Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.711
Filtrar
1.
Chem Res Toxicol ; 37(5): 671-674, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38626399

RESUMEN

Autoinduction of cytochrome P450 (P450) 3A4-mediated metabolism of thalidomide was investigated in humanized-liver mice and human hepatocyte-derived HepaSH cells. The mean plasma ratios of 5-hydroxythalidomide and glutathione adducts to thalidomide were significantly induced (3.5- and 6.0-fold, respectively) by thalidomide treatment daily at 1000 mg/kg for 3 days and measured at 2 h after the fourth administration (on day 4). 5-Hydroxythalidomide was metabolically activated by P450 3A4 in HepaSH cells pretreated with 300 and 1000 µM thalidomide, and 5,6-dihydroxythalidomide was detected. Significant induction of P450 3A4 mRNA expression (4.1-fold) in the livers of thalidomide-treated mice occurred. Thalidomide exerts a variety of actions through multiple mechanisms following bioactivation by induced human P450 3A enzymes.


Asunto(s)
Citocromo P-450 CYP3A , Hepatocitos , Talidomida , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Humanos , Animales , Talidomida/farmacología , Talidomida/análogos & derivados , Ratones , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Línea Celular , ARN Mensajero/metabolismo , Inducción Enzimática/efectos de los fármacos , Masculino , Inductores del Citocromo P-450 CYP3A/farmacología
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 422-427, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660846

RESUMEN

OBJECTIVE: To investigate the effects of curcumin combined with thalidomide on the proliferation and apoptosis of acute myeloid leukemia KG-1 cells, and its correlation with B-cell lymphoma-xL (Bcl-xL), signal transducer and activator of transcription 3 (STAT3). METHODS: MTT assay was used to detect the proliferation of KG-1 cells and screen the optimal combined concentration of curcumin and thalidomide. The effects of curcumin, thalidomide and their combination on the proliferation and apoptosis of KG-1 cells were analyzed by MTT method and flow cytometry, respectively. The mRNA expression levels of STAT3 and Bcl-xL in single-drug group, two-drug combination group and control group (untreated cells) were detected by real-time quantitative PCR. RESULTS: Both curcumin and thalidomide inhibited the proliferation of KG-1 cells in a concentration-dependent manner in the range of 20-100 µmol/L (r =0.657, r =0.681). The IC50 value of curcumin and thalidomide at 48 h was (42.07±0.50) µmol/L and (57.01±2.39) µmol/L, respectively. The cell proliferation inhibition rate of curcumin (40 µmol/L) + thalidomide (60 µmol/L) was (86.67±1.53)%, which was significantly higher than (51.67±1.15)% of curcumin (40 µmol/L) and (55.33±1.53)% of thalidomide (60 µmol/L) (both P < 0.05). Treated with curcumin and thalidomide alone or in combination, the apoptosis rate of KT-1 cells was (18.67±2.08)%, (21.33±2.52)%, and (46.67±1.53)%, respectively, which was significantly higher than (0.72±0.03)% of control group (all P < 0.05). The cell apoptosis rate of two-drug combination group was significantly higher than that of single-drug group (both P < 0.05). Compared with the control group, the mRNA expressions of STAT3 and Bcl-xL in single-drug group, two-drug combination group were significantly decreased (both P < 0.05). Compared with single-drug group, the mRNA expressions of STAT3 and Bcl-xL in two-drug combination group were also significantly decreased (both P < 0.05). CONCLUSION: Curcumin combined with thalidomide can synergistically down-regulate the expression of STAT3 and Bcl-xL, inhibit the proliferation of KG-1 cells, and induce apoptosis.


Asunto(s)
Apoptosis , Proliferación Celular , Curcumina , Factor de Transcripción STAT3 , Talidomida , Curcumina/farmacología , Talidomida/farmacología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Línea Celular Tumoral , Factor de Transcripción STAT3/metabolismo , Proteína bcl-X/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico
3.
Sci Rep ; 14(1): 8796, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627574

RESUMEN

Lung transplantation stands as a vital treatment for severe lung diseases, primarily sourcing organs from donors with brain death (BD). This research delved into the potential anti-inflammatory effects of thalidomide in rats with BD-induced lung complications. In this study twenty-four Wistar rats were divided into three groups: the control (CTR), brain death (BD) and brain death + thalidomide (TLD) groups. Post specific procedures, a 360 min monitoring period ensued. Comprehensive analyses of blood and heart-lung samples were conducted. Elevated IL-6 levels characterized both BD and TLD groups relative to the CTR (p = 0.0067 and p = 0.0137). Furthermore, TNF-α levels were notably higher in the BD group than both CTR and TLD (p = 0.0152 and p = 0.0495). Additionally, IL-1ß concentrations were significantly pronounced in both BD and TLD compared to CTR, with the BD group surpassing TLD (p = 0.0256). Immunohistochemical assessments revealed augmented NF-ĸB expression in the BD group in comparison to both CTR and TLD (p = 0.0006 and p = 0.0005). With this study we can conclude that BD induced acute pulmonary inflammation, whereas thalidomide manifested a notable capability in diminishing key inflammatory markers, indicating its prospective therapeutic significance in lung transplantation scenarios.


Asunto(s)
Muerte Encefálica , Talidomida , Ratas , Animales , Talidomida/farmacología , Ratas Wistar , Muerte Encefálica/metabolismo , Pulmón/metabolismo , Antiinflamatorios/farmacología
4.
Drugs ; 84(4): 459-466, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38441805

RESUMEN

Aponermin () is a recombinant circularly permuted human tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) developed by Beijing Sunbio Biotech (a wholly owned subsidiary of Wuhan Hiteck Biological Pharma CO., LTD) for the treatment of multiple myeloma. Aponermin binds to and activates the death receptors 4 and/or 5 on tumour cells, triggering intracellular caspase reactions and inducing apoptosis, thereby exerting antitumor effects. In November 2023, aponermin in combination with thalidomide and dexamethasone received its first approval in China for the treatment of patients with relapsed or refractory multiple myeloma who have received at least two prior therapies. This article summarizes the milestones in the development of aponermin leading to this first approval for relapsed or refractory multiple myeloma.


Asunto(s)
Dexametasona , Aprobación de Drogas , Mieloma Múltiple , Ligando Inductor de Apoptosis Relacionado con TNF , Talidomida , Humanos , Mieloma Múltiple/tratamiento farmacológico , Talidomida/análogos & derivados , Talidomida/farmacología , Talidomida/uso terapéutico , Dexametasona/farmacología , Dexametasona/uso terapéutico , Dexametasona/administración & dosificación , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , China , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos
6.
Bioorg Chem ; 143: 107050, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163423

RESUMEN

Immunomodulatory drugs (e.g. thalidomide, lenalidomide and pomalidomide) have been proven highly successful in clinical treatment of multiple myeloma. However, systematic degradation of zinc finger transcriptional factors induced by these drugs could lead to severe systematic toxicity in patients. Previous reports of NVOC caged pomalidomide attempted to regulate its activity using UVA irradiation, but their application was limited by high cytotoxicity and low tissue penetration. Here, we reported red-shifted BODIPY caged lenalidomide and pomalidomide that enabled red-light controlled protein degradation with spatiotemporal precision.


Asunto(s)
Mieloma Múltiple , Talidomida , Humanos , Talidomida/farmacología , Talidomida/uso terapéutico , Lenalidomida/farmacología , Proteolisis , Mieloma Múltiple/tratamiento farmacológico
7.
Chem Biol Drug Des ; 103(1): e14434, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230780

RESUMEN

Heaps of studies have verified the effects of thalidomide (THA) on colorectal cancer (CRC). Howbeit, the corresponding mechanism awaits illustration, which is the foothold of this study. Following the treatment of 0, 1.94, 7.75, or 19.36 µM THA, CRC cell viability, apoptosis, migration, and invasion were evaluated by methyl tetrazolium, flow cytometry, wound-healing, and transwell assays. Homeobox B7 (HOXB7) expression in CRC was analyzed and detected by bioinformatics analysis, quantitative real-time PCR or western blot. After the corresponding transfection or treatment with inhibitor of catenin-responsive transcription-3 (iCRT-3), abovementioned CRC cell biological behaviors as well as expression levels of HOXB7 and ß-catenin were evaluated. 7.75 and 19.36 µM THA dwindled CRC cell viability, migration, and invasion, and facilitated apoptosis. HOXB7 upregulation was detected in CRC cells, which promoted the viability, migration, invasion, and ß-catenin expression, and weakened the apoptosis of CRC cells. Also, HOXB7 upregulation counteracted the effects of THA on CRC cells. iCRT-3 restrained ß-catenin expression, viability, migration, and invasion, whereas promoting the apoptosis of CRC cells. In addition, iCRT-3 antagonized the effects of overexpressed HOXB7 on CRC cells. THA inhibits the migration and invasion of CRC cells, which is achieved by suppressing HOXB7-mediated activation of Wnt/ß-catenin signaling pathway.


Asunto(s)
Neoplasias Colorrectales , Vía de Señalización Wnt , Humanos , beta Catenina/genética , Talidomida/farmacología , Regulación hacia Arriba , Neoplasias Colorrectales/tratamiento farmacológico , Movimiento Celular , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
8.
Annu Rev Pharmacol Toxicol ; 64: 291-312, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37585660

RESUMEN

Thalidomide and its derivatives are powerful cancer therapeutics that are among the best-understood molecular glue degraders (MGDs). These drugs selectively reprogram the E3 ubiquitin ligase cereblon (CRBN) to commit target proteins for degradation by the ubiquitin-proteasome system. MGDs create novel recognition interfaces on the surface of the E3 ligase that engage in induced protein-protein interactions with neosubstrates. Molecular insight into their mechanism of action opens exciting opportunities to engage a plethora of targets through a specific recognition motif, the G-loop. Our analysis shows that current CRBN-based MGDs can in principle recognize over 2,500 proteins in the human proteome that contain a G-loop. We review recent advances in tuning the specificity between CRBN and its MGD-induced neosubstrates and deduce a set of simple rules that govern these interactions. We conclude that rational MGD design efforts will enable selective degradation of many more proteins, expanding this therapeutic modality to more disease areas.


Asunto(s)
Talidomida , Ubiquitina-Proteína Ligasas , Humanos , Talidomida/farmacología , Talidomida/uso terapéutico , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
9.
J Biochem ; 175(5): 507-519, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140952

RESUMEN

Recently, the development of protein degraders (protein-degrading compounds) has prominently progressed. There are two remarkable classes of protein degraders: proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs). Almost 70 years have passed since thalidomide was initially developed as a sedative-hypnotic drug, which is currently recognized as one of the most well-known MGDs. During the last two decades, a myriad of PROTACs and MGDs have been developed, and the molecular mechanism of action (MOA) of thalidomide was basically elucidated, including identifying its molecular target cereblon (CRBN). CRBN forms a Cullin Ring Ligase 4 with Cul4 and DDB1, whose substrate specificity is controlled by its binding ligands. Thalidomide, lenalidomide and pomalidomide, three CRBN-binding MGDs, were clinically approved to treat several intractable diseases (including multiple myeloma). Several other MGDs and CRBN-based PROTACs (ARV-110 and AVR-471) are undergoing clinical trials. In addition, several new related technologies regarding PROTACs and MGDs have also been developed, and achievements of protein degraders impact not only therapeutic fields but also basic biological science. In this article, I introduce the history of protein degraders, from the development of thalidomide to the latest PROTACs and related technologies.


Asunto(s)
Proteolisis , Talidomida , Talidomida/análogos & derivados , Ubiquitina-Proteína Ligasas , Talidomida/farmacología , Talidomida/química , Talidomida/metabolismo , Humanos , Proteolisis/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Quimera Dirigida a la Proteólisis
10.
Nat Chem ; 16(2): 218-228, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38110475

RESUMEN

Proteolysis-targeting chimeras (PROTACs) are molecules that induce proximity between target proteins and E3 ligases triggering target protein degradation. Pomalidomide, a widely used E3 ligase recruiter in PROTACs, can independently degrade other proteins, including zinc-finger (ZF) proteins, with vital roles in health and disease. This off-target degradation hampers the therapeutic applicability of pomalidomide-based PROTACs, requiring development of PROTAC design rules that minimize off-target degradation. Here we developed a high-throughput platform that interrogates off-target degradation and found that reported pomalidomide-based PROTACs induce degradation of several ZF proteins. We generated a library of pomalidomide analogues to understand how functionalizing different positions of the phthalimide ring, hydrogen bonding, and steric and hydrophobic effects impact ZF protein degradation. Modifications of appropriate size on the C5 position reduced off-target ZF degradation, which we validated through target engagement and proteomics studies. By applying these design principles, we developed anaplastic lymphoma kinase oncoprotein-targeting PROTACs with enhanced potency and minimal off-target degradation.


Asunto(s)
Proteínas , Talidomida/análogos & derivados , Ubiquitina-Proteína Ligasas , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas/metabolismo , Talidomida/farmacología
11.
Sci Rep ; 13(1): 22088, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086859

RESUMEN

The design of cereblon-binding molecular glues (MGs) that selectively recruit a desired protein while excluding teratogenic SALL4 is an area of significant interest when designing therapeutic agents. Previous studies show that SALL4 is degraded in the presence of IKZF1 degraders pomalidomide, and to a lesser extent by CC-220. To expand our understanding of the molecular basis for the interaction of SALL4 with cereblon, we performed biophysical and structural studies demonstrating that SALL4 zinc finger domains one and two (ZF1-2) interact with cereblon (CRBN) in a unique manner. ZF1 interacts with the N-terminal domain of cereblon and ZF2 binds as expected in the C-terminal IMiD-binding domain. Both ZF1 and ZF2 contribute to the potency of the interaction of ZF1-2 with CRBN:MG complexes and the affinities of SALL4 ZF1-2 for the cereblon:CC-220 complex are less potent than for the corresponding pomalidomide complex. Structural analysis provides a rationale for understanding the reduced affinity of SALL4 for cereblon in the presence of CC-220, which engages both ZF1 and ZF2. These studies further our understanding of the molecular glue-mediated interactions of zinc finger-based proteins with cereblon and may provide structural tools for the prospective design of compounds with reduced binding and degradation of SALL4.


Asunto(s)
Talidomida , Dedos de Zinc , Talidomida/farmacología , Talidomida/química , Teratógenos , Ubiquitina-Proteína Ligasas/metabolismo
12.
Curr Pharm Des ; 29(34): 2721-2737, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37961863

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a chronic, nonspecific, inflammatory disease of the intestine with an unknown cause. Thalidomide (THA) has been shown to be an effective drug for the treatment of UC. However, the molecular targets and mechanism of action of THA for the treatment of UC are not yet clear. OBJECTIVES: Combining network pharmacology with in vitro experiments, this study aimed to investigate the potential targets and molecular mechanisms of THA for the treatment of UC. METHODS: Firstly, relevant targets of THA against UC were obtained from public databases. Then, the top 10 hub targets and key molecular mechanisms of THA for UC were screened based on the network pharmacology approach and bioinformatics method. Finally, an in vitro cellular inflammation model was constructed using lipopolysaccharide (LPS) induced intestinal epithelial cells (NCM460) to validate the top 10 hub targets and key signaling pathways. RESULTS: A total of 121 relevant targets of THA against UC were obtained, of which the top 10 hub targets were SRC, LCK, MAPK1, HSP90AA1, EGFR, HRAS, JAK2, RAC1, STAT1, and MAP2K1. The PI3K-Akt pathway was significantly associated with THA treatment of UC. In vitro experiments revealed that THA treatment reversed the expression of HSP90AA1, EGFR, STAT1, and JAK2 differential genes. THA was able to up- regulate the mRNA expression of pro-inflammatory factor IL-10 and decrease the mRNA levels of anti-inflammatory factors IL-6, IL-1ß, and TNF-α. Furthermore, THA also exerted anti-inflammatory effects by inhibiting the activation of the PI3K/Akt pathway. CONCLUSION: THA may play a therapeutic role in UC by inhibiting the PI3K-Akt pathway. HSP90AA1, EGFR, STAT1, and JAK2 may be the most relevant potential therapeutic targets for THA in the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Talidomida/farmacología , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Antiinflamatorios , ARN Mensajero , Receptores ErbB , Simulación del Acoplamiento Molecular
13.
Chem Commun (Camb) ; 59(98): 14532-14535, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38019727

RESUMEN

Optimisation of protein degraders requires balancing multiple factors including potency, cell permeability and solubility. Here we show that the fluorescence of pomalidomide can be used in high-throughput screening assays to rapidly assess cellular penetration of degrader candidates. In addition, this technique can be paired with endocytosis inhibitors to gain insight into potential mechanisms of candidates entering a target cell. A model library of pomalidomide conjugates was synthesised and evaluated using high-throughput fluorescence microscopy. This technique based on intrinsic fluorescence can be used to guide rational design of pomalidomide conjugates without the need for additional labels or tags.


Asunto(s)
Talidomida , Talidomida/farmacología , Microscopía Fluorescente
14.
Drug Des Devel Ther ; 17: 2821-2839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719363

RESUMEN

Purpose: Thalidomide (Tha) can be used as a selective treatment for mild pemphigus vulgaris (PV). However, the specific mechanism of action remains unclear. Patients and Methods: PV IgG extracted from patients' serum was cocultured with HaCaT cells to construct a PV cell model, and different concentrations of Tha were used to screen the drug effect. The expression level of MYD88 was assessed in skin lesions of PV patients. Intracellular Ca2+ concentration, reactive oxygen species level, DSG3, PG, MYD88, apoptosis-related proteins (Caspase-3, Bcl-2, and Bax), NF-κB pathway-related proteins (IκBα, p-IκBα, p50, and p65), NLRP3, IFN-γ, TNF-α, IL-6, and IL-8 levels were measured. PV IgG was subcutaneously injected into C57BL/6 neonatal mice to construct the animal model. Immunofluorescence was used to detect IgG deposition in the mouse epidermis, whereas immunohistochemistry and TUNEL methods were used to detect the expression of MYD88 and NLRP3 as well as cell apoptosis level in the mouse epidermis. Results: Tha reversed the decrease in Dsg3 and PG caused by PV IgG. The expression of MyD88 increased in the patients' skin, PV cell model, and PV mouse model. The increase in MyD88 expression level in PV cell models and PV newborn mouse models was inhibited by Tha. Overexpression of MyD88 induced a decrease in the expression levels of Dsg3 and PG in Hacat cells. Overexpression of MyD88 inhibited Tha effects on Dsg3 and PG expressions and blocked Tha effects on Ca2+, apoptosis, Bax, Bcl-2, and Caspase-3 expressions, oxidative damage, and inflammatory response in HaCat cells. Tha alleviated acantholysis induced by PV IgG in model mice. Conclusion: Through MYD88, Tha attenuated apoptosis of HaCat cells, modulated NF-κB to hamper the oxidative damage and inflammatory response in the PV cell models, and alleviated acantholysis, IgG deposition, and epidermal cell apoptosis induced by PV IgG in model mice.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Pénfigo , Animales , Humanos , Ratones , Acantólisis , Animales Recién Nacidos , Apoptosis , Proteína X Asociada a bcl-2 , Caspasa 3 , Células HaCaT , Inmunoglobulina G , Inflamación/tratamiento farmacológico , Ratones Endogámicos C57BL , FN-kappa B , Inhibidor NF-kappaB alfa , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Talidomida/farmacología
15.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569792

RESUMEN

Sixteen new thalidomide analogs were synthesized. The new candidates showed potent in vitro antiproliferative activities against three human cancer cell lines, namely hepatocellular carcinoma (HepG-2), prostate cancer (PC3), and breast cancer (MCF-7). It was found that compounds XII, XIIIa, XIIIb, XIIIc, XIIId, XIVa, XIVb, and XIVc showed IC50 values ranging from 2.03 to 13.39 µg/mL, exhibiting higher activities than thalidomide against all tested cancer cell lines. Compound XIIIa was the most potent candidate, with an IC50 of 2.03 ± 0.11, 2.51 ± 0.2, and 0.82 ± 0.02 µg/mL compared to 11.26 ± 0.54, 14.58 ± 0.57, and 16.87 ± 0.7 µg/mL for thalidomide against HepG-2, PC3, and MCF-7 cells, respectively. Furthermore, compound XIVc reduced the expression of NFκB P65 levels in HepG-2 cells from 278.1 pg/mL to 63.1 pg/mL compared to 110.5 pg/mL for thalidomide. Moreover, compound XIVc induced an eightfold increase in caspase-8 levels with a simultaneous decrease in TNF-α and VEGF levels in HepG-2 cells. Additionally, compound XIVc induced apoptosis and cell cycle arrest. Our results reveal that the new candidates are potential anticancer candidates, particularly XIIIa and XIVc. Consequently, they should be considered for further evaluation for the development of new anticancer drugs.


Asunto(s)
Antineoplásicos , Talidomida , Masculino , Humanos , Talidomida/farmacología , Antineoplásicos/farmacología , Relación Estructura-Actividad , Quinazolinas/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Adyuvantes Inmunológicos/farmacología , Células MCF-7 , Factores Inmunológicos/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Apoptosis , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga
16.
Front Immunol ; 14: 1220165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426650

RESUMEN

Nausea and vomiting (CINV) are distressful and widespread side effects of chemotherapy, and additional efficient regimens to alleviate CINV are urgently needed. In the present study, colorectal cancer (CRC) mice model induced by Azoxymethane (AOM)/Dextran Sodium Sulfate (DSS) was employed to evaluate the cancer suppression and CINV amelioration effect of the combination of thalidomide (THD) and Clostridium butyricum. Our results suggested that the combination of THD and C. butyricum abundantly enhanced the anticancer effect of cisplatin via activating the caspase-3 apoptosis pathway, and also ameliorated CINV via inhibiting the neurotransmitter (e.g., 5-HT and tachykinin 1) and its receptor (e.g., 5-HT3R and NK-1R) in brain and colon. Additionally, the combination of THD and C. butyricum reversed the gut dysbacteriosis in CRC mice by increasing the abundance of Clostridium, Lactobacillus, Bifidobacterium, and Ruminococcus at the genus level, and also led to increased expression of occludin and Trek1 in the colon, while decreased expression of TLR4, MyD88, NF-κB, and HDAC1, as well as the mRNA level of IL-6, IL-1ß, and TNF-α. In all, these results suggest that the combination of THD and C. butyricum had good efficacy in enhancing cancer treatments and ameliorating CINV, which thus provides a more effective strategy for the treatment of CRC.


Asunto(s)
Antineoplásicos , Clostridium butyricum , Microbioma Gastrointestinal , Ratones , Animales , Clostridium butyricum/fisiología , Talidomida/farmacología , Talidomida/uso terapéutico , Serotonina , Náusea , Vómitos , Antineoplásicos/farmacología
17.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511270

RESUMEN

Several molecular mechanisms of thalidomide embryopathy (TE) have been investigated, from anti-angiogenesis to oxidative stress to cereblon binding. Recently, it was discovered that thalidomide and its analogs, named immunomodulatory drugs (IMiDs), induced the degradation of C2H2 transcription factors (TFs). This mechanism might impact the strict transcriptional regulation of the developing embryo. Hence, this study aims to evaluate the TFs altered by IMiDs, prioritizing the ones associated with embryogenesis through transcriptome and systems biology-allied analyses. This study comprises only the experimental data accessed through bioinformatics databases. First, proteins and genes reported in the literature as altered/affected by the IMiDs were annotated. A protein systems biology network was evaluated. TFs beta-catenin (CTNNB1) and SP1 play more central roles: beta-catenin is an essential protein in the network, while SP1 is a putative C2H2 candidate for IMiD-induced degradation. Separately, the differential expressions of the annotated genes were analyzed through 23 publicly available transcriptomes, presenting 8624 differentially expressed genes (2947 in two or more datasets). Seventeen C2H2 TFs were identified as related to embryonic development but not studied for IMiD exposure; these TFs are potential IMiDs degradation neosubstrates. This is the first study to suggest an integration of IMiD molecular mechanisms through C2H2 TF degradation.


Asunto(s)
Mieloma Múltiple , Talidomida , Humanos , Talidomida/farmacología , Agentes Inmunomoduladores , beta Catenina/genética , beta Catenina/metabolismo , Factores de Transcripción/metabolismo , Biología de Sistemas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Ubiquitina-Proteína Ligasas/metabolismo , Mieloma Múltiple/metabolismo
18.
Small ; 19(44): e2302525, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37415558

RESUMEN

Dysfunctional transcription factors that activate abnormal expressions of specific proteins are often associated with the progression of various diseases. Despite being attractive drug targets, the lack of druggable sites has dramatically hindered their drug development. The emergence of proteolysis targeting chimeras (PROTACs) has revitalized the drug development of many conventional hard-to-drug protein targets. Here, the use of a palindromic double-strand DNA thalidomide conjugate (PASTE) to selectively bind and induce proteolysis of targeted activated transcription factor (PROTAF) is reported. The selective proteolysis of the dimerized phosphorylated receptor-regulated Smad2/3 and inhibition of the canonical Smad pathway validates PASTE-mediated PROTAF. Further aptamer-guided active delivery of PASTE and near-infrared light-triggered PROTAF are demonstrated. Great potential in using PASTE for the selective degradation of the activated transcription factor is seen, providing a powerful tool for studying signaling pathways and developing precision medicines.


Asunto(s)
Talidomida , Factores de Transcripción , Factores de Transcripción/metabolismo , Talidomida/farmacología , Proteolisis , Regulación de la Expresión Génica , ADN/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
19.
World J Urol ; 41(9): 2375-2380, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37470811

RESUMEN

PURPOSE: To understand the effect of Nitazoxanide (NTZ), Rapamycin, Thalidomide, alone and in combination with BCG on bladder cancer (BC) histopathology and programmed death-ligand 1 (PD-L1) and anti-cytotoxic T lymphocyte antigen 4 (CTLA4) expression. METHODS: Female Fisher-344 rats underwent intravesical N-methyl-N-nitrosourea (MNU) followed by weekly intravesical treatment with saline (controls, n = 10), BCG (n = 10), NTZ (n = 8), BCG plus NTZ (n = 8), Rapamycin (n = 10) BCG plus Rapamycin (n = 10), Thalidomide (n = 10), and BCG plus Thalidomide (n = 10), and euthanized after 8 weeks and their bladders were investigated for BC and PD-L1 and CTLA4 expression. RESULTS: Rapamicyn alone and in combination with BCG had the lowest number of bladder neoplasias in the histopathology exam (1/10). Neoplastic lesions were found in 4/10 BCG recipients, 5/10 Thalidomide recipients, 4/10 Thalidomide plus BCG recipients, 5/8 NTZ and 3/8 NTZ plus BCG recipients. Adding NTZ to BCG increased the expression of PD-L1 and adding Rapamycin or Thalidomide decreased PD-L1 and CTLA4 expression compared to BCG alone. Rapamycin alone significantly increased CTLA4 and slightly increased PD-L1 expression but its combination with BCG significantly decreased both markers. Thalidomide had a similar effect; however, it was only slightly different from the control and BCG alone groups. CONCLUSION: Intravesical BCG combination treatment seems to effectively prevent BC development in an immunecompetent clinically relevant animal model, introducing Thalidomide, Nitazoxanide, and specially Rapamycin as candidates in the intravesical immunotherapy advancement. Our study contributes in understanding the mechanism of cancer immunotherapy.


Asunto(s)
Talidomida , Neoplasias de la Vejiga Urinaria , Ratas , Femenino , Animales , Talidomida/farmacología , Talidomida/uso terapéutico , Vacuna BCG/uso terapéutico , Antígeno B7-H1 , Antígeno CTLA-4 , Sirolimus/farmacología , Sirolimus/uso terapéutico , Neoplasias de la Vejiga Urinaria/patología , Administración Intravesical , Adyuvantes Inmunológicos/uso terapéutico
20.
Arch Pharm (Weinheim) ; 356(9): e2300097, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37379240

RESUMEN

Eleven novel benzoxazole/benzothiazole-based thalidomide analogs were designed and synthesized to obtain new effective antitumor immunomodulatory agents. The synthesized compounds were evaluated for their cytotoxic activities against HepG-2, HCT-116, PC3, and MCF-7 cells. Generally, the open analogs with semicarbazide and thiosemicarbazide moieties (10, 13a-c, 14, and 17a,b) exhibited higher cytotoxic activities than derivatives with closed glutarimide moiety (8a-d). In particular, compound 13a (IC50 = 6.14, 5.79, 10.26, and 4.71 µM against HepG-2, HCT-116, PC3, and MCF-7, respectively) and 14 (IC50 = 7.93, 8.23, 12.37, and 5.43 µM, respectively) exhibited the highest anticancer activities against the four tested cell lines. The most active compounds 13a and 14 were further evaluated for their in vitro immunomodulatory activities on tumor necrosis factor-alpha (TNF-α), caspase-8 (CASP8), vascular endothelial growth factor (VEGF), and nuclear factor kappa-B p65 (NF-κB p65) in HCT-116 cells. Compounds 13a and 14 showed a remarkable and significant reduction in TNF-α. Furthermore, they showed significant elevation in CASP8 levels. Also, they significantly inhibited VEGF. In addition, compound 13a showed significant decreases in the level of NF-κB p65 while compound 14 demonstrated an insignificant decrease with respect to thalidomide. Moreover, our derivatives exhibited good in silico absorption, distribution, metabolism, elimination, toxicity (ADMET) profiles.


Asunto(s)
Antineoplásicos , Agentes Inmunomoduladores , Humanos , Estructura Molecular , Relación Estructura-Actividad , Factor A de Crecimiento Endotelial Vascular/farmacología , Talidomida/farmacología , Benzoxazoles/farmacología , FN-kappa B , Factor de Necrosis Tumoral alfa , Proliferación Celular , Células MCF-7 , Antineoplásicos/farmacología , Benzotiazoles/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Diseño de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...