Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.101
Filtrar
1.
Mol Biol Rep ; 51(1): 620, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709349

RESUMEN

BACKGROUND: Recent years of evidence suggest the crucial role of renal tubular cells in developing diabetic kidney disease. Scopoletin (SCOP) is a plant-based coumarin with numerous biological activities. This study aimed to determine the effect of SCOP on renal tubular cells in developing diabetic kidney disease and to elucidate mechanisms. METHODS AND RESULTS: In this study, SCOP was evaluated in vitro using renal proximal tubular (HK-2) cells under hyperglycemic conditions to understand its mechanism of action. In HK-2 cells, SCOP alleviated the high glucose-generated reactive oxygen species (ROS), restored the levels of reduced glutathione, and decreased lipid peroxidation. High glucose-induced alteration in the mitochondrial membrane potential was markedly restored in the SCOP-treated cells. Moreover, SCOP significantly reduced the high glucose-induced apoptotic cell population in the Annexin V-FITC flow cytometry study. Furthermore, high glucose markedly elevated the mRNA expression of fibrotic and extracellular matrix (ECM) components, namely, transforming growth factor (TGF)-ß, alfa-smooth muscle actin (α-SMA), collagen I, and collagen III, in HK-2 cells compared to the untreated cells. SCOP treatment reduced these mRNA expressions compared to the high glucose-treated cells. Collagen I and TGF-ß protein levels were also significantly reduced in the SCOP-treated cells. Further findings in HK-2 cells revealed that SCOP interfered with the epithelial-mesenchymal transition (EMT) in the high glucose-treated HK-2 cells by normalizing E-cadherin and downregulating the vimentin and α-SMA proteins. CONCLUSIONS: In conclusion, SCOP modulates the high glucose-generated renal tubular cell oxidative damage and accumulation of ECM components and may be a promising molecule against diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas , Transición Epitelial-Mesenquimal , Glucosa , Túbulos Renales Proximales , Estrés Oxidativo , Especies Reactivas de Oxígeno , Escopoletina , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Glucosa/toxicidad , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Estrés Oxidativo/efectos de los fármacos , Escopoletina/farmacología , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Fibrosis , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos
2.
Chem Biol Interact ; 394: 111003, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608998

RESUMEN

The use of flavored e-liquids in electronic nicotine delivery systems (ENDS) has become very popular in recent years, but effects of these products have not been well characterized outside the lung. In this study, acute exposure to the popular flavoring vanillin (VAN) was performed on human proximal tubule (HK-2) kidney cells. Cells were exposed to 0-1000 µM VAN for 24 or 48 h and cellular stress responses were determined. Mitochondrial viability using MTT assay showed a significant decrease between the control and 1000 µM group by 48 h. Seahorse XFp analysis showed significantly increased basal respiration, ATP production, and proton leak after 24 h exposure. By 48 h exposure, these parameters remained significantly increased in addition to non-mitochondrial respiration and maximal respiration. Glycolytic activity after 24 h exposure showed significant decreases in glycolysis, glycolytic capacity, glycolytic reserve, and non-glycolytic acidification. The autophagy markers microtubule-associated protein 1A/1B light chain 3 (LC3B-I and LC3B-II) were probed via western blotting. The ratio of LC3B-II/LC3B-I was significantly increased after 24 h exposure to VAN, but by 48 h this ratio significantly decreased. The mitophagy marker PINK1 showed an increasing trend at 24 h, and its downstream target Parkin was significantly increased between the control and 750 µM group only. Finally, the oxidative stress marker 4-HNE was significantly decreased after 48 h exposure to VAN. These results indicate that acute exposure to VAN in the kidney HK-2 model can induce energy and autophagic changes within the cell.


Asunto(s)
Autofagia , Benzaldehídos , Células Epiteliales , Aromatizantes , Túbulos Renales Proximales , Humanos , Autofagia/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Aromatizantes/farmacología , Aromatizantes/toxicidad , Benzaldehídos/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Línea Celular , Glucólisis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Metabolismo Energético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
3.
Am J Physiol Cell Physiol ; 326(6): C1573-C1589, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557357

RESUMEN

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce blood pressure (BP) in patients with hypertension, yet the precise molecular mechanisms remain elusive. SGLT2i inhibits proximal tubule (PT) NHE3-mediated sodium reabsorption in normotensive rodents, yet no hypotensive effect is observed under this scenario. This study examined the effect of empagliflozin (EMPA) on renal tubular sodium transport in normotensive and spontaneously hypertensive rats (SHRs). It also tested the hypothesis that EMPA-mediated PT NHE3 inhibition in normotensive rats is associated with upregulation of distal nephron apical sodium transporters. EMPA administration for 14 days reduced BP in 12-wk-old SHRs but not in age-matched Wistar rats. PT NHE3 activity was inhibited by EMPA treatment in both Wistar and SHRs. In Wistar rats, EMPA increased NCC activity, mRNA expression, protein abundance, and phosphorylation levels, but not in SHRs. SHRs showed higher NKCC2 activity and an abundance of cleaved ENaC α and γ subunits compared with Wistar rats, none of which were affected by EMPA. Another set of male Wistar rats was treated with EMPA, the NCC inhibitor hydrochlorothiazide (HCTZ), and EMPA combined with HCTZ or vehicle for 14 days. In these rats, BP reduction was observed only with combined EMPA and HCTZ treatment, not with either drug alone. These findings suggest that NCC upregulation counteracts EMPA-mediated inhibition of PT NHE3 in male normotensive rats, maintaining their baseline BP. Moreover, the reduction of NHE3 activity without further upregulation of major apical sodium transporters beyond the PT may contribute to the BP-lowering effect of SGLT2i in experimental models and patients with hypertension.NEW & NOTEWORTHY This study suggests that reduced NHE3-mediated sodium reabsorption in the renal proximal tubule may account, at least in part, for the BP-lowering effect of SGLT2 inhibitors in the setting of hypertension. It also demonstrates that chronic treatment with SGLT2 inhibitors upregulates NCC activity, phosphorylation, and expression in the distal tubule of normotensive but not hypertensive rats. SGLT2 inhibitor-mediated upregulation of NCC seems crucial to counteract proximal tubule natriuresis in subjects with normal BP.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Hipertensión , Ratas Endogámicas SHR , Ratas Wistar , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Intercambiador 3 de Sodio-Hidrógeno , Regulación hacia Arriba , Animales , Masculino , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/genética , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Hipertensión/fisiopatología , Glucósidos/farmacología , Compuestos de Bencidrilo/farmacología , Regulación hacia Arriba/efectos de los fármacos , Ratas , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Presión Sanguínea/efectos de los fármacos , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos
4.
Pharmacol Rep ; 76(3): 557-571, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587587

RESUMEN

BACKGROUND: The use of amphotericin B (AmB) in the therapy of systemic mycosis is associated with strong side effects, including nephrotoxicity, and hepatotoxicity. Therefore, agents that can reduce the toxic effects of AmB while acting synergistically as antifungal agents are currently being sought. 1,3,4-thiadiazole derivatives are promising compounds that have an antifungal activity and act synergically with AmB. Such combinations might allow the dose of AmB, which is essential for preventing patients from having serious side effects, to be decreased. This might result from the antioxidant properties of 1,3,4-thiadiazoles. Thus, the aim of the study was to investigate redox homeostasis in human renal proximal tubule epithelial cells (RPTEC) after they had been treated with AmB in combination with 1,3,4-thiadiazole derivatives. METHODS: Cellular redox homeostasis was assessed by investigating the total antioxidant capacity (TAC) of cells, the malondialdehyde (MDA) concentration, and the activity of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT). TAC was measured using an ABTS method. The MDA concentration, and the activity of SOD, GPX, and CAT were determined spectrophotometrically using commercially available assays. Additionally, the antioxidant defense system-related gene expression profile was determined using oligonucleotide microarrays (HG-U133A 2.0). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to confirm the microarray results. RESULTS: Amphotericin B and selected 1,3,4-thiadiazole derivatives had a significant effect on the total antioxidant capacity of the RPTEC cells, and the activity of the antioxidant enzymes. We also revealed that the effect of thiadiazoles on the SOD and CAT activities is dependent on the treatment of RPTEC cells with AmB. At the transcriptional level, the expression of several genes was affected by the studied compounds and their combinations. CONCLUSIONS: The results confirmed that thiadiazoles can stimulate the RPTEC cells to defend against the oxidative stress that is generated by AmB. In addition, together with the previously demonstrated synergistic antifungal activity, and low nephrotoxicity, these compounds have the potential to be used in new therapeutic strategies in the treatment of fungal infections.


Asunto(s)
Anfotericina B , Antifúngicos , Antioxidantes , Homeostasis , Oxidación-Reducción , Tiadiazoles , Tiadiazoles/farmacología , Humanos , Anfotericina B/farmacología , Oxidación-Reducción/efectos de los fármacos , Antioxidantes/farmacología , Homeostasis/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/administración & dosificación , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Malondialdehído/metabolismo , Sinergismo Farmacológico , Células Cultivadas
5.
Biomed Pharmacother ; 174: 116536, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569274

RESUMEN

Diabetic kidney disease (DKD) is a leading cause of kidney failure. However, the involvement of renal fibroblasts and their communications with renal epithelial cells during DKD remain poorly understood. We investigated the potential role of renal proximal tubular epithelial cells (PTECs) in renal fibroblast activation that might lead to DKD. Additionally, the protective effects of curcumin, a known antioxidant, against renal fibroblast activation induced by high glucose-treated PTECs were investigated. Secretome was collected from HK-2 PTECs under normal glucose, high glucose, high glucose pretreated/cotreated with curcumin, or osmotic control condition for 24 h. Such secretome was then used to treat BHK-21 renal fibroblasts for 24 h. BHK-21 cells treated with high glucose-induced secretome had increased levels of fibroblast activation markers, including spindle index, F-actin, α-smooth muscle actin (α-SMA), fibronectin, collagen I, matrix metalloproteinase-2 (MMP-2) and MMP-9, as compared with normal glucose and osmotic control conditions. However, all these increases were successfully mitigated by curcumin. In addition, high glucose markedly increased intracellular reactive oxygen species (ROS) and transforming growth factor-ß (TGF-ß) secretion, but did not affect the secretion of platelet-derived growth factor A (PDGFA) and interleukin-1ß (IL-1ß), in HK-2 renal cells as compared with normal glucose and osmotic control conditions. Both intracellular ROS and secreted TGF-ß levels were successfully mitigated by curcumin. Therefore, curcumin prevents the high glucose-induced stimulatory effects of renal cell secretome on fibroblast activation, at least in part, via mitigating intracellular ROS and TGF-ß secretion.


Asunto(s)
Curcumina , Fibroblastos , Glucosa , Especies Reactivas de Oxígeno , Factor de Crecimiento Transformador beta , Curcumina/farmacología , Glucosa/toxicidad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Animales , Secretoma/efectos de los fármacos , Secretoma/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Nefropatías Diabéticas/metabolismo , Antioxidantes/farmacología
6.
Hypertension ; 81(6): 1296-1307, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38545789

RESUMEN

BACKGROUND: A fructose high-salt (FHS) diet increases systolic blood pressure and Ang II (angiotensin II)-stimulated proximal tubule (PT) superoxide (O2-) production. These increases are prevented by scavenging O2- or an Ang II type 1 receptor antagonist. SGLT4 (sodium glucose-linked cotransporters 4) and SGLT5 are implicated in PT fructose reabsorption, but their roles in fructose-induced hypertension are unclear. We hypothesized that PT fructose reabsorption by SGLT5 initiates a genetic program enhancing Ang II-stimulated oxidative stress in males and females, thereby causing fructose-induced salt-sensitive hypertension. METHODS: We measured systolic blood pressure in male and female Sprague-Dawley (wild type [WT]), SGLT4 knockout (-/-), and SGLT5-/- rats. Then, we measured basal and Ang II-stimulated (37 nmol/L) O2- production by PTs and conducted gene coexpression network analysis. RESULTS: In male WT and female WT rats, FHS increased systolic blood pressure by 15±3 (n=7; P<0.0027) and 17±4 mm Hg (n=9; P<0.0037), respectively. Male and female SGLT4-/- had similar increases. Systolic blood pressure was unchanged by FHS in male and female SGLT5-/-. In male WT and female WT fed FHS, Ang II stimulated O2- production by 14±5 (n=6; P<0.0493) and 8±3 relative light units/µg protein/s (n=7; P<0.0218), respectively. The responses of SGTL4-/- were similar. Ang II did not stimulate O2- production in tubules from SGLT5-/-. Five gene coexpression modules were correlated with FHS. These correlations were completely blunted in SGLT5-/- and partially blunted by chronically scavenging O2- with tempol. CONCLUSIONS: SGLT5-mediated PT fructose reabsorption is required for FHS to augment Ang II-stimulated proximal nephron O2- production, and increases in PT oxidative stress likely contribute to FHS-induced hypertension.


Asunto(s)
Presión Sanguínea , Fructosa , Hipertensión , Túbulos Renales Proximales , Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Fructosa/farmacología , Estrés Oxidativo/efectos de los fármacos , Masculino , Femenino , Ratas , Hipertensión/metabolismo , Hipertensión/genética , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Proteínas de Transporte de Sodio-Glucosa/genética , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Angiotensina II , Modelos Animales de Enfermedad
7.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38334329

RESUMEN

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Riñón , Organoides , SARS-CoV-2 , Internalización del Virus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/complicaciones , COVID-19/virología , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/virología , Lisinopril/farmacología , Lisinopril/metabolismo , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/virología , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/virología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/virología , Receptores de Coronavirus/metabolismo , Modelos Biológicos , Serina Endopeptidasas/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/virología , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre/citología
8.
Apoptosis ; 29(5-6): 620-634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38281282

RESUMEN

Maleic acid (MA) induces renal tubular cell dysfunction directed to acute kidney injury (AKI). AKI is an increasing global health burden due to its association with mortality and morbidity. However, targeted therapy for AKI is lacking. Previously, we determined mitochondrial-associated proteins are MA-induced AKI affinity proteins. We hypothesized that mitochondrial dysfunction in tubular epithelial cells plays a critical role in AKI. In vivo and in vitro systems have been used to test this hypothesis. For the in vivo model, C57BL/6 mice were intraperitoneally injected with 400 mg/kg body weight MA. For the in vitro model, HK-2 human proximal tubular epithelial cells were treated with 2 mM or 5 mM MA for 24 h. AKI can be induced by administration of MA. In the mice injected with MA, the levels of blood urea nitrogen (BUN) and creatinine in the sera were significantly increased (p < 0.005). From the pathological analysis, MA-induced AKI aggravated renal tubular injuries, increased kidney injury molecule-1 (KIM-1) expression and caused renal tubular cell apoptosis. At the cellular level, mitochondrial dysfunction was found with increasing mitochondrial reactive oxygen species (ROS) (p < 0.001), uncoupled mitochondrial respiration with decreasing electron transfer system activity (p < 0.001), and decreasing ATP production (p < 0.05). Under transmission electron microscope (TEM) examination, the cristae formation of mitochondria was defective in MA-induced AKI. To unveil the potential target in mitochondria, gene expression analysis revealed a significantly lower level of ATPase6 (p < 0.001). Renal mitochondrial protein levels of ATP subunits 5A1 and 5C1 (p < 0.05) were significantly decreased, as confirmed by protein analysis. Our study demonstrated that dysfunction of mitochondria resulting from altered expression of ATP synthase in renal tubular cells is associated with MA-induced AKI. This finding provides a potential novel target to develop new strategies for better prevention and treatment of MA-induced AKI.


Asunto(s)
Lesión Renal Aguda , Apoptosis , Maleatos , Ratones Endogámicos C57BL , Mitocondrias , ATPasas de Translocación de Protón Mitocondriales , Animales , Humanos , Masculino , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Apoptosis/efectos de los fármacos , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Especies Reactivas de Oxígeno/metabolismo
9.
Clin Exp Pharmacol Physiol ; 49(8): 858-870, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35598290

RESUMEN

Contrast-induced nephropathy (CIN) is a common complication with adverse outcome after iodinated-contrast injection, yet still lacking effective medication. Heme oxygenase-1 (HO-1) has been reported to play an important role against renal injuries. Hemin, a HO-1 inducer and anti-porphyria medicine, may have a promising effect against CIN. In this study, we aim to investigate the effect of hemin on CIN model and the underlying molecular mechanisms in human proximal tubule epithelial cells (HK-2). To mimic a common condition in percutaneous coronary intervention (PCI) patients, CIN was induced by intravenous iopromide in high-fat fed diabetic rats. We found hemin, given right before iopromide, mitigated CIN with enhanced antioxidative capacity and reduced oxidative stress. HK-2 cells insulted by iopromide demonstrated decreased cell vitality and rising reactive oxygen species (ROS), which could also be inhibited by hemin. The effects of hemin involved a key molecule in ferroptosis, glutathione peroxidase (GPX4), whose down-expression by small interfering RNA (siRNA) reversed the effect of hemin on HK-2 cells. Furthermore, hemin's induction of GPX4 involved HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf2). Either HO-1 or Nrf2 inhibitor prevented hemin's effect on GPX4 to a comparable extent, and over-expression of Nrf2 increased GPX4 expression. Moreover, intervention of ferroptosis inhibitor liproxstatin-1 also alleviated CIN in vivo. Therefore, we showed hemin mitigated CIN, inhibiting oxidative stress and ferroptosis, by upregulation of GPX4 via activation of HO-1/Nrf2. Hemin, as a clinical medicine, has a translational significance in treating CIN, and anti-ferroptosis is a potential therapeutic strategy for CIN.


Asunto(s)
Medios de Contraste , Células Epiteliales , Ferroptosis , Fármacos Hematológicos , Hemina , Enfermedades Renales , Animales , Células Cultivadas , Medios de Contraste/efectos adversos , Diabetes Mellitus Experimental/etiología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Ferroptosis/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Fármacos Hematológicos/farmacología , Hemo-Oxigenasa 1/metabolismo , Hemina/farmacología , Humanos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/prevención & control , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/fisiopatología , Factor 2 Relacionado con NF-E2/metabolismo , Intervención Coronaria Percutánea , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal
10.
Toxins (Basel) ; 14(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35202097

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) causes proximal tubular defects in the kidney. However, factors altered by Shiga toxin (Stx) within the proximal tubules are yet to be shown. We determined Stx receptor Gb3 in murine and human kidneys and confirmed the receptor expression in the proximal tubules. Stx2-injected mouse kidney tissues and Stx2-treated human primary renal proximal tubular epithelial cell (RPTEC) were collected and microarray analysis was performed. We compared murine kidney and RPTEC arrays and selected common 58 genes that are differentially expressed vs. control (0 h, no toxin-treated). We found that the most highly expressed gene was GDF15, which may be involved in Stx2-induced weight loss. Genes associated with previously reported Stx2 activities such as src kinase Yes phosphorylation pathway activation, unfolded protein response (UPR) and ribotoxic stress response (RSR) showed differential expressions. Moreover, circadian clock genes were differentially expressed, suggesting Stx2-induced renal circadian rhythm disturbance. Circadian rhythm-regulated proximal tubular Na+-glucose transporter SGLT1 (SLC5A1) was down-regulated, indicating proximal tubular functional deterioration, and mice developed glucosuria confirming proximal tubular dysfunction. Stx2 alters gene expression in murine and human proximal tubules through known activities and newly investigated circadian rhythm disturbance, which may result in proximal tubular dysfunctions.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano , Regulación de la Expresión Génica/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Toxina Shiga II/toxicidad , Animales , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Células Epiteliales/efectos de los fármacos , Glucosuria/inducido químicamente , Humanos , Túbulos Renales Proximales/citología , Lipopolisacáridos/toxicidad , Ratones , Análisis por Matrices de Proteínas
11.
J Biol Chem ; 298(3): 101681, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35124009

RESUMEN

Oxidized phospholipids have been shown to exhibit pleiotropic effects in numerous biological contexts. For example, 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC), an oxidized phospholipid formed from alkyl phosphatidylcholines, is a peroxisome proliferator-activated receptor gamma (PPARγ) nuclear receptor agonist. Although it has been reported that PPARγ agonists including thiazolidinediones can induce plasma volume expansion by enhancing renal sodium and water retention, the role of azPC in renal transport functions is unknown. In the present study, we investigated the effect of azPC on renal proximal tubule (PT) transport using isolated PTs and kidney cortex tissues and also investigated the effect of azPC on renal sodium handling in vivo. We showed using a microperfusion technique that azPC rapidly stimulated Na+/HCO3- cotransporter 1 (NBCe1) and luminal Na+/H+ exchanger (NHE) activities in a dose-dependent manner at submicromolar concentrations in isolated PTs from rats and humans. The rapid effects (within a few minutes) suggest that azPC activates NBCe1 and NHE via nongenomic signaling. The stimulatory effects were completely blocked by specific PPARγ antagonist GW9662, ERK kinase inhibitor PD98059, and CD36 inhibitor sulfosuccinimidyl oleate. Treatment with an siRNA against PPAR gamma completely blocked the stimulation of both NBCe1 and NHE by azPC. Moreover, azPC induced ERK phosphorylation in rat and human kidney cortex tissues, which were completely suppressed by GW9662 and PD98059 treatments. These results suggest that azPC stimulates renal PT sodium-coupled bicarbonate transport via a CD36/PPARγ/mitogen-activated protein/ERK kinase/ERK pathway. We conclude that the stimulatory effects of azPC on PT transport may be partially involved in volume expansion.


Asunto(s)
Túbulos Renales Proximales , PPAR gamma , Fosfolípidos , Intercambiadores de Sodio-Hidrógeno , Animales , Antígenos CD36/antagonistas & inhibidores , Antígenos CD36/metabolismo , Hipoglucemiantes/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Oxidación-Reducción , PPAR gamma/metabolismo , Fosfolípidos/metabolismo , Ratas , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/metabolismo , Tiazolidinedionas/farmacología
12.
Cell Death Dis ; 13(2): 104, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110539

RESUMEN

The pathogenesis of crystal nephropathy involves deposition of intratubular crystals, tubular obstruction and cell death. The deposition of 8-dihydroxyadenine (DHA) crystals within kidney tubules, for instance, is caused by a hereditary deficiency of adenine phosphoribosyl transferase in humans or adenine overload in preclinical models. However, the downstream pathobiological patterns of tubular cell attrition in adenine/DHA-induced nephropathy remain poorly understood. In this study, we investigated: (i) the modes of adenine-induced tubular cell death in an experimental rat model and in human primary proximal tubular epithelial cells (PTEC); and (ii) the therapeutic effect of the flavonoid baicalein as a novel cell death inhibitor. In a rat model of adenine diet-induced crystal nephropathy, significantly elevated levels of tubular iron deposition and lipid peroxidation (4-hydroxynonenal; 4-HNE) were detected. This phenotype is indicative of ferroptosis, a novel form of regulated necrosis. In cultures of human primary PTEC, adenine overload-induced significantly increased mitochondrial superoxide levels, mitochondrial depolarisation, DNA damage and necrotic cell death compared with untreated PTEC. Molecular interrogation of adenine-stimulated PTEC revealed a significant reduction in the lipid repair enzyme glutathione peroxidase 4 (GPX4) and the significant increase in 4-HNE compared with untreated PTEC, supporting the concept of ferroptotic cell death. Moreover, baicalein treatment inhibited ferroptosis in adenine-stimulated PTEC by selectively modulating the mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) and thus, suppressing mitochondrial superoxide production and DNA damage. These data identify ferroptosis as the primary pattern of PTEC necrosis in adenine-induced nephropathy and establish baicalein as a potential therapeutic tool for the clinical management of ferroptosis-associated crystal nephropathies (e.g., DHA nephropathy, oxalate nephropathy).


Asunto(s)
Adenina/efectos adversos , Células Epiteliales/patología , Ferroptosis/efectos de los fármacos , Túbulos Renales Proximales/patología , Adenina/metabolismo , Aldehídos/metabolismo , Animales , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Flavanonas/farmacología , Humanos , Hierro/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Superóxido Dismutasa/metabolismo
13.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216119

RESUMEN

In previous studies, we identified the two principal transporters that mediate the uptake of glutathione (GSH) from cytoplasm into the mitochondrial matrix of rat kidney proximal tubular cells. We hypothesized that genetic modulation of transporter expression could markedly alter susceptibility of renal proximal tubular cells to a broad array of oxidants and mitochondrial toxicants. Indeed, we previously showed that overexpression of either of these transporters resulted in diminished susceptibility to several chemicals. In the present work, we investigated the influence of overexpression of the mitochondrial 2-oxoglutarate carrier (OGC) in NRK-52E cells on the cytotoxicity of the antineoplastic drug cisplatin. In contrast to previous results showing that overexpression of the mitochondrial OGC provided substantial protection of NRK-52E cells from injury due to several toxicants, we found a remarkable enhancement of cellular injury from exposure to cisplatin as compared to wild-type NRK-52E cells. Despite the oxidative stress that cisplatin is known to cause in the renal proximal tubule, the increased concentrations of mitochondrial GSH associated with OGC overexpression likely resulted in increased delivery of cisplatin to molecular targets and increased cellular injury rather than the typical protection observed in the previous work.


Asunto(s)
Cisplatino/farmacología , Glutatión/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Línea Celular , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas
14.
Toxicol Lett ; 359: 1-9, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35066093

RESUMEN

Mercury (Hg) is a toxic heavy metal to which humans are exposed on a regular basis. Hg has a high affinity for thiol-containing biomolecules with the majority of Hg in blood being bound to albumin. The current study tested the hypothesis that circulating Hg-albumin complexes are taken up into hepatocytes and processed to form Hg-glutathione (GSH) conjugates (GSH-Hg-GSH). Subsequently, GSH-Hg-GSH conjugates are exported from hepatocytes into blood via multidrug resistance transporters (MRP) 3 and 5. To test this hypothesis, the portal vein and hepatic artery in Wistar rats were ligated to prevent delivery of Hg to the liver. Ligated and control rats were injected with HgCl2 or GSH-Hg-GSH (containing radioactive Hg) and the disposition of Hg was assessed in various organs. Renal accumulation of Hg was reduced significantly in ligated rats exposed to HgCl2. In contrast, when rats were exposed to GSH-Hg-GSH, the renal accumulation of Hg was similar in control and ligated rats. Experiments using HepG2 cells indicate that Hg-albumin conjugates are taken up by hepatocytes and additional experiments using inside-out membrane vesicles showed that MRP3 and MRP5 mediate the export of GSH-Hg-GSH from hepatocytes. These data are the first to show that Hg-albumin complexes are processed within hepatocytes to form GSH-Hg-GSH, which is, in part, exported back into blood via MRP3 and MRP5 for eventual excretion in urine.


Asunto(s)
Glutatión/metabolismo , Arteria Hepática/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Cloruro de Mercurio/sangre , Cloruro de Mercurio/metabolismo , Cloruro de Mercurio/toxicidad , Vena Porta/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas , Ratas Wistar
15.
Environ Toxicol Pharmacol ; 90: 103818, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35074562

RESUMEN

The aim of this study was to reveal the effects of foodborne fluoxetine on morphological and condition profile, hematological profile, biochemical and oxidative stress indices on juvenile rainbow trout. The study was performed according to OECD Guideline No. 215. Fluoxetine was incorporated into Biomar 921 pellets at a dose of 0.047 mg/kg (environmental concentration), 0.577 mg/kg and 6.7 mg/kg. There was statistically significant change in hematological profile, including an increasing trend in neutrophil/lymphocyte ratio and a decreasing trend in the number of lymphocytes. Measurements of oxidative stress indicated decreased activity of the detoxifying enzyme glutathione-S-transferase in the liver and kidney. However, the measurement of GR, GPx, CAT, SOD activity, and TBARS showed no changes. Histopathological examination revealed damage to the proximal tubules of caudal kidney in exposed groups. This study confirms that fluoxetine has a significant effect on immune response.


Asunto(s)
Fluoxetina/toxicidad , Oncorhynchus mykiss/inmunología , Alimentación Animal , Animales , Antidepresivos de Segunda Generación/toxicidad , Recuento de Células Sanguíneas , Contaminación de Alimentos , Inmunidad/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Oncorhynchus mykiss/sangre , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
16.
Life Sci ; 291: 120271, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34974077

RESUMEN

INTRODUCTION: Amphotericin B (AmB), used for systemic fungal infections, has a limited clinical application because of its high nephrotoxicity. Natural antioxidant and anti-inflammatory substances have been widely studied for protection against drug-induced nephrotoxicity. α-Bisabolol (BIS) has demonstrated a nephroprotective effect on both in vitro and in vivo models. AIMS: The aim of this work was to evaluate the effect of BIS against AmB-induced nephrotoxicity in vitro. MATERIAL AND METHODS: LLC-MK2 cells were pre- and post-treated with non-toxic BIS concentrations and/or AmB IC50 (13.97 µM). Cell viability was assessed by MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)] assay. Flow cytometry analyses were used to assess cell death mechanism, production of reactive oxidative stress (ROS) and mitochondrial transmembrane potential. Kidney Injury Molecule-1 (KIM-1) levels were measured via ELISA. KEY FINDINGS: The present work showed that BIS pretreatment (125; 62.5 and 31.25 µM) increased cell viability when compared to the group treated only with AmB IC50. AmB treatment induced both necrosis (7-AAD-labeled cells) and late apoptosis (AnxV-labeled). BIS was able to prevent the occurrence of these events. These effects were associated with a decrease of ROS accumulation, improving transmembrane mitochondrial potential and protecting against tubular cell damage, highlighted by the inhibition of KIM-1 release after BIS treatment. SIGNIFICANCE: BIS presented a potential effect on model of renal cytotoxicity induced by AmB, bringing perspectives for the research of new nephroprotective agents.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Sesquiterpenos Monocíclicos/farmacología , Anfotericina B/farmacología , Anfotericina B/toxicidad , Animales , Antifúngicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Macaca mulatta , Sesquiterpenos Monocíclicos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología
17.
Biomed Pharmacother ; 145: 112402, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34773763

RESUMEN

PAI-1 and CTGF are overexpressed in kidney diseases and cause fibrosis of the lungs, liver, and kidneys. We used a rat model of unilateral ureteral obstruction (UUO) to investigate whether 6-BIO, a glycogen synthase kinase-3ß inhibitor, attenuated fibrosis by inhibiting PAI-1 and CTGF in vivo. Additionally, TGFß-induced cellular fibrosis was observed in vitro using the human kidney proximal tubular epithelial cells (HK-2), and rat interstitial fibroblasts (NRK49F). Expression of fibrosis-related proteins and signaling molecules such as PAI-1, CTGF, TGFß, αSMA, SMAD, and MAPK were determined in HK-2 and NRK49F cells using immunoblotting. To identify the transcription factors that regulate the expression of PAI-1 and CTGF the promoter activities of AP-1 and SP-1 were analyzed using luciferase assays. Confocal microscopy was used to observe the co-localization of AP-1 and SP-1 to PAI-1 and CTGF. Expression of PAI-1, CTGF, TGFß, and α-SMA increased in UUO model as well as in TGFß-treated HK-2 and NRK49F cells. Furthermore, UUO and TGFß treatment induced the activation of P-SMAD2/3, SMAD4, P-ERK 1/2, P-P38, and P-JNK MAPK signaling pathways. PAI-1, CTGF, AP-1 and SP-1 promoter activity increased in response to TGFß treatment. However, treatment with 6-BIO decreased the expression of proteins and signaling pathways associated with fibrosis in UUO model as well as in TGFß-treated HK-2 and NRK49F cells. Moreover, 6-BIO treatment attenuated the expression of PAI-1 and CTGF as well as the promoter activities of AP-1 and SP-1, thereby regulating the SMAD and MAPK signaling pathways, and subsequently exerting anti-fibrotic effects on kidney cells.


Asunto(s)
Indoles/farmacología , Enfermedades Renales/tratamiento farmacológico , Túbulos Renales Proximales/efectos de los fármacos , Oximas/farmacología , Animales , Línea Celular , Factor de Crecimiento del Tejido Conjuntivo/efectos de los fármacos , Factor de Crecimiento del Tejido Conjuntivo/genética , Inhibidores Enzimáticos/farmacología , Fibrosis , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Humanos , Enfermedades Renales/patología , Túbulos Renales Proximales/patología , Masculino , Inhibidor 1 de Activador Plasminogénico/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor de Transcripción Sp1/efectos de los fármacos , Factor de Transcripción Sp1/genética , Factor de Transcripción AP-1/efectos de los fármacos , Factor de Transcripción AP-1/genética
18.
J Antibiot (Tokyo) ; 75(1): 29-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34824374

RESUMEN

Polymyxin B (PMB) is an essential antibiotic active against multidrug-resistant bacteria, such as multidrug-resistant Pseudomonas aeruginosa (MDRP). However, the clinical use of PMB is limited, because PMB causes serious side effects, such as nephrotoxicity and neurotoxicity, probably due to its cytotoxic activity. However, cytotoxic mechanisms of PMB are poorly understood. In this study, we found that macrophages are particularly sensitive to PMB, when compared with other types of cells, including fibroblasts and proximal tubule (PT) cells. Of note, PMB-induced necrosis of macrophages allowed passive release of high mobility group box 1 (HMGB1). Moreover, upon exposure of PMB to macrophages, the innate immune system mediated by the NLR family pyrin domain containing 3 (NLRP3) inflammasome that promotes the release of pro-inflammatory cytokines such as interleukin-1ß (IL-1ß) was stimulated. Interestingly, PMB-induced IL-1ß release occurred in the absence of the pore-forming protein gasdermin D (GSDMD), which supports the idea that PMB causes plasma membrane rupture accompanying necrosis. Emerging evidence has suggested that both HMGB1 and IL-1ß released from macrophages contribute to excessive inflammation that promote pathogenesis of various diseases, including nephrotoxicity and neurotoxicity. Therefore, these biochemical properties of PMB in macrophages may be associated with the induction of the adverse organ toxicity, which provides novel insights into the mechanisms of PMB-related side effects.


Asunto(s)
Antibacterianos/toxicidad , Inflamación/inducido químicamente , Irritantes/toxicidad , Macrófagos/efectos de los fármacos , Polimixina B/toxicidad , Línea Celular , Membrana Celular/patología , Fibroblastos/efectos de los fármacos , Proteína HMGB1/genética , Humanos , Inmunidad Innata , Inflamasomas , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Necrosis , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo
19.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948422

RESUMEN

The delayed effects of acute intoxication by organophosphates (OPs) are poorly understood, and the various experimental animal models often do not take into account species characteristics. The principal biochemical feature of rodents is the presence of carboxylesterase in blood plasma, which is a target for OPs and can greatly distort their specific effects. The present study was designed to investigate the nephrotoxic effects of paraoxon (O,O-diethyl O-(4-nitrophenyl) phosphate, POX) using three models of acute poisoning in outbred Wistar rats. In the first model (M1, POX2x group), POX was administered twice at doses 110 µg/kg and 130 µg/kg subcutaneously, with an interval of 1 h. In the second model (M2, CBPOX group), 1 h prior to POX poisoning at a dose of 130 µg/kg subcutaneously, carboxylesterase activity was pre-inhibited by administration of specific inhibitor cresylbenzodioxaphosphorin oxide (CBDP, 3.3 mg/kg intraperitoneally). In the third model (M3), POX was administered subcutaneously just once at doses of LD16 (241 µg/kg), LD50 (250 µg/kg), and LD84 (259 µg/kg). Animal observation and sampling were performed 1, 3, and 7 days after the exposure. Endogenous creatinine clearance (ECC) decreased in 24 h in the POX2x group (p = 0.011). Glucosuria was observed in rats 24 h after exposure to POX in both M1 and M2 models. After 3 days, an increase in urinary excretion of chondroitin sulfate (CS, p = 0.024) and calbindin (p = 0.006) was observed in rats of the CBPOX group. Morphometric analysis revealed a number of differences most significant for rats in the CBPOX group. Furthermore, there was an increase in the area of the renal corpuscles (p = 0.0006), an increase in the diameter of the lumen of the proximal convoluted tubules (PCT, p = 0.0006), and narrowing of the diameter of the distal tubules (p = 0.001). After 7 days, the diameter of the PCT lumen was still increased in the nephrons of the CBPOX group (p = 0.0009). In the M3 model, histopathological and ultrastructural changes in the kidneys were revealed after the exposure to POX at doses of LD50 and LD84. Over a period from 24 h to 3 days, a significant (p = 0.018) expansion of Bowman's capsule was observed in the kidneys of rats of both the LD50 and LD84 groups. In the epithelium of the proximal tubules, stretching of the basal labyrinth, pycnotic nuclei, and desquamation of microvilli on the apical surface were revealed. In the epithelium of the distal tubules, partial swelling and destruction of mitochondria and pycnotic nuclei was observed, and nuclei were displaced towards the apical surface of cells. After 7 days of the exposure to POX, an increase in the thickness of the glomerular basement membrane (GBM) was observed in the LD50 and LD84 groups (p = 0.019 and 0.026, respectively). Moreover, signs of damage to tubular epithelial cells persisted with blockage of the tubule lumen by cellular detritus and local destruction of the surface of apical cells. Comparison of results from the three models demonstrates that the nephrotoxic effects of POX, evaluated at 1 and 3 days, appear regardless of prior inhibition of carboxylesterase activity.


Asunto(s)
Riñón/efectos de los fármacos , Riñón/patología , Paraoxon/toxicidad , Animales , Biomarcadores , Cápsula Glomerular/efectos de los fármacos , Cápsula Glomerular/patología , Creatinina/metabolismo , Riñón/fisiopatología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , Masculino , Nefronas/efectos de los fármacos , Nefronas/patología , Paraoxon/farmacología , Ratas , Ratas Wistar
20.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884542

RESUMEN

Particulate matter exposure has been known as a potential risk for the global burden of disease, such as respiratory and cardiovascular diseases. Accumulating evidence suggests that PM2.5 (particulate matter with a diameter less than 2.5 µm) is associated with increased risk of kidney disease, but the mechanisms underlying the renal injury caused by PM2.5 remain to be elucidated. This study investigated the effects of PM2.5 on human proximal tubular epithelial (HK-2) cells by monolayer and 3D spheroid cultures and explored the potential mechanisms. The typical morphology of HK-2 cells showed epithelial-mesenchymal transition (EMT), resulting in reduced adhesion and enhanced migration after PM2.5 exposure, and was accompanied by decreased E-cadherin expression and increased vimentin and α-SMA expressions. Exposure to PM2.5 in the HK-2 cells could lead to an increase in interleukin-6 (IL-6) levels and cause the activation of signal transducer and activator of transcription 3 (STAT3), which is involved in EMT features of HK-2 cells. Furthermore, blocking IL-6/STAT3 signaling by an IL-6 neutralizing antibody or STAT3 inhibitor was sufficient to reverse PM2.5-induced EMT characteristics of the HK-2 cells. Our study suggests that PM2.5 could induce early renal tubule cell injury, contributing to EMT change, and the induction of IL-6/STAT3 pathway may play an important role in this process.


Asunto(s)
Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-6/metabolismo , Túbulos Renales Proximales/patología , Material Particulado/efectos adversos , Factor de Transcripción STAT3/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Interleucina-6/genética , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Factor de Transcripción STAT3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...