Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Nucl Med Biol ; 130-131: 108891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38458074

RESUMEN

Alzheimer's disease (AD) and non-AD tauopathies such as chronic traumatic encephalopathy (CTE), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) are characterized by the abnormal aggregation of three-repeat (3R) and/or four-repeat (4R) tau isoforms. Several tau-PET tracers have been applied for human imaging of AD and non-AD tauopathies including [18F]PI-2620. Our objective is to evaluate [3H]PI-2620 and two promising structural derivatives, [3H]PI-2014 and [3H]F-4, using in vitro saturation assays and competitive binding assays against new chemical entities based on this scaffold in human AD tissues for comparison with PSP, CBD and CTE tissues. Thin section autoradiography was employed to assess specific binding and distribution of [3H]PI-2620 and [3H]F-4 in fresh-frozen human post-mortem AD, PSP, CBD and CTE tissues. Immunohistochemistry was performed for phospho-tau (AT8) and 4R-tau (RD4). Homogenate filtration binding assays were performed for saturation analysis and competitive binding studies against [3H]PI-2620. All compounds bound with high affinity in AD tissue. In PSP tissue [3H]PI-2620 demonstrated the highest affinity (5.3 nM) and in CBD tissue [3H]F-4 bound with the highest affinity (9.4 nM). Over 40 fluorinated derivatives based on PI-2620 and F-4 were screened in AD and PSP tissue. Notably, compound 2 was the most potent derivative in PSP tissue (Ki = 7.3 nM). By autoradiography, [3H]PI-2620 and [3H]F-4 demonstrated positive signals similar in intensity in AD, PSP and CTE tissues that were displaced by homologous blockade. Binding of both radiotracers aligned with immunostaining for 4R-tau. This work demonstrates that [3H]PI-2620 and [3H]F-4 show promise for imaging 4R-tau aggregates in non-AD tauopathies. PI-2620 continues to serve as a structural scaffold for PET radiotracers with higher affinity for non-AD tau over AD tau.


Asunto(s)
Enfermedad de Alzheimer , Nitroimidazoles , Piridinas , Tauopatías , Humanos , Proteínas tau/metabolismo , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo
2.
Eur J Nucl Med Mol Imaging ; 51(6): 1662-1674, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228971

RESUMEN

PURPOSE: [18F]MK-6240, a second-generation tau PET tracer, is increasingly used for the detection and the quantification of in vivo cerebral tauopathy in Alzheimer's disease (AD). Given that neurological symptoms are better explained by the topography rather than by the nature of brain lesions, our study aimed to evaluate whether cognitive impairment would be more closely associated with the spatial extent than with the intensity of tau-PET signal, as measured by the standard uptake value ratio (SUVr). METHODS: [18F]MK6240 tau-PET data from 82 participants in the AD spectrum were quantified in three different brain regions (Braak ≤ 2, Braak ≤ 4, and Braak ≤ 6) using SUVr and the extent of tauopathy (EOT, percentage of voxels with SUVr ≥ 1.3). PET data were first compared between diagnostic categories, and ROC curves were computed to evaluate sensitivity and specificity. PET data were then correlated to cognitive performances and cerebrospinal fluid (CSF) tau values. RESULTS: The EOT in the Braak ≤ 2 region provided the highest diagnostic accuracies, distinguishing between amyloid-negative and positive clinically unimpaired individuals (threshold = 9%, sensitivity = 79%, specificity = 82%) as well as between prodromal AD and preclinical AD (threshold = 38%, sensitivity = 81%, specificity = 93%). The EOT better correlated with cognition than SUVr (∆R2 + 0.08-0.09) with the best correlation observed for EOT in the Braak ≤ 4 region (R2 = 0.64). Cognitive performances were more closely associated with PET metrics than with CSF values. CONCLUSIONS: Quantifying [18F]MK-6240 tau PET in terms of EOT rather than SUVr significantly increases the correlation with cognitive performances. Quantification in the mesiotemporal lobe is the most useful to diagnose preclinical AD or prodromal AD.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Isoquinolinas , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Anciano , Proteínas tau/metabolismo , Anciano de 80 o más Años , Persona de Mediana Edad , Tauopatías/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Transporte Biológico , Radiofármacos/farmacocinética
3.
Brain ; 147(3): 980-995, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804318

RESUMEN

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Neuroimagen , Tauopatías , Humanos , Proteínas Amiloidogénicas , Biomarcadores , Fluorodesoxiglucosa F18 , Neuroimagen/métodos , Tauopatías/diagnóstico por imagen
4.
J Alzheimers Dis ; 97(1): 421-433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38108350

RESUMEN

BACKGROUND: Alzheimer's disease (AD) pathology can be disclosed in vivo using amyloid and tau imaging, unlike non-AD neuropathologies for which no specific markers exist. OBJECTIVE: We aimed to compare brain hypometabolism and tauopathy to unveil non-AD pathologies. METHODS: Sixty-one patients presenting cognitive complaints (age 48-90), including 32 with positive AD biomarkers (52%), performed [18F]-Fluorodeoxyglucose (FDG)-PET (brain metabolism) and [18F]-MK-6240-PET (tau). We normalized these images using data from clinically normal individuals (n = 30), resulting in comparable FDG and tau z-scores. We computed between-patients correlations to evaluate regional associations. For each patient, a predominant biomarker (i.e., Hypometabolism > Tauopathy or Hypometabolism≤Tauopathy) was determined in the temporal and frontoparietal lobes. We computed within-patient correlations between tau and metabolism and investigated their associations with demographics, cognition, cardiovascular risk factors (CVRF), CSF biomarkers, and white matter hypointensities (WMH). RESULTS: We observed negative associations between tau and FDG in 37 of the 68 cortical regions-of-interest (average Pearson's r = -0.25), mainly in the temporal lobe. Thirteen patients (21%) had Hypometabolism > Tauopathy whereas twenty-five patients (41%) had Hypometabolism≤Tauopathy. Tau-predominant patients were more frequently females and had greater amyloid burden. Twenty-three patients (38%) had Hypometabolism≤Tauopathy in the temporal lobe, but Hypometabolism > Tauopathy in the frontoparietal lobe. This group was older and had higher CVRF than Tau-predominant patients. Patients with more negative associations between tau and metabolism were younger, had worse cognition, and greater amyloid and WMH burdens. CONCLUSIONS: Tau-FDG comparison can help suspect non-AD pathologies in patients presenting cognitive complaints. Stronger Tau-FDG correlations are associated with younger age, worse cognition, and greater amyloid and WMH burdens.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Tauopatías , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Disfunción Cognitiva/psicología , Fluorodesoxiglucosa F18/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Masculino , Persona de Mediana Edad
5.
Acta Neuropathol Commun ; 11(1): 88, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264457

RESUMEN

Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are distinct clinicopathological subtypes of frontotemporal lobar degeneration. They both have atypical parkinsonism, and they usually have distinct clinical features. The most common clinical presentation of PSP is Richardson syndrome, and the most common presentation of CBD is corticobasal syndrome. In this report, we describe a patient with a five-year history of Richardson syndrome and a family history of PSP in her mother and sister. A tau PET scan (18F-APN-1607) revealed low-to-moderate uptake in the substantia nigra, globus pallidus, thalamus and posterior cortical areas, including temporal, parietal and occipital cortices. Neuropathological evaluation revealed widespread neuronal and glial tau pathology in cortical and subcortical structures, including tufted astrocytes in the motor cortex, striatum and midbrain tegmentum. The subthalamic nucleus had mild-to-moderate neuronal loss with globose neurofibrillary tangles, consistent with PSP. On the other hand, there were also astrocytic plaques, a pathological hallmark of CBD, in the neocortex and striatum. To further characterize the mixed pathology, we applied two machine learning-based diagnostic pipelines. These models suggested diagnoses of PSP and CBD depending on the brain region - PSP in the motor cortex and superior frontal gyrus and CBD in caudate nucleus. Western blots of insoluble tau from motor cortex showed a banding pattern consistent with mixed features of PSP and CBD, whereas tau from the superior frontal gyrus showed a pattern consistent with CBD. Real-time quaking-induced conversion (RT-QuIC) using brain homogenates from the motor cortex and superior frontal gyrus showed ThT maxima consistent with PSP, while reaction kinetics were consistent with CBD. There were no pathogenic variants in MAPT with whole genome sequencing. We conclude that this patient had an unclassified tauopathy and features of both PSP and CBD. The different pathologies in specific brain regions suggests caution in diagnosis of tauopathies with limited sampling.


Asunto(s)
Degeneración Corticobasal , Neocórtex , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Femenino , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/genética , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Ovillos Neurofibrilares/patología , Neocórtex/patología
7.
PLoS One ; 18(5): e0284182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37167210

RESUMEN

Flortaucipir (FTP) PET is a key imaging technique to evaluate tau burden indirectly. However, it appears to have greater utility for 3R+4R tau found in Alzheimer's disease (AD), compared to other non-AD tauopathies. The purpose of this study is to determine how flortaucipir uptake links to neuropathologically determined tau burden in AD and non-AD tauopathies. We identified nine individuals who had undergone antemortem tau-PET and postmortem neuropathological analyses. The cohort included three patients with low, moderate, and high AD neuropathologic changes (ADNC), five patients with a non-AD tauopathy (one Pick's disease, three progressive supranuclear palsies, and one globular glial tauopathy), and one control without ADNC. We compared regional flortaucipir PET uptake with tau burden using an anti-AT8 antibody. There was a very good correlation between flortaucipir uptake and tau burden in those with ADNC although, in one ADNC patient, flortaucipir uptake and tau burden did not match due to the presence of argyrophilic grains disease. Non-AD patients showed lower flortaucipir uptake globally compared to ADNC patients. In the non-AD patients, some regional associations between flortaucipir uptake and histopathological tau burden were observed. Flortaucipir uptake is strongly linked to underlying tau burden in patients with ADNC but there are instances where they do not match. On-the-other hand, flortaucipir has a limited capacity to represent histopathological tau burden in non-AD patients although there are instances where regional uptake correlates with regional tau burden. There is a definite need for the development of future generations of tau-PET ligands that can detect non-AD tau.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Tauopatías , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Proteínas tau , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Tomografía de Emisión de Positrones
8.
Mov Disord ; 38(7): 1316-1326, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37171832

RESUMEN

BACKGROUND: Synaptic loss is characteristic of many neurodegenerative diseases; it occurs early and is strongly related to functional deficits. OBJECTIVE: In this longitudinal observational study, we determine the rate at which synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and we test the relationship with disease progression. METHODS: Our cross-sectional cohort included 32 participants with probable PSP and 16 with probable CBD (all amyloid-negative corticobasal syndrome), recruited from tertiary care centers in the United Kingdom, and 33 sex- and age-matched healthy control subjects. Synaptic density was estimated by positron emission tomography imaging with the radioligand [11 C]UCB-J that binds synaptic vesicle 2A. Clinical severity and cognition were assessed by the PSP Rating Scale and the Addenbrooke's cognitive examination. Regional [11 C]UCB-J nondisplaceable binding potential was estimated in Hammersmith Atlas regions of interest. Twenty-two participants with PSP/CBD had a follow-up [11 C]UCB-J positron emission tomography scan after 1 year. We calculated the annualized change in [11 C]UCB-J nondisplaceable binding potential and correlated this with the change in clinical severity. RESULTS: We found significant annual synaptic loss within the frontal lobe (-3.5%, P = 0.03) and the right caudate (-3.9%, P = 0.046). The degree of longitudinal synaptic loss within the frontal lobe correlated with the rate of change in the PSP Rating Scale (R = 0.47, P = 0.03) and cognition (Addenbrooke's Cognitive Examination-Revised, R = -0.62, P = 0.003). CONCLUSIONS: We provide in vivo evidence for rapid progressive synaptic loss, correlating with clinical progression in primary tauopathies. Synaptic loss may be an important therapeutic target and outcome variable for early-phase clinical trials of disease-modifying treatments. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos del Movimiento , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Estudios Transversales , Tomografía de Emisión de Positrones/métodos , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Parálisis Supranuclear Progresiva/diagnóstico , Trastornos del Movimiento/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
9.
Lab Invest ; 103(6): 100127, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889541

RESUMEN

Neuropathologic assessment during autopsy is the gold standard for diagnosing neurodegenerative disorders. Neurodegenerative conditions, such as Alzheimer disease (AD) neuropathological change, are a continuous process from normal aging rather than categorical; therefore, diagnosing neurodegenerative disorders is a complicated task. We aimed to develop a pipeline for diagnosing AD and other tauopathies, including corticobasal degeneration (CBD), globular glial tauopathy, Pick disease, and progressive supranuclear palsy. We used a weakly supervised deep learning-based approach called clustering-constrained-attention multiple-instance learning (CLAM) on the whole-slide images (WSIs) of patients with AD (n = 30), CBD (n = 20), globular glial tauopathy (n = 10), Pick disease (n = 20), and progressive supranuclear palsy (n = 20), as well as nontauopathy controls (n = 21). Three sections (A: motor cortex; B: cingulate gyrus and superior frontal gyrus; and C: corpus striatum) that had been immunostained for phosphorylated tau were scanned and converted to WSIs. We evaluated 3 models (classic multiple-instance learning, single-attention-branch CLAM, and multiattention-branch CLAM) using 5-fold cross-validation. Attention-based interpretation analysis was performed to identify the morphologic features contributing to the classification. Within highly attended regions, we also augmented gradient-weighted class activation mapping to the model to visualize cellular-level evidence of the model's decisions. The multiattention-branch CLAM model using section B achieved the highest area under the curve (0.970 ± 0.037) and diagnostic accuracy (0.873 ± 0.087). A heatmap showed the highest attention in the gray matter of the superior frontal gyrus in patients with AD and the white matter of the cingulate gyrus in patients with CBD. Gradient-weighted class activation mapping showed the highest attention in characteristic tau lesions for each disease (eg, numerous tau-positive threads in the white matter inclusions for CBD). Our findings support the feasibility of deep learning-based approaches for the classification of neurodegenerative disorders on WSIs. Further investigation of this method, focusing on clinicopathologic correlations, is warranted.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Enfermedades Neurodegenerativas , Enfermedad de Pick , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Enfermedad de Pick/patología , Proteínas tau , Tauopatías/diagnóstico por imagen , Tauopatías/patología
10.
Synapse ; 77(4): e22269, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36951466

RESUMEN

Corticobasal syndrome (CBS) is associated with 4-repeat tauopathy and/or Alzheimer's disease pathologies. To examine tau and amyloid-ß (Aß) deposits in CBS patients using positron emission tomography (PET). Eight CBS patients and three healthy individuals lacking amyloid pathology underwent PET with [11 C]PBB3 for tau imaging, and [11 C]AZD2184 for Aß. Subcortical and cortical binding of [11 C]PBB3 was compared between Aß(-) and Aß(+) CBS patients and reference group. Postmortem analysis was done in one CBS patient. Three CBS patients were considered Aß(+). Total binding was higher in all patients compared to the reference group. Similar regional binding profiles of [11 C]PBB3 in Aß(+) and Aß(-) CBS patients were found. Elevated [11 C]PBB3 binding in pallidum was observed in all CBS patients. Cortical [11 C]PBB3 binding was higher in Aß(+) compared to Aß(-) patients. Postmortem analysis of a CBS patient revealed corticobasal degeneration neuropathology and [11 C]PBB3 autofluorescence in some tau-positive structures. [11 C]PBB3 is elevated in CBS patients with binding in relevant areas capturing some, but not all, 4-repeat tauopathy in CBS.


Asunto(s)
Enfermedad de Alzheimer , Degeneración Corticobasal , Tauopatías , Humanos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Tauopatías/patología , Péptidos beta-Amiloides/metabolismo , Tomografía de Emisión de Positrones/métodos
11.
Mov Disord ; 38(4): 579-588, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36750757

RESUMEN

BACKGROUND: Recent development in tau-sensitive tracers has sparkled significant interest in tracking tauopathies using positron emission tomography (PET) biomarkers. However, the ability of 18 F-florzolotau PET imaging to topographically characterize tau pathology in corticobasal syndrome (CBS) remains unclear. Further, the question as to whether disease-level differences exist with other neurodegenerative tauopathies is still unanswered. OBJECTIVE: To analyze the topographical patterns of tau pathology in the living brains of patients with CBS using 18 F-florzolotau PET imaging and to examine whether differences with other tauopathies exist. METHODS: 18 F-florzolotau PET imaging was performed in 20 consecutive patients with CBS, 20 cognitively healthy controls (HCs), 20 patients with Alzheimer's disease (AD), and 16 patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). Cerebrospinal fluid (CSF) levels of ß-amyloid biomarkers were quantified in all patients with CBS. 18 F-florzolotau uptake was quantitatively assessed using standardized uptake value ratios. RESULTS: Of the 20 patients with CBS, 19 (95%) were negative for CSF biomarkers of amyloid pathology; of them, three had negative 18 F-florzolotau PET findings. Compared with HCs, patients with CBS showed increased 18 F-florzolotau signals in both cortical and subcortical regions. In addition, patients with CBS were characterized by higher tracer retentions in subcortical regions compared with those with AD and showed a trend toward higher signals in cortical areas compared with PSP-RS. An asymmetric pattern of 18 F-florzolotau uptake was associated with an asymmetry of motor severity in patients with CBS. CONCLUSIONS: In vivo 18 F-florzolotau PET imaging holds promise for distinguishing CBS in the spectrum of neurodegenerative tauopathies. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Degeneración Corticobasal , Tomografía de Emisión de Positrones , Tauopatías , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Degeneración Corticobasal/diagnóstico por imagen , Radioisótopos de Flúor , Tomografía de Emisión de Positrones/métodos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Proteínas tau/metabolismo , Tauopatías/diagnóstico por imagen
12.
Radiology ; 307(2): e220869, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36719290

RESUMEN

Background Neurodegenerative disorders (such as Alzheimer disease) characterized by the deposition of various pathogenic forms of tau protein in the brain are collectively referred to as tauopathies. Identification of the molecular drivers and pathways of neurodegeneration is critical to individualized targeted treatment of these disorders. However, despite important advances in fluid biomarker detection, characterization of these molecular subtypes is limited by the blood-brain barrier. Purpose To evaluate the feasibility and safety of focused ultrasound-mediated liquid biopsy (sonobiopsy) in the detection of brain-derived protein biomarkers in a transgenic mouse model of tauopathy (PS19 mice). Materials and Methods Sonobiopsy was performed by sonicating the cerebral hemisphere in 2-month-old PS19 and wild-type mice, followed by measurement of plasma phosphorylated tau (p-tau) species (30 minutes after sonication in the sonobiopsy group). Next, spatially targeted sonobiopsy was performed by sonicating either the cerebral cortex or the hippocampus in 6-month-old PS19 mice. To detect changes in plasma neurofilament light chain (a biomarker of neurodegeneration) levels, blood samples were collected before and after sonication (15 and 45-60 minutes after sonication). Histologic staining was performed to evaluate tissue damage after sonobiopsy. The Shapiro-Wilk test, unpaired and paired t tests, and the Mann-Whitney U test were used. Results In the 2-month-old mice, sonobiopsy significantly increased the normalized levels of plasma p-tau species compared with the conventional blood-based liquid biopsy (p-tau-181-to-mouse tau [m-tau] ratio: 1.7-fold increase, P = .006; p-tau-231-to-m-tau ratio: 1.4-fold increase, P = .048). In the 6-month-old PS19 mice, spatially targeted sonobiopsy resulted in a 2.3-fold increase in plasma neurofilament light chain after sonication of the hippocampus and cerebral cortex (P < .001). After optimization of the sonobiopsy parameters, no excess microhemorrhage was observed in the treated cerebral hemisphere compared with the contralateral side. Conclusion This study showed the feasibility of sonobiopsy to release phosphorylated tau species and neurofilament light chain to the blood circulation, potentially facilitating diagnosis of neurodegenerative disorders. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Fowlkes in this issue.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Tauopatías , Ratones , Animales , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Biomarcadores
13.
Eur J Neurol ; 30(2): 321-333, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36256511

RESUMEN

BACKGROUND: Globular glial tauopathy (GGT) has been associated with frontotemporal dementia syndromes; little is known about the clinical and imaging characteristics of GGT and how they differ from other non-globular glial 4-repeat tauopathies (N4GT) such as progressive supranuclear palsy (PSP) or corticobasal degeneration (CBD). METHODS: For this case-control study the Mayo Clinic brain banks were queried for all cases with an autopsy-confirmed diagnosis of GGT between 1 January 2011 and 31 October 2021. Fifty patients with N4GT (30 PSP, 20 CBD) were prospectively recruited and followed by the Neurodegenerative Research Group at Mayo Clinic, Minnesota. Magnetic resonance imaging was used to characterize patterns of gray/white matter atrophy, MR-parkinsonism index, midbrain volume, and white matter hyperintensities.18 F-Fluorodeoxyglucose-, 11 C Pittsburg compound-, and 18 F-flortaucipir-positron emission tomography scans were reviewed. RESULTS: Twelve patients with GGT were identified: 83% were women compared to 42% in NG4T (p = 0.02) with median age at death 76.5 years (range: 55-87). The most frequent clinical features were eye movement abnormalities, parkinsonism, behavioral changes followed by pyramidal tract signs and motor speech abnormalities. Lower motor neuron involvement was present in 17% and distinguished GGT from NG4T (p = 0.035). Primary progressive apraxia of speech was the most frequent initial diagnosis (25%); 50% had a Parkinson-plus syndrome before death. Most GGT patients had asymmetric frontotemporal atrophy with matching hypometabolism. GGT patients had more gray matter atrophy in temporal lobes, normal MR-parkinsonism index, and larger midbrain volumes. CONCLUSIONS: Female sex, lower motor neuron involvement in the context of a frontotemporal dementia syndrome, and asymmetric brain atrophy with preserved midbrain might be suggestive of underlying GGT.


Asunto(s)
Demencia Frontotemporal , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Estudios de Casos y Controles , Demencia Frontotemporal/diagnóstico por imagen , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Neuroglía/patología , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Imagen por Resonancia Magnética , Atrofia/patología
14.
Neuroimage ; 264: 119763, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427751

RESUMEN

Positron emission tomography (PET) with 18F-PM-PBB3 (18F-APN-1607, 18F-Florzolotau) enables high-contrast detection of tau depositions in various neurodegenerative dementias, including Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). A simplified method for quantifying radioligand binding in target regions is to employ the cerebellum as a reference (CB-ref) on the assumption that the cerebellum has minimal tau pathologies. This procedure is typically valid in AD, while FTLD disorders exemplified by progressive supranuclear palsy (PSP) are characterized by occasional tau accumulations in the cerebellum, hampering the application of CB-ref. The present study aimed to establish an optimal method for defining reference tissues on 18F-PM-PBB3-PET images of AD and non-AD tauopathy brains. We developed a new algorithm to extract reference voxels with a low likelihood of containing tau deposits from gray matter (GM-ref) or white matter (WM-ref) by a bimodal fit to an individual, voxel-wise histogram of the radioligand retentions and applied it to 18F-PM-PBB3-PET data obtained from age-matched 40 healthy controls (HCs) and 23 CE, 40 PSP, and five other tau-positive FTLD patients. PET images acquired at 90-110 min after injection were averaged and co-registered to corresponding magnetic resonance imaging space. Subsequently, we generated standardized uptake value ratio (SUVR) images estimated by CB-ref, GM-ref and WM-ref, respectively, and then compared the diagnostic performances. GM-ref and WM-ref covered a broad area in HCs and were free of voxels located in regions known to bear high tau burdens in AD and PSP patients. However, radioligand retentions in WM-ref exhibited age-related declines. GM-ref was unaffected by aging and provided SUVR images with higher contrast than CB-ref in FTLD patients with suspected and confirmed corticobasal degeneration. The methodology for determining reference tissues as optimized here improves the accuracy of 18F-PM-PBB3-PET measurements of tau burdens in a wide range of neurodegenerative illnesses.


Asunto(s)
Cerebelo , Tomografía de Emisión de Positrones , Tauopatías , Proteínas tau , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Tomografía de Emisión de Positrones/normas , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Proteínas tau/análisis , Proteínas tau/metabolismo , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Estándares de Referencia
15.
Neurocase ; 28(4): 375-381, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36251576

RESUMEN

Globular Glial Tauopathy (GGT) is a rare form of Frontotemporal Lobar Degeneration (FTLD) consisting of 4-repeat tau globular inclusions in astrocytes and oligodendrocytes. We present the pathological findings of GGT in a previously published case of a 73-year-old woman with behavioral symptoms concerning for right temporal variant frontotemporal dementia with initial and salient features of Geschwind syndrome. Clinically, she lacked motor abnormalities otherwise common in previously published GGT cases. Brain MRI showed focal right anterior temporal atrophy (indistinguishable from five FTLD-TDP cases) and subtle ipsilateral white matter signal abnormalities. Brain autopsy showed GGT type III and Alzheimer's neuropathologic changes. .


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad de Pick , Tauopatías , Femenino , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Proteínas tau/metabolismo , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Enfermedad de Pick/patología , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/patología , Encéfalo/patología , Atrofia/patología
16.
Mov Disord ; 37(11): 2236-2246, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36054492

RESUMEN

BACKGROUND: We recently developed a positron emission tomography (PET) probe, [18 F]PM-PBB3, to detect tau lesions in diverse tauopathies, including mixed three-repeat and four-repeat (3R + 4R) tau fibrils in Alzheimer's disease (AD) and 4R tau aggregates in progressive supranuclear palsy (PSP). For wider availability of this technology for clinical settings, bias-free quantitative evaluation of tau images without a priori disease information is needed. OBJECTIVE: We aimed to establish tau PET pathology indices to characterize PSP and AD using a machine learning approach and test their validity and tracer capabilities. METHODS: Data were obtained from 50 healthy control subjects, 46 patients with PSP Richardson syndrome, and 37 patients on the AD continuum. Tau PET data from 114 regions of interest were subjected to Elastic Net cross-validation linear classification analysis with a one-versus-the-rest multiclass strategy to obtain a linear function that discriminates diseases by maximizing the area under the receiver operating characteristic curve. We defined PSP- and AD-tau scores for each participant as values of the functions optimized for differentiating PSP (4R) and AD (3R + 4R), respectively, from others. RESULTS: The discriminatory ability of PSP- and AD-tau scores assessed as the area under the receiver operating characteristic curve was 0.98 and 1.00, respectively. PSP-tau scores correlated with the PSP rating scale in patients with PSP, and AD-tau scores correlated with Mini-Mental State Examination scores in healthy control-AD continuum patients. The globus pallidus and amygdala were highlighted as regions with high weight coefficients for determining PSP- and AD-tau scores, respectively. CONCLUSIONS: These findings highlight our technology's unbiased capability to identify topologies of 3R + 4R versus 4R tau deposits. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Movimiento , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Proteínas tau/metabolismo , Encéfalo/patología , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Parálisis Supranuclear Progresiva/patología , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Aprendizaje Automático
17.
Exp Eye Res ; 224: 109240, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36096190

RESUMEN

Tauopathies are a family of neurodegenerative diseases which predominately afflict the rapidly growing aging population suffering from various brain disorders including Alzheimer's disease, frontotemporal dementia with parkinsonism-17 and Pick disease. As the only visually accessible region of the central nervous system, in recent years, the retina has attracted extensive attention for its potential as a target for visualizing and quantifying emerging biomarkers of neurodegenerative diseases. Our previous study has found that retinal vascular inflammation and leakage occur at the very early stage of tauopathic mouse model. Here, we aimed to non-invasively visualize age-dependent alterations of retinal vasculature assessing the potential for using changes in retinal vasculature as the biomarker for the early diagnosis of tauopathy. Optical coherence tomography angiography (OCTA), a non-invasive depth-resolved high-resolution imaging technique was used to visualize and quantify tauopathy-induced alterations of retinal vasculature in P301S transgenic mice overexpressing the P301S mutant form of human tau and age-matched wild type littermate mice at 3, 6 and 10 months of age. We observed significant alterations of vascular features in the intermediate capillary plexus (ICP) and deep capillary plexus (DCP) but not in the superficial vascular complex (SVC) of P301S mice at early stages of tauopathy. With aging, alterations of vascular features in P301S mice became more prominent in all three vascular plexuses. Staining of retinal vasculature in flatmounts and trypsin digests of P301S mice at 10 months of age revealed decreased vessel density and increased acellular capillary formation, indicating that vascular degeneration also occurs during tauopathy. Overall, our results demonstrate that the changes in retinal vascular features accelerate during the progression of tauopathy. Vessels in the ICP and DCP may be more susceptible to tauopathy than vessels in the SVC. Since changes in retinal vasculature often precede tau pathology in the brain, non-invasive identification of retinal vascular alterations with OCTA may be a useful biomarker for the early diagnosis of tauopathy and monitoring its progression.


Asunto(s)
Tauopatías , Tomografía de Coherencia Óptica , Animales , Humanos , Ratones , Angiografía , Biomarcadores , Modelos Animales de Enfermedad , Angiografía con Fluoresceína/métodos , Ratones Transgénicos , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/patología , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Tomografía de Coherencia Óptica/métodos
18.
Neurobiol Aging ; 118: 44-54, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868093

RESUMEN

We investigated self-rating of cognitive task performance (self-appraisal) and the difference between self-rating and actual task performance (appraisal discrepancy) in cognitively healthy older adults and their relationship with cortical thickness and Alzheimer's disease (AD) biomarkers, amyloid and tau. All participants (N = 151) underwent neuropsychological testing and 1.5T structural magnetic resonance imaging. A subset (N = 66) received amyloid-PET with [11C] PiB and tau-PET with [18F] Flortaucipir. We found that worse performers had lower self-appraisal ratings, but still overestimated their performance, consistent with the Dunning-Kruger effect. Self-appraisal rating and appraisal discrepancy revealed distinct relationships with cortical thickness and AD pathology. Greater appraisal discrepancy, indicating overestimation, was related to thinning of inferior-lateral temporal, fusiform, and rostral anterior cingulate cortices. Lower self-appraisal was associated with higher entorhinal and inferior temporal tau. These results suggest that overestimation could implicate structural atrophy beyond AD pathology, while lower self-appraisal could indicate early behavioral alteration due to AD pathology, supporting the notion of subjective cognitive decline prior to objective deficits.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Metacognición , Tauopatías , Anciano , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides , Disfunción Cognitiva/psicología , Humanos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Tauopatías/diagnóstico por imagen , Proteínas tau
19.
ACS Chem Neurosci ; 13(14): 2222-2234, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35762647

RESUMEN

Tauopathies are a class of neurodegenerative disorders characterized by the accumulation of tau protein filaments in the brain. On the basis of isoforms with three or four microtubule-binding repeats (3R or 4R) that constitute tau filaments, tauopathies can be divided into 3R, 4R, and 3R/4R tauopathies. [18F]PI-2620 is a tau-positron emission tomography (PET) tracer that detects tau filaments in the 3R/4R tauopathy Alzheimer's disease (AD) and the 4R tauopathies corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) with differential binding characteristics. A multiscale simulation workflow, including molecular docking, molecular dynamics simulation, metadynamics, and Brownian dynamics, was applied to uncover the molecular basis for the different binding properties of [18F]PI-2620 in these tauopathies. The energetically best binding sites of [18F]PI-2620 in the AD-tau filament are located in the C-shaped groove of the filament core structure that is accessible to the outside. The most favorable binding sites in CBD-tau and PSP-tau filaments are localized to cavities in the inner filament core. Sites on the outer surface have higher binding free energies, and interaction of [18F]PI-2620 at these sites was short-lived in the molecular dynamics simulations. Computationally predicted associated rates of [18F]PI-2620 with the groove sites in the AD-tau filament were higher than association rates with the cavity sites in the CBD- and PSP-tau filaments. The results indicate that tau filaments in AD combine favorable energetic and kinetic properties with regard to tracer binding, while the binding of [18F]PI-2620 to filaments in CBD and PSP is kinetically restricted. Our findings reveal that distinct structural, energetic, and kinetic properties of tau filaments from AD, CBD, and PSP govern their interaction with PET tracers, which highlights the possibility to achieve tau isoform specificity in future tracer developments.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Isoformas de Proteínas/metabolismo , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Proteínas tau/metabolismo
20.
J Nucl Med ; 63(Suppl 1): 20S-26S, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35649647

RESUMEN

The advent of PET ligands that bind tau pathology has enabled the quantification and visualization of tau pathology in aging and in Alzheimer disease (AD). There is strong evidence from neuropathologic studies that the most widely used tau PET tracers (i.e., 18F-flortaucipir, 18F-MK6240, 18F-RO948, and 18F-PI2620) bind tau aggregates formed in AD in the more advanced (i.e., ≥IV) Braak stages. However, tracer binding in most non-AD tauopathies is weaker and overlaps to a large extent with known off-target binding regions, limiting the quantification and visualization of non-AD tau pathology in vivo. Off-target binding is generally present in the substantia nigra, basal ganglia, pituitary, choroid plexus, longitudinal sinuses, meninges, or skull in a tracer-specific manner. Most cross-sectional studies use the inferior aspect of the cerebellar gray matter as a reference region, whereas for longitudinal analyses, an eroded white matter reference region is sometimes selected. No consensus has yet been reached on whether to use partial-volume correction of tau PET data. Although an increased neocortical tau PET signal is rare in cognitively unimpaired individuals, even in amyloid-ß-positive cases, such a signal holds important prognostic information because preliminary data suggest that an elevated tau PET signal predicts cognitive decline over time. Also, in symptomatic stages of AD (i.e., mild cognitive impairment or AD dementia), tau PET shows great potential as a prognostic marker because an elevated baseline tau PET retention forecasts future cognitive decline and brain atrophy. For differential diagnostic use, the primary utility of tau PET is to differentiate AD dementia from other neurodegenerative diseases, as is in line with the conditions for the approval of 18F-flortaucipir by the U.S. Food and Drug Administration for clinical use. The differential diagnostic performance drops substantially at the mild-cognitive-impairment stage of AD, and there is no sufficient evidence for detection of sporadic non-AD primary tauopathies at the individual level for any of the currently available tau PET tracers. In conclusion, while the field is currently addressing outstanding methodologic issues, tau PET is gradually moving toward clinical application as a diagnostic and possibly prognostic marker in dementia expert centers and as a tool for selecting participants, assessing target engagement, and monitoring treatment effects in clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Tauopatías , Enfermedad de Alzheimer/metabolismo , Estudios Transversales , Humanos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Tauopatías/diagnóstico por imagen , Estados Unidos , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...