altered. Immunolocalization of proton-ATPase subunits together with immuno-gold detection of the A proton-ATPase subunit showed similar localization and density of staining in kidneys from Rhcg+/+ and Rhcg-/-mice. In order to test for a reciprocal effect of intercalated cell proton-ATPases on Rhcg activity, we assessed Rhcg and proton-ATPase activities in microperfused CCD from Atp6v1b1-/- mice and showed reduced proton-ATPase activity without altering Rhcg activity. Thus, RhCG and proton-ATPase are located within the same cellular protein complex. RhCG may modulate proton-ATPase function and urinary acidification, whereas proton-ATPase activity does not affect RhCG function. This mechanism may help to coordinate ammonia and proton secretion beyond physicochemical driving forces.


Asunto(s)
Amoníaco/orina , Proteínas de Transporte de Catión/metabolismo , Túbulos Renales Colectores/enzimología , Glicoproteínas de Membrana/metabolismo , Eliminación Renal , Orina/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/ultraestructura , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones Noqueados , Complejos Multiproteicos , Protones , ATPasas de Translocación de Protón Vacuolares/deficiencia , ATPasas de Translocación de Protón Vacuolares/genética
9.
Am J Physiol Renal Physiol ; 314(3): F329-F342, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29070573

RESUMEN

Mineralocorticoids trigger a profibrotic process in the kidney. In mouse cortical collecting duct cells, the present study addressed two main questions: 1) what are microRNAs (miRNAs) and their target genes that are changed by aldosterone? and 2) what do miRNAs, in response to aldosterone, regulate regarding signaling pathways related to fibrosis? A microarray chip assay was done in cells in the absence or presence of aldosterone treatment (10-6 M; 3 days). The candidate miRNAs were identified by the criteria of >30% of fold change among the significantly changed miRNAs ( P < 0.05). Twenty-nine miRNAs were upregulated (>1.3-fold), and 27 miRNAs were downregulated (<0.7-fold). Putative target genes of identified miRNAs were associated with 74 Kyoto Encyclopedia of Genes and Genomes pathways. Among them, the wingless-related integration site (Wnt) signaling pathway was highly ranked, where 15 mature miRNAs were observed. These miRNAs were further analyzed by real-time quantitative PCR, and among them, miR-130b-3p, miR-34c-5p, and miR-146a-5p were selected. Through the identification of putative target genes of these three miRNAs, mRNA and protein expression of the Ca2+/calmodulin-dependent protein kinase type II ß-chain ( Camk2b) gene (a target gene of miR-34c-5p) were found to be increased significantly in aldosterone-treated cells, where fibronectin (FN) and α-smooth muscle actin were induced. When CaMKIIß small interfering RNA or the miR-34c-5p mimic was transfected, aldosterone-induced FN expression was significantly attenuated, along with reduced CaMKIIß protein expression. A luciferase reporter assay revealed a decrease of CaMKIIß translation in cells transfected with miRNA mimics of miR-34c-5p. In conclusion, aldosterone-induced downregulation of miR-34c-5p in the Wnt signaling pathway and a consequent increase of CaMKIIß expression are likely to be involved in aldosterone-induced fibrosis.


Asunto(s)
Aldosterona , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Enfermedades Renales/enzimología , Túbulos Renales Colectores/enzimología , MicroARNs/metabolismo , Actinas/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Línea Celular , Modelos Animales de Enfermedad , Fibronectinas/metabolismo , Fibrosis , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Enfermedades Renales/inducido químicamente , Enfermedades Renales/genética , Enfermedades Renales/patología , Túbulos Renales Colectores/patología , Ratones Endogámicos C57BL , MicroARNs/genética , Transcriptoma , Vía de Señalización Wnt
10.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 309-322, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29128370

RESUMEN

Epithelial tissue requires that cells attach to each other and to the extracellular matrix by the assembly of adherens junctions (AJ) and focal adhesions (FA) respectively. We have previously shown that, in renal papillary collecting duct (CD) cells, both AJ and FA are located in sphingomyelin (SM)-enriched plasma membrane microdomains. In the present work, we investigated the involvement of SM metabolism in the preservation of the epithelial cell phenotype and tissue organization. To this end, primary cultures of renal papillary CD cells were performed. Cultured cells preserved the fully differentiated epithelial phenotype as reflected by the presence of primary cilia. Cells were then incubated for 24h with increasing concentrations of D609, a SM synthase (SMS) inhibitor. Knock-down experiments silencing SMS 1 and 2 were also performed. By combining biochemical and immunofluorescence studies, we found experimental evidences suggesting that, in CD cells, SMS 1 activity is essential for the preservation of cell-cell adhesion structures and therefore for the maintenance of CD tissue/tubular organization. The inhibition of SMS 1 activity induced CD cells to lose their epithelial phenotype and to undergo an epithelial-mesenchymal transition (EMT) process.


Asunto(s)
Células Epiteliales/enzimología , Transición Epitelial-Mesenquimal , Túbulos Renales Colectores/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Animales , Adhesión Celular , Células Epiteliales/citología , Túbulos Renales Colectores/citología , Masculino , Ratas , Ratas Wistar , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
11.
Am J Physiol Renal Physiol ; 314(3): F367-F372, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29021227

RESUMEN

epithelial Na+ channel, ENaC, is the final arbiter of sodium excretion in the kidneys. As such, discretionary control of ENaC by hormones is critical to the fine-tuning of electrolyte and water excretion and, consequently, blood pressure. Casein kinase 2 (CK2) phosphorylates ENaC. Phosphorylation by CK2 is necessary for normal ENaC activity. We tested the physiological importance of CK2 regulation of ENaC as the degree to which ENaC activity is dependent on CK2 phosphorylation in the living organism is unknown. This was addressed using patch-clamp analysis of ENaC in completely split-open collecting ducts and whole animal physiological studies of sodium excretion in mice. We also used ENaC-harboring CK2 phosphorylation site mutations to elaborate the mechanism. We found that ENaC activity in ex vivo preparations of murine collecting duct had a significant decrease in activity in response to selective antagonism of CK2. In whole animal experiments selective antagonism of CK2 caused a natriuresis similar to benzamil, but not additive to benzamil, suggesting an ENaC-dependent mechanism. Regulation of ENaC by CK2 was abolished by mutation of the canonical CK2 phosphorylation sites in beta and gamma ENaC. Together, these results demonstrate that the appropriate regulation of ENaC by CK2 is necessary for the normal physiological role played by this key renal ion channel in the fine-tuning of sodium excretion.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Colectores/enzimología , Natriuresis , Sodio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Células CHO , Quinasa de la Caseína II/antagonistas & inhibidores , Cricetulus , Bloqueadores del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/efectos de los fármacos , Canales Epiteliales de Sodio/genética , Túbulos Renales Colectores/efectos de los fármacos , Potenciales de la Membrana , Ratones , Mutación , Natriuresis/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Triazoles/farmacología
12.
J Am Heart Assoc ; 6(10)2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29066445

RESUMEN

BACKGROUND: During high sodium intake, the renin-angiotensin-aldosterone system is downregulated and nitric oxide signaling is upregulated in order to remain in sodium balance. Recently, we showed that collecting duct nitric oxide synthase 1ß is critical for fluid-electrolyte balance and subsequently blood pressure regulation during high sodium feeding. The current study tested the hypothesis that high sodium activation of the collecting duct nitric oxide synthase 1ß pathway is critical for maintaining sodium homeostasis and for the downregulation of the renin-angiotensin-aldosterone system-epithelial sodium channel axis. METHODS AND RESULTS: Male control and collecting duct nitric oxide synthase 1ß knockout (CDNOS1KO) mice were placed on low, normal, and high sodium diets for 1 week. In response to the high sodium diet, plasma sodium was significantly increased in control mice and to a significantly greater level in CDNOS1KO mice. CDNOS1KO mice did not suppress plasma aldosterone in response to the high sodium diet, which may be partially explained by increased adrenal AT1R expression. Plasma renin concentration was appropriately suppressed in both genotypes. Furthermore, CDNOS1KO mice had significantly higher intrarenal angiotensin II with high sodium diet, although intrarenal angiotensinogen levels and angiotensin-converting enzyme activity were similar between knockout mice and controls. In agreement with inappropriate renin-angiotensin-aldosterone system activation in the CDNOS1KO mice on a high sodium diet, epithelial sodium channel activity and sodium transporter abundance were significantly higher compared with controls. CONCLUSIONS: These data demonstrate that high sodium activation of collecting duct nitric oxide synthase 1ß signaling induces suppression of systemic and intrarenal renin-angiotensin-aldosterone system, thereby modulating epithelial sodium channel and other sodium transporter abundance and activity to maintain sodium homeostasis.


Asunto(s)
Aldosterona/sangre , Angiotensina II/sangre , Túbulos Renales Colectores/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Eliminación Renal , Sistema Renina-Angiotensina , Cloruro de Sodio Dietético/metabolismo , Animales , Activación Enzimática , Canales Epiteliales de Sodio/metabolismo , Genotipo , Homeostasis , Masculino , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/genética , Fenotipo , Receptor de Angiotensina Tipo 1/metabolismo , Renina/sangre , Simportadores del Cloruro de Sodio/metabolismo
13.
Am J Physiol Renal Physiol ; 313(4): F1038-F1049, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701311

RESUMEN

During the early phase of ANG II-dependent hypertension, tubular PGE2 is increased. Renin synthesis and secretion in the collecting duct (CD) are upregulated by ANG II, contributing to further intratubular ANG II formation. However, what happens first and whether the triggering mechanism is independent of tubular ANG II remain unknown. PGE2 stimulates renin synthesis in juxtaglomerular cells via E-prostanoid (EP) receptors through the cAMP/cAMP-responsive element-binding (CREB) pathway. EP receptors are also expressed in the CD. Here, we tested the hypothesis that renin is upregulated by PGE2 in CD cells. The M-1 CD cell line expressed EP1, EP3, and EP4 but not EP2. Dose-response experiments, in the presence of ANG II type 1 receptor blockade with candesartan, demonstrated that 10-6 M PGE2 maximally increases renin mRNA (approximately 4-fold) and prorenin/renin protein levels (approximately 2-fold). This response was prevented by micromolar doses of SC-19220 (EP1 antagonist), attenuated by the EP4 antagonist, L-161982, and exacerbated by the highly selective EP3 antagonist, L-798106 (~10-fold increase). To evaluate further the signaling pathway involved, we used the PKC inhibitor calphostin C and transfections with PKCα dominant negative. Both strategies blunted the PGE2-induced increases in cAMP levels, CREB phosphorylation, and augmentation of renin. Knockdown of the EP1 receptor and CREB also prevented renin upregulation. These results indicate that PGE2 increases CD renin expression through the EP1 receptor via the PKC/cAMP/CREB pathway. Therefore, we conclude that during the early stages of ANG II-dependent hypertension, there is augmentation of PGE2 that stimulates renin in the CD, resulting in increased tubular ANG II formation and further stimulation of renin.


Asunto(s)
Proteína de Unión a CREB/metabolismo , AMP Cíclico/metabolismo , Dinoprostona/farmacología , Túbulos Renales Colectores/efectos de los fármacos , Proteína Quinasa C/metabolismo , Subtipo EP1 de Receptores de Prostaglandina E/agonistas , Sistema Renina-Angiotensina/efectos de los fármacos , Renina/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Proteína de Unión a CREB/genética , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Túbulos Renales Colectores/enzimología , Ratones , Simulación del Acoplamiento Molecular , Fosforilación , Antagonistas de Prostaglandina/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Subtipo EP1 de Receptores de Prostaglandina E/genética , Subtipo EP1 de Receptores de Prostaglandina E/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Renina/genética , Transducción de Señal/efectos de los fármacos , Transfección , Regulación hacia Arriba
14.
Am J Physiol Renal Physiol ; 312(6): F1073-F1080, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179253

RESUMEN

Modulation of the epithelial Na+ channel (ENaC) activity in the collecting duct (CD) is an important mechanism for normal Na+ homeostasis. ENaC activity is inversely related to dietary Na+ intake, in part due to inhibitory paracrine purinergic regulation. Evidence suggests that H+,K+-ATPase activity in the CD also influences Na+ excretion. We hypothesized that renal H+,K+-ATPases affect Na+ reabsorption by the CD by modulating ENaC activity. ENaC activity in HKα1 H+,K+-ATPase knockout (HKα1-/-) mice was uncoupled from Na+ intake. ENaC activity on a high-Na+ diet was greater in the HKα1-/- mice than in WT mice. Moreover, dietary Na+ content did not modulate ENaC activity in the HKα1-/- mice as it did in WT mice. Purinergic regulation of ENaC was abnormal in HKα1-/- mice. In contrast to WT mice, where urinary [ATP] was proportional to dietary Na+ intake, urinary [ATP] did not increase in response to a high-Na+ diet in the HKα1-/- mice and was significantly lower than in the WT mice. HKα1-/- mice fed a high-Na+ diet had greater Na+ retention than WT mice and had an impaired dipsogenic response. These results suggest an important role for the HKα1 subunit in the regulation of purinergic signaling in the CD. They are also consistent with HKα1-containing H+,K+-ATPases as important components for the proper regulation of Na+ balance and the dipsogenic response to a high-salt diet. Such observations suggest a previously unrecognized element in Na+ regulation in the CD.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/deficiencia , Túbulos Renales Colectores/enzimología , Eliminación Renal , Reabsorción Renal , Sodio en la Dieta/metabolismo , Adenosina Trifosfato/orina , Aldosterona/sangre , Animales , Genotipo , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Homeostasis , Hipernatremia/sangre , Hipernatremia/enzimología , Hipernatremia/genética , Hipernatremia/orina , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal , Factores de Tiempo , Vasopresinas/sangre
15.
Physiol Genomics ; 49(3): 151-159, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039431

RESUMEN

A major challenge in physiology is to exploit the many large-scale data sets available from "-omic" studies to seek answers to key physiological questions. In previous studies, Bayes' theorem has been used for this purpose. This approach requires a means to map continuously distributed experimental data to probabilities (likelihood values) to derive posterior probabilities from the combination of prior probabilities and new data. Here, we introduce the use of minimum Bayes' factors for this purpose and illustrate the approach by addressing a physiological question, "Which deubiquitylating enzymes (DUBs) encoded by mammalian genomes are most likely to regulate plasma membrane transport processes in renal cortical collecting duct principal cells?" To do this, we have created a comprehensive online database of 110 DUBs present in the mammalian genome (https://hpcwebapps.cit.nih.gov/ESBL/Database/DUBs/). We used Bayes' theorem to integrate available information from large-scale data sets derived from proteomic and transcriptomic studies of renal collecting duct cells to rank the 110 known DUBs with regard to likelihood of interacting with and regulating transport processes. The top-ranked DUBs were OTUB1, USP14, PSMD7, PSMD14, USP7, USP9X, OTUD4, USP10, and UCHL5. Among these USP7, USP9X, OTUD4, and USP10 are known to be involved in endosomal trafficking and have potential roles in endosomal recycling of plasma membrane proteins in the mammalian cortical collecting duct.


Asunto(s)
Teorema de Bayes , Enzimas Desubicuitinizantes/metabolismo , Túbulos Renales Colectores/enzimología , Estadística como Asunto , Animales , Humanos , Internet , Funciones de Verosimilitud , Mamíferos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Unión Proteica , Ratas
16.
J Am Soc Nephrol ; 28(5): 1507-1520, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27932475

RESUMEN

Distal nephron acid secretion is mediated by highly specialized type A intercalated cells (A-ICs), which contain vacuolar H+-ATPase (V-type ATPase)-rich vesicles that fuse with the apical plasma membrane on demand. Intracellular bicarbonate generated by luminal H+ secretion is removed by the basolateral anion-exchanger AE1. Chronically reduced renal acid excretion in distal renal tubular acidosis (dRTA) may lead to nephrocalcinosis and renal failure. Studies in MDCK monolayers led to the proposal of a dominant-negative trafficking mechanism to explain AE1-associated dominant dRTA. To test this hypothesis in vivo, we generated an Ae1 R607H knockin mouse, which corresponds to the most common dominant dRTA mutation in human AE1, R589H. Compared with wild-type mice, heterozygous and homozygous R607H knockin mice displayed incomplete dRTA characterized by compensatory upregulation of the Na+/HCO3- cotransporter NBCn1. Red blood cell Ae1-mediated anion-exchange activity and surface polypeptide expression did not change. Mutant mice expressed far less Ae1 in A-ICs, but basolateral targeting of the mutant protein was preserved. Notably, mutant mice also exhibited reduced expression of V-type ATPase and compromised targeting of this proton pump to the plasma membrane upon acid challenge. Accumulation of p62- and ubiquitin-positive material in A-ICs of knockin mice suggested a defect in the degradative pathway, which may explain the observed loss of A-ICs. R607H knockin did not affect type B intercalated cells. We propose that reduced basolateral anion-exchange activity in A-ICs inhibits trafficking and regulation of V-type ATPase, compromising luminal H+ secretion and possibly lysosomal acidification.


Asunto(s)
Acidosis Tubular Renal/enzimología , Proteína 1 de Intercambio de Anión de Eritrocito/fisiología , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/enzimología , ATPasas de Translocación de Protón Vacuolares/fisiología , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Masculino , Ratones , Modelos Biológicos
17.
Curr Opin Nephrol Hypertens ; 25(5): 424-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27490784

RESUMEN

PURPOSE OF REVIEW: The paracellular pathway through the tight junction provides an important route for chloride reabsorption in the collecting duct of the kidney. This review describes recent findings of how defects in paracellular chloride permeation pathway may cause kidney diseases and how such a pathway may be regulated to maintain normal chloride homeostasis. RECENT FINDINGS: The tight junction in the collecting duct expresses two important claudin genes - claudin-4 and claudin-8. Transgenic knockout of either claudin gene causes hypotension, hypochloremia, and metabolic alkalosis in experimental animals. The claudin-4 mediated chloride permeability can be regulated by a protease endogenously expressed by the collecting duct cell - channel-activating protease 1. Channel-activating protease 1 regulates the intercellular interaction of claudin-4 and its membrane stability. Kelch-like 3, previously identified as a causal gene for Gordon's syndrome, also known as pseudohypoaldosteronism II, directly interacts with claudin-8 and regulates its ubiquitination and degradation. The dominant pseudohypoaldosteronism-II mutation (R528H) in Kelch-like 3 abolishes claudin-8 binding, ubiquitination, and degradation. SUMMARY: The paracellular chloride permeation pathway in the kidney is an important but understudied area in nephrology. It plays vital roles in renal salt handling and regulation of extracellular fluid volume and blood pressure. Two claudin proteins, claudin-4 and claudin-8, contribute to the function of this paracellular pathway. Deletion of either claudin protein from the collecting duct causes renal chloride reabsorption defects and low blood pressure. Claudins can be regulated on posttranslational levels by several mechanisms involving protease and ubiquitin ligase. Deregulation of claudins may cause human hypertension as exemplified in the Gordon's syndrome.


Asunto(s)
Cloruros/metabolismo , Claudina-4/metabolismo , Enfermedades Renales/metabolismo , Túbulos Renales Colectores/metabolismo , Uniones Estrechas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Presión Sanguínea , Proteínas Portadoras , Claudina-4/genética , Claudinas/genética , Humanos , Enfermedades Renales/etiología , Túbulos Renales Colectores/enzimología , Proteínas de Microfilamentos , Permeabilidad , Seudohipoaldosteronismo/metabolismo , Reabsorción Renal , Serina Endopeptidasas/metabolismo
18.
Physiol Rep ; 4(10)2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27225626

RESUMEN

Serum and glucocorticoid-inducible kinase 1 (SGK1) is a protein kinase that contributes to the hormonal control of renal Na(+) retention by regulating the abundance of epithelial Na(+) channels (ENaC) at the apical surface of the principal cells of the cortical collecting duct (CCD). Although glucocorticoids and insulin stimulate Na(+) transport by activating SGK1, the responses follow different time courses suggesting that these hormones act by different mechanisms. We therefore explored the signaling pathways that allow dexamethasone and insulin to stimulate Na(+) transport in mouse CCD cells (mpkCCDcl4). Dexamethasone evoked a progressive augmentation of electrogenic Na(+) transport that became apparent after ~45 min latency and was associated with increases in SGK1 activity and abundance and with increased expression of SGK1 mRNA Although the catalytic activity of SGK1 is maintained by phosphatidylinositol-OH-3-kinase (PI3K), dexamethasone had no effect upon PI3K activity. Insulin also stimulated Na(+) transport but this response occurred with no discernible latency. Moreover, although insulin also activated SGK1, it had no effect upon SGK1 protein or mRNA abundance. Insulin did, however, evoke a clear increase in cellular PI3K activity. Our data are consistent with earlier work, which shows that glucocorticoids regulate Na(+) retention by inducing sgk1 gene expression, and also establish that this occurs independently of increased PI3K activity. Insulin, on the other hand, stimulates Na(+) transport via a mechanism independent of sgk1 gene expression that involves PI3K activation. Although both hormones act via SGK1, our data show that they activate this kinase by distinct physiological mechanisms.


Asunto(s)
Dexametasona/farmacología , Proteínas Inmediatas-Precoces/metabolismo , Insulina/farmacología , Corteza Renal/enzimología , Túbulos Renales Colectores/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Corteza Renal/efectos de los fármacos , Túbulos Renales Colectores/efectos de los fármacos , Ratones
19.
J Am Soc Nephrol ; 27(9): 2554-63, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27188842

RESUMEN

Tubular reabsorption of filtered sodium is tightly controlled to maintain body volume homeostasis. The rate of sodium transport by collecting duct (CD) cells varies widely in response to dietary sodium intake, GFR, circulating hormones, neural signals, and local regulatory factors. Reabsorption of filtered sodium by CD cells occurs via a two-step process. First, luminal sodium crosses the apical plasma membrane along its electrochemical gradient through epithelial sodium channels (ENaC). Intracellular sodium is then actively extruded into the interstitial space by the Na(+),K(+)-ATPase located along the basolateral membrane. Mismatch between sodium entry and exit induces variations in sodium intracellular concentration and cell volume that must be maintained within narrow ranges for control of vital cell functions. Therefore, renal epithelial cells display highly coordinated apical and basolateral sodium transport rates. We review evidence from experiments conducted in vivo and in cultured cells that indicates aldosterone and vasopressin, the two major hormones regulating sodium reabsorption by CD, generate a coordinated stimulation of apical ENaC and basolateral Na(+),K(+)-ATPase. Moreover, we discuss evidence suggesting that variations in sodium entry per se induce a coordinated change in Na(+),K(+)-ATPase activity through the signaling of protein kinases such as protein kinase A and p38 mitogen-activated protein kinase.


Asunto(s)
Canales Epiteliales de Sodio/fisiología , Túbulos Renales Colectores/enzimología , Reabsorción Renal , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Animales , Humanos , Transporte Iónico
20.
Am J Physiol Renal Physiol ; 310(1): F15-26, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26662201

RESUMEN

Flow-induced K(+) secretion in the aldosterone-sensitive distal nephron is mediated by high-conductance Ca(2+)-activated K(+) (BK) channels. Familial hyperkalemic hypertension (pseudohypoaldosteronism type II) is an inherited form of hypertension with decreased K(+) secretion and increased Na(+) reabsorption. This disorder is linked to mutations in genes encoding with-no-lysine kinase 1 (WNK1), WNK4, and Kelch-like 3/Cullin 3, two components of an E3 ubiquitin ligase complex that degrades WNKs. We examined whether the full-length (or "long") form of WNK1 (L-WNK1) affected the expression of BK α-subunits in HEK cells. Overexpression of L-WNK1 promoted a significant increase in BK α-subunit whole cell abundance and functional channel expression. BK α-subunit abundance also increased with coexpression of a kinase dead L-WNK1 mutant (K233M) and with kidney-specific WNK1 (KS-WNK1), suggesting that the catalytic activity of L-WNK1 was not required to increase BK expression. We examined whether dietary K(+) intake affected L-WNK1 expression in the aldosterone-sensitive distal nephron. We found a paucity of L-WNK1 labeling in cortical collecting ducts (CCDs) from rabbits on a low-K(+) diet but observed robust staining for L-WNK1 primarily in intercalated cells when rabbits were fed a high-K(+) diet. Our results and previous findings suggest that L-WNK1 exerts different effects on renal K(+) secretory channels, inhibiting renal outer medullary K(+) channels and activating BK channels. A high-K(+) diet induced an increase in L-WNK1 expression selectively in intercalated cells and may contribute to enhanced BK channel expression and K(+) secretion in CCDs.


Asunto(s)
Túbulos Renales Colectores/enzimología , Potasio en la Dieta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Eliminación Renal , Animales , Femenino , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Humanos , Túbulos Renales Colectores/citología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Potenciales de la Membrana , Ratones , Antígenos de Histocompatibilidad Menor , Mutación , Potasio en la Dieta/administración & dosificación , Proteínas Serina-Treonina Quinasas/genética , Conejos , Transfección , Regulación hacia Arriba , Proteína Quinasa Deficiente en Lisina WNK 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...