Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
1.
Lipids Health Dis ; 23(1): 144, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760797

RESUMEN

BACKGROUND: Cancer-associated cachexia (CAC) arises from malignant tumors and leads to a debilitating wasting syndrome. In the pathophysiology of CAC, the depletion of fat plays an important role. The mechanisms of CAC-induced fat loss include the enhancement of lipolysis, inhibition of lipogenesis, and browning of white adipose tissue (WAT). However, few lipid-metabolic enzymes have been reported to be involved in CAC. This study hypothesized that ELOVL6, a critical enzyme for the elongation of fatty acids, may be involved in fat loss in CAC. METHODS: Transcriptome sequencing technology was used to identify CAC-related genes in the WAT of a CAC rodent model. Then, the expression level of ELOVL6 and the fatty acid composition were analyzed in a large clinical sample. Elovl6 was knocked down by siRNA in 3T3-L1 mouse preadipocytes to compare with wild-type 3T3-L1 cells treated with tumor cell conditioned medium. RESULTS: In the WAT of patients with CAC, a significant decrease in the expression of ELOVL6 was found, which was linearly correlated with the extent of body mass reduction. Gas chromatographic analysis revealed an increase in palmitic acid (C16:0) and a decrease in linoleic acid (C18:2n-6) in these tissue samples. After treatment with tumor cell-conditioned medium, 3T3-L1 mouse preadipocytes showed a decrease in Elovl6 expression, and Elovl6-knockdown cells exhibited a reduction in preadipocyte differentiation and lipogenesis. Similarly, the knockdown of Elovl6 in 3T3-L1 cells resulted in a significant increase in palmitic acid (C16:0) and a marked decrease in oleic acid (C18:1n-9) content. CONCLUSION: Overall, the expression of ELOVL6 was decreased in the WAT of CAC patients. Decreased expression of ELOVL6 might induce fat loss in CAC patients by potentially altering the fatty acid composition of adipocytes. These findings suggest that ELOVL6 may be used as a valuable biomarker for the early diagnosis of CAC and may hold promise as a target for future therapies.


Asunto(s)
Células 3T3-L1 , Tejido Adiposo Blanco , Caquexia , Elongasas de Ácidos Grasos , Neoplasias , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Animales , Caquexia/genética , Caquexia/metabolismo , Caquexia/patología , Ratones , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/complicaciones , Neoplasias/patología , Masculino , Femenino , Ácido Palmítico/metabolismo , Lipogénesis/genética , Persona de Mediana Edad , Ácidos Grasos/metabolismo
2.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727299

RESUMEN

The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.


Asunto(s)
Adipogénesis , Tejido Adiposo Blanco , Envejecimiento , Obesidad , Humanos , Envejecimiento/patología , Obesidad/patología , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Adipocitos/metabolismo , Adipocitos/patología
3.
EBioMedicine ; 103: 105127, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677183

RESUMEN

BACKGROUND: Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS: We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS: We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION: These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING: Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.


Asunto(s)
Tejido Adiposo Blanco , Hígado Graso , Obesidad , Oxilipinas , Humanos , Obesidad/metabolismo , Obesidad/complicaciones , Femenino , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/etiología , Masculino , Oxilipinas/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Persona de Mediana Edad , Adulto , Inflamación/metabolismo , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Biomarcadores , Espectrometría de Masas en Tándem
4.
Arterioscler Thromb Vasc Biol ; 44(5): 1101-1113, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38545783

RESUMEN

BACKGROUND: Much of what we know about insulin resistance is based on studies from metabolically active tissues such as the liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance; however, the underlying mechanisms remain incompletely understood. Arf6 (ADP ribosylation factor 6) is a small GTPase that plays a critical role in endothelial cell function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. METHODS: We used mouse models of constitutive endothelial cell-specific Arf6 deletion (Arf6f/- Tie2Cre+) and tamoxifen-inducible Arf6 knockout (Arf6f/f Cdh5CreER+). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. We used a fluorescence microsphere-based technique to measure tissue blood flow. Skeletal muscle capillary density was assessed using intravital microscopy. RESULTS: Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide bioavailability but independent of altered acetylcholine-mediated or sodium nitroprusside-mediated vasodilation. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow-fed mice and glucose intolerance in high-fat diet-fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. CONCLUSIONS: Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.


Asunto(s)
Factor 6 de Ribosilación del ADP , Endotelio , Resistencia a la Insulina , Músculo Esquelético , Ratones , Factor 6 de Ribosilación del ADP/genética , Factor 6 de Ribosilación del ADP/metabolismo , Endotelio/metabolismo , Ratones Endogámicos C57BL , Intolerancia a la Glucosa , Tamoxifeno , Ratones Noqueados , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/metabolismo , Obesidad/patología , Glucosa/metabolismo , Dieta Alta en Grasa , Ratones Obesos , Vasodilatación
5.
Am J Pathol ; 194(6): 1033-1046, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38423355

RESUMEN

Low-grade chronic inflammation contributes to both aging and the pathogenesis of age-related diseases. White adipose tissue (WAT) in obese individuals exhibits chronic inflammation, which is associated with obesity-related disorders. Aging exacerbates obesity-related inflammation in WAT; however, the molecular mechanisms underlying chronic inflammation and its exacerbation by aging remain unclear. Age-related decline in activity of the proteasome, a multisubunit proteolytic complex, has been implicated in age-related diseases. This study employed a mouse model with decreased proteasomal function that exhibits age-related phenotypes to investigate the impact of adipocyte senescence on WAT inflammation. Transgenic mice expressing proteasomal subunit ß5t with weak chymotrypsin-like activity experience reduced lifespan and develop age-related phenotypes. Mice fed with a high-fat diet and experiencing proteasomal dysfunction exhibited increased WAT inflammation, increased infiltration of proinflammatory M1-like macrophages, and increased proinflammatory adipocytokine-like monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and tumor necrosis factor-α, which are all associated with activation of endoplasmic reticulum (ER) stress-related pathways. Impaired proteasomal activity also activated ER stress-related molecules and induced expression of proinflammatory adipocytokines in adipocyte-like cells differentiated from 3T3-L1 cells. Collectively, the results suggesed that impaired proteasomal activity increases ER stress and that subsequent inflammatory pathways play pivotal roles in WAT inflammation. Because proteasomal function declines with age, age-related proteasome impairment may be involved in obesity-related inflammation among elderly individuals.


Asunto(s)
Estrés del Retículo Endoplásmico , Inflamación , Ratones Transgénicos , Obesidad , Complejo de la Endopetidasa Proteasomal , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Inflamación/patología , Inflamación/metabolismo , Obesidad/metabolismo , Obesidad/patología , Ratones , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Adipocitos/metabolismo , Adipocitos/patología , Masculino , Macrófagos/metabolismo , Macrófagos/patología , Envejecimiento/patología , Envejecimiento/metabolismo , Tejido Adiposo/patología , Tejido Adiposo/metabolismo , Células 3T3-L1 , Enfermedad Crónica
6.
Int J Biol Macromol ; 257(Pt 1): 128296, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000580

RESUMEN

In recent years, the incidence of obesity has gradually increased due to high calorie diets and lack of exercise. Reducing energy intake or increasing energy expenditure is the most effective way to promote weight loss and reduce lipid levels. Activated beige adipocytes can increase energy consumption in the body, and inducing conversion of white adipocytes to brown can prevent and treat obesity. Taraxacum mongolicum polysaccharide (TMP) is a plant polysaccharide that has been widely used for its anti-tumour and antioxidant properties. However, little is known about the role of TMP in the browning of sheep white adipose tissue. The aim of this study was to explore the potential mechanism of TMP and miR-134-3p in regulating the browning of sheep white adipocytes, as well as the regulatory relationship between TMP and miR-134-3p. Our results showed that TMP had a positive regulatory effect on the proliferation and browning of sheep white adipocytes. In addition, miR-134-3p significantly inhibited browning activity and AKT/GSK-3ß signalling. Importantly, we found that TMP function required miR-134-3p mediation in the browning of sheep white adipocytes. Overall, our results suggested that TMP recruited beige adipocytes by regulating AKT/GSK-3ß signalling via miR-134-3p.


Asunto(s)
MicroARNs , Taraxacum , Animales , Ovinos , Adipocitos Blancos/patología , Glucógeno Sintasa Quinasa 3 beta , Proteínas Proto-Oncogénicas c-akt , MicroARNs/genética , Obesidad/etiología , Tejido Adiposo Blanco/patología
7.
Nat Cancer ; 4(11): 1544-1560, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749321

RESUMEN

Cachexia is a major cause of morbidity and mortality in individuals with cancer and is characterized by weight loss due to adipose and muscle tissue wasting. Hallmarks of white adipose tissue (WAT) remodeling, which often precedes weight loss, are impaired lipid storage, inflammation and eventually fibrosis. Tissue wasting occurs in response to tumor-secreted factors. Considering that the continuous endothelium in WAT is the first line of contact with circulating factors, we postulated whether the endothelium itself may orchestrate tissue remodeling. Here, we show using human and mouse cancer models that during precachexia, tumors overactivate Notch1 signaling in distant WAT endothelium. Sustained endothelial Notch1 signaling induces a WAT wasting phenotype in male mice through excessive retinoic acid production. Pharmacological blockade of retinoic acid signaling was sufficient to inhibit WAT wasting in a mouse cancer cachexia model. This demonstrates that cancer manipulates the endothelium at distant sites to mediate WAT wasting by altering angiocrine signals.


Asunto(s)
Tejido Adiposo Blanco , Caquexia , Neoplasias , Receptor Notch1 , Animales , Humanos , Masculino , Ratones , Tejido Adiposo Blanco/patología , Caquexia/patología , Neoplasias/complicaciones , Transducción de Señal , Tretinoina , Receptor Notch1/metabolismo
8.
Small ; 19(34): e2203725, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37104853

RESUMEN

Chronic white adipose tissue (WAT) inflammation has been recognized as a critical early event in the pathogenesis of obesity-related disorders. This process is characterized by the increased residency of proinflammatory M1 macrophages in WAT. However, the lack of an isogenic human macrophage-adipocyte model has limited biological studies and drug discovery efforts, highlighting the need for human stem cell-based approaches. Here, human induced pluripotent stem cell (iPSC) derived macrophages (iMACs) and adipocytes (iADIPOs) are cocultured in a microphysiological system (MPS). iMACs migrate toward and infiltrate into the 3D iADIPOs cluster to form crown-like structures (CLSs)-like morphology around damaged iADIPOs, recreating classic histological features of WAT inflammation seen in obesity. Significantly more CLS-like morphologies formed in aged and palmitic acid-treated iMAC-iADIPO-MPS, showing the ability to mimic inflammatory severity. Importantly, M1 (proinflammatory) but not M2 (tissue repair) iMACs induced insulin resistance and dysregulated lipolysis in iADIPOs. Both RNAseq and cytokines analyses revealed a reciprocal proinflammatory loop in the interactions of M1 iMACs and iADIPOs. This iMAC-iADIPO-MPS thus successfully recreates pathological conditions of chronically inflamed human WAT, opening a door to study the dynamic inflammatory progression and identify clinically relevant therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Resistencia a la Insulina , Humanos , Anciano , Animales , Ratones , Tejido Adiposo , Resistencia a la Insulina/fisiología , Sistemas Microfisiológicos , Tejido Adiposo Blanco/patología , Macrófagos , Obesidad , Inflamación/patología , Ratones Endogámicos C57BL
10.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982747

RESUMEN

White adipose tissue (WAT) fibrosis, characterized by an excess of extracellular (ECM) matrix components, is strongly associated with WAT inflammation and dysfunction due to obesity. Interleukin (IL)-13 and IL-4 were recently identified as critical mediators in the pathogenesis of fibrotic diseases. However, their role in WAT fibrosis is still ill-defined. We therefore established an ex vivo WAT organotypic culture system and demonstrated an upregulation of fibrosis-related genes and an increase of α-smooth muscle actin (αSMA) and fibronectin abundance upon dose-dependent stimulation with IL-13/IL-4. These fibrotic effects were lost in WAT lacking il4ra, which encodes for the underlying receptor controlling this process. Adipose tissue macrophages were found to play a key role in mediating IL-13/IL-4 effects in WAT fibrosis as their depletion through clodronate dramatically decreased the fibrotic phenotype. IL-4-induced WAT fibrosis was partly confirmed in mice injected intraperitoneally with IL-4. Furthermore, gene correlation analyses of human WAT samples revealed a strong positive correlation of fibrosis markers with IL-13/IL-4 receptors, whereas IL13 and IL4 correlations failed to confirm this association. In conclusion, IL-13 and IL-4 can induce WAT fibrosis ex vivo and partly in vivo, but their role in human WAT remains to be further elucidated.


Asunto(s)
Interleucina-13 , Interleucina-4 , Humanos , Ratones , Animales , Interleucina-13/genética , Interleucina-4/genética , Tejido Adiposo/patología , Tejido Adiposo Blanco/patología , Fibrosis
11.
J Immunol ; 210(8): 1086-1097, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36883861

RESUMEN

Fatty acid-binding protein 4 (FABP4) is a critical immune-metabolic modulator, mainly expressed in adipocytes and macrophages, secreted from adipocytes in association with lipolysis, and plays essential pathogenic roles in cardiovascular and metabolic diseases. We previously reported Chlamydia pneumoniae infecting murine 3T3-L1 adipocytes and causing lipolysis and FABP4 secretion in vitro. However, it is still unknown whether C. pneumoniae intranasal lung infection targets white adipose tissues (WATs), induces lipolysis, and causes FABP4 secretion in vivo. In this study, we demonstrate that C. pneumoniae lung infection causes robust lipolysis in WAT. Infection-induced WAT lipolysis was diminished in FABP4-/- mice or FABP4 inhibitor-pretreated wild-type mice. Infection by C. pneumoniae in wild-type but not FABP4-/- mice induces the accumulation of TNF-α- and IL-6-producing M1-like adipose tissue macrophages in WAT. Infection-induced WAT pathology is augmented by endoplasmic reticulum (ER) stress/the unfolded protein response (UPR), which is abrogated by treatment with azoramide, a modulator of the UPR. C. pneumoniae lung infection is suggested to target WAT and induce lipolysis and FABP4 secretion in vivo via ER stress/UPR. FABP4 released from infected adipocytes may be taken up by other neighboring intact adipocytes or adipose tissue macrophages. This process can further induce ER stress activation and trigger lipolysis and inflammation, followed by FABP4 secretion, leading to WAT pathology. A better understanding of the role of FABP4 in C. pneumoniae infection-induced WAT pathology will provide the basis for rational intervention measures directed at C. pneumoniae infection and metabolic syndrome, such as atherosclerosis, for which robust epidemiologic evidence exists.


Asunto(s)
Tejido Adiposo Blanco , Infecciones por Chlamydophila , Proteínas de Unión a Ácidos Grasos , Neumonía Bacteriana , Animales , Ratones , Tejido Adiposo Blanco/patología , Chlamydophila pneumoniae , Proteínas de Unión a Ácidos Grasos/metabolismo , Pulmón/microbiología , Pulmón/patología , Infecciones por Chlamydophila/patología , Neumonía Bacteriana/patología
12.
Biol Reprod ; 108(6): 945-959, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-36930063

RESUMEN

Polycystic ovary syndrome is a complicated hormonal and metabolic disorder. The exact pathogenesis of polycystic ovary syndrome is not clear thus far. Inflammation is involved in the progression of polycystic ovary syndrome. In addition, brown adipose tissue activity is impaired in polycystic ovary syndrome. Interestingly, glucagon-like peptide-1 receptor agonists have been reported to alleviate inflammation and promote browning of white adipose tissue. In this study, the effects of glucagon-like peptide-1 receptor agonists on polycystic ovary syndrome mice were explored. Mice were randomly assigned into four groups: control, dehydroepiandrosterone, dehydroepiandrosterone + liraglutide, and dehydroepiandrosterone + semaglutide. Relative indexes were measured after glucagon-like peptide-1 receptor agonist intervention. Glucose metabolism in polycystic ovary syndrome mice was ameliorated by glucagon-like peptide-1 receptor agonists, while the reproductive endocrine disorder of polycystic ovary syndrome mice was partially reversed. The messenger ribonucleic acid levels of steroidogenic enzymes and the expression of inflammatory mediators in serum and ovaries of polycystic ovary syndrome mice were improved. Furthermore, toll-like receptor 4 and phosphorylation of nuclear factor-kappa B protein levels were decreased by glucagon-like peptide-1 receptor agonists in ovary. Notably, after glucagon-like peptide-1 receptor agonist intervention, the expression of brown adipose tissue marker levels was considerably raised in the white adipose tissue of polycystic ovary syndrome mice. In conclusion, the hyperinsulinemia and hyperandrogenemia of polycystic ovary syndrome mice were alleviated by glucagon-like peptide-1 receptor agonist intervention, which was associated with mitigating inflammation and stimulating adipose tissue browning.


Asunto(s)
Hiperandrogenismo , Hiperinsulinismo , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Femenino , Humanos , Ratones , Animales , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón , Hiperinsulinismo/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Deshidroepiandrosterona/farmacología
13.
Cell Death Dis ; 14(2): 75, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725844

RESUMEN

Coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)) is primarily a respiratory illness. However, various extrapulmonary manifestations have been reported in patients with severe forms of COVID-19. Notably, SARS-CoV-2 was shown to directly trigger white adipose tissue (WAT) dysfunction, which in turn drives insulin resistance, dyslipidemia, and other adverse outcomes in patients with COVID-19. Although advanced age is the greatest risk factor for COVID-19 severity, published data on the impact of SARS-CoV-2 infection on WAT in aged individuals are scarce. Here, we characterized the response of subcutaneous and visceral WAT depots to SARS-CoV-2 infection in young adult and aged golden hamsters. In both age groups, infection was associated with a decrease in adipocyte size in the two WAT depots; this effect was partly due to changes in tissue's lipid metabolism and persisted for longer in aged hamsters than in young-adult hamsters. In contrast, only the subcutaneous WAT depot contained crown-like structures (CLSs) in which dead adipocytes were surrounded by SARS-CoV-2-infected macrophages, some of them forming syncytial multinucleated cells. Importantly, older age predisposed to a unique manifestation of viral disease in the subcutaneous WAT depot during SARS-CoV-2 infection; the persistence of very large CLSs was indicative of an age-associated defect in the clearance of dead adipocytes by macrophages. Moreover, we uncovered age-related differences in plasma lipid profiles during SARS-CoV-2 infection. These data suggest that the WAT's abnormal response to SARS-CoV-2 infection may contribute to the greater severity of COVID-19 observed in elderly patients.


Asunto(s)
Tejido Adiposo Blanco , COVID-19 , Animales , Cricetinae , Tejido Adiposo Blanco/patología , COVID-19/patología , Modelos Animales de Enfermedad , Mesocricetus , SARS-CoV-2
14.
J Hepatol ; 78(5): 901-913, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36717026

RESUMEN

BACKGROUND & AIMS: Hepatic steatosis is a hallmark of non-alcoholic fatty liver disease (NAFLD), a common comorbidity in type 2 diabetes mellitus (T2DM). The pathogenesis of NAFLD is complex and involves the crosstalk between the liver and the white adipose tissue (WAT). Vascular endothelial growth factor B (VEGF-B) has been shown to control tissue lipid accumulation by regulating the transport properties of the vasculature. The role of VEGF-B signaling and the contribution to hepatic steatosis and NAFLD in T2DM is currently not understood. METHODS: C57BL/6 J mice treated with a neutralizing antibody against VEGF-B, or mice with adipocyte-specific overexpression or under-expression of VEGF-B (AdipoqCre+/VEGF-BTG/+ mice and AdipoqCre+/Vegfbfl/+mice) were subjected to a 6-month high-fat diet (HFD), or chow-diet, whereafter NAFLD development was assessed. VEGF-B expression was analysed in WAT biopsies from patients with obesity and NAFLD in a pre-existing clinical cohort (n = 24 patients with NAFLD and n = 24 without NAFLD) and correlated to clinicopathological features. RESULTS: Pharmacological inhibition of VEGF-B signaling in diabetic mice reduced hepatic steatosis and NAFLD by blocking WAT lipolysis. Mechanistically we show, by using HFD-fed AdipoqCre+/VEGF-BTG/+ mice and HFD-fed AdipoqCre+/Vegfbfl/+mice, that inhibition of VEGF-B signaling targets lipolysis in adipocytes. Reducing VEGF-B signaling ameliorated NAFLD by decreasing WAT inflammation, resolving WAT insulin resistance, and lowering the activity of the hormone sensitive lipase. Analyses of human WAT biopsies from individuals with NAFLD provided evidence supporting the contribution of VEGF-B signaling to NAFLD development. VEGF-B expression levels in adipocytes from two WAT depots correlated with development of dysfunctional WAT and NAFLD in humans. CONCLUSIONS: Taken together, our data from mouse models and humans suggest that VEGF-B antagonism may represent an approach to combat NAFLD by targeting hepatic steatosis through suppression of lipolysis. IMPACT AND IMPLICATIONS: Non-alcoholic fatty liver disease (NAFLD) is a common comorbidity in type 2 diabetes mellitus (T2DM) and has a global prevalence of between 25-29%. There are currently no approved drugs for NAFLD, and given the scale of the ongoing diabetes epidemics, there is an urgent need to identify new treatment options. Our work suggests that VEGF-B antagonism may represent an approach to combat NAFLD by targeting hepatic steatosis through suppression of lipolysis. The neutralizing anti-VEGF-B antibody, which was used in this study, has already entered clinical trials for patients with diabetes. Therefore, we believe that our results are of great general interest to a broad audience, including patients and patient organizations, the medical community, academia, the life science industry and the public.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Lipólisis , Factor B de Crecimiento Endotelial Vascular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Hígado/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo/metabolismo
15.
Neurology ; 100(7): e703-e718, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36332987

RESUMEN

BACKGROUND AND OBJECTIVE: While underlying pathophysiology linking obesity to brain health is not completely understood, white adipose tissue (WAT) is considered a key player. In obesity, WAT becomes dysregulated, showing hyperplasia, hypertrophy, and eventually inflammation. This disbalance leads to dysregulated secretion of adipokines influencing both (cardio)vascular and brain health. Within this study, we investigated the association between omental WAT (oWAT) and subcutaneous WAT (scWAT) with brain structure and perfusion and cognition in adults with severe obesity. METHODS: Within the cross-sectional BARICO study, brain structure and perfusion and cognitive function were measured before bariatric surgery (BS) using MRI and cognitive assessments. During BS, oWAT and scWAT depots were collected and analyzed by histopathology. The number and diameter of adipocytes were quantified together with the amount of crown-like structures (CLS) as an indication of inflammation. Blood samples were collected to analyze adipokines and inflammatory markers. Neuroimaging outcomes included brain volumes, cortical thickness, white matter (WM) integrity, WM hyperintensities, cerebral blood flow using arterial spin labeling (ASL), and the ASL spatial coefficient of variation (sCoV), reflecting cerebrovascular health. RESULTS: Seventy-one patients were included (mean age 45.1 ± 5.8 years; 83.1% women; mean body mass index 40.8 ± 3.8 kg/m2). scWAT showed more CLS (z = -2.72, p < 0.01, r = -0.24) and hypertrophy compared with oWAT (F(1,64) = 3.99, p < 0.05, η2 = 0.06). Adiponectin levels were inversely associated with the average diameter of scWAT (ß = -0.31, 95% CI -0.54 to -0.08) and oWAT (ß = -0.33, 95% CI -0.55 to -0.09). Furthermore, the adipocyte diameter in oWAT was positively associated with the sCoV in the parietal cortex (ß = 0.33, 95% CI 0.10-0.60), and the number of adipocytes (per mm2) was positively associated with sCoV in the nucleus accumbens (NAcc) (ß = 0.34, 95% CI 0.09-0.61). Cognitive function did not correlate with any WAT parameter or plasma marker. These associations were highly influenced by age and sex. sCoV in the NAcc was positively associated with fasting plasma glucose (ß = 0.35, 95% CI 0.10-0.56). DISCUSSION: scWAT and oWAT are different in morphology and in their relationship with plasma markers and cerebrovascular health. Although scWAT showed more CLS and hypertrophy, scWAT was not associated with brain readouts. This study showed, however, important relationships between oWAT morphology and cerebrovascular health in obesity. TRIAL REGISTRATION INFORMATION: Trial Registration Number NTR7288 (trialregister.nl/trial/7090).


Asunto(s)
Obesidad Mórbida , Adulto , Humanos , Femenino , Persona de Mediana Edad , Masculino , Obesidad Mórbida/complicaciones , Obesidad Mórbida/patología , Obesidad Mórbida/cirugía , Estudios Transversales , Obesidad/complicaciones , Obesidad/diagnóstico por imagen , Obesidad/patología , Tejido Adiposo Blanco/diagnóstico por imagen , Tejido Adiposo Blanco/patología , Tejido Adiposo/patología , Cognición , Encéfalo/patología , Hipertrofia/patología , Perfusión , Inflamación/diagnóstico por imagen , Inflamación/patología , Adipoquinas
16.
Rev Physiol Biochem Pharmacol ; 186: 135-176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35915363

RESUMEN

People suffering from obesity and associated metabolic disorders including diabetes are increasing exponentially around the world. Adipose tissue (AT) distribution and alteration in their biochemical properties play a major role in the pathogenesis of these diseases. Emerging evidence suggests that AT heterogeneity and depot-specific physiological changes are vital in the development of insulin resistance in peripheral tissues like muscle and liver. Classically, AT depots are classified into white adipose tissue (WAT) and brown adipose tissue (BAT); WAT is the site of fatty acid storage, while BAT is a dedicated organ of metabolic heat production. The discovery of beige adipocyte clusters in WAT depots indicates AT heterogeneity has a more central role than hither to ascribed. Therefore, we have discussed in detail the current state of understanding on cellular and molecular origin of different AT depots and their relevance toward physiological metabolic homeostasis. A major focus is to highlight the correlation between altered WAT distribution in the body and metabolic pathogenesis in animal models and humans. We have also underscored the disparity in the molecular (including signaling) changes in various WAT tissues during diabetic pathogenesis. Exercise-mediated beneficial alteration in WAT physiology/distribution that protects against metabolic disorders is evolving. Here we have discussed the depot-specific biochemical adjustments induced by different forms of exercise. A detailed understanding of the molecular details of inter-organ crosstalk via substrate utilization/storage and signaling through chemokines provide strategies to target selected WAT depots to pharmacologically mimic the benefits of exercise countering metabolic diseases including diabetes.


Asunto(s)
Resistencia a la Insulina , Enfermedades Metabólicas , Animales , Humanos , Obesidad/metabolismo , Obesidad/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Enfermedades Metabólicas/metabolismo
17.
J Genet Genomics ; 50(1): 20-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35550871

RESUMEN

Dysregulation of microRNAs (miRNAs) in adipocytes plays a critical role in the pathogenesis of obesity. However, the signaling mechanisms regulating miRNAs production in adipose tissue remain largely unclear. Here, we show that adipose tissue-specific knockout of Ras homolog enriched in brain (Rheb), a direct upstream activator of mTOR, increases miR-182-5p level in mouse subcutaneous white adipose tissues. Interestingly, the inhibition of mTOR signaling by rapamycin has no effect on miR-182-5p level in primary subcutaneous white adipocytes, suggesting the presence of a mTOR-independent mechanism regulating Rheb-mediated miR-182-5p expression. Consistent with this view, Rheb-ablation activates the cAMP/PPARγ signaling pathway. In addition, treatment of white adipocytes with pioglitazone, a PPARγ agonist, dramatically upregulates miR-182-5p levels. Our study reveals a unique mechanism by which Rheb regulates miR-182-5p in adipocytes. Given that increasing miR-182-5p in adipose tissue promotes beige fat development, our study also suggests a unique mechanism by which Rheb promotes thermogenesis and energy expenditure.


Asunto(s)
MicroARNs , PPAR gamma , Animales , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , PPAR gamma/farmacología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Transducción de Señal , Obesidad/genética , Obesidad/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Encéfalo/metabolismo
18.
J Biol Chem ; 298(9): 102322, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926714

RESUMEN

During obesity, tissue macrophages increase in number and become proinflammatory, thereby contributing to metabolic dysfunction. Lipoprotein lipase (LPL), which hydrolyzes triglyceride in lipoproteins, is secreted by macrophages. However, the role of macrophage-derived LPL in adipose tissue remodeling and lipoprotein metabolism is largely unknown. To clarify these issues, we crossed leptin-deficient Lepob/ob mice with mice lacking the Lpl gene in myeloid cells (Lplm-/m-) to generate Lplm-/m-;Lepob/ob mice. We found the weight of perigonadal white adipose tissue (WAT) was increased in Lplm-/m-;Lepob/ob mice compared with Lepob/ob mice due to substantial accumulation of both adipose tissue macrophages and collagen that surrounded necrotic adipocytes. In the fibrotic epidydimal WAT of Lplm-/m-;Lepob/ob mice, we observed an increase in collagen VI and high mobility group box 1, while α-smooth muscle cell actin, a marker of myofibroblasts, was almost undetectable, suggesting that the adipocytes were the major source of the collagens. Furthermore, the adipose tissue macrophages from Lplm-/m-;Lepob/ob mice showed increased expression of genes related to fibrosis and inflammation. In addition, we determined Lplm-/m-;Lepob/ob mice were more hypertriglyceridemic than Lepob/ob mice. Lplm-/m-;Lepob/ob mice also showed slower weight gain than Lepob/ob mice, which was primarily due to reduced food intake. In conclusion, we discovered that the loss of myeloid Lpl led to extensive fibrosis of perigonadal WAT and hypertriglyceridemia. In addition to illustrating an important role of macrophage LPL in regulation of circulating triglyceride levels, these data show that macrophage LPL protects against fibrosis in obese adipose tissues.


Asunto(s)
Tejido Adiposo Blanco , Colágeno Tipo IV , Hipertrigliceridemia , Lipoproteína Lipasa , Obesidad , Actinas/metabolismo , Tejido Adiposo Blanco/patología , Animales , Colágeno Tipo IV/metabolismo , Fibrosis , Hipertrigliceridemia/genética , Hipertrigliceridemia/patología , Leptina/deficiencia , Leptina/genética , Lipoproteína Lipasa/genética , Lipoproteínas/metabolismo , Ratones , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Triglicéridos/sangre
19.
Int J Obes (Lond) ; 46(10): 1759-1769, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35794192

RESUMEN

OBJECTIVES: Obesity, a metabolic syndrome, is known to be related to inflammation, especially adipose tissue inflammation. Cellular interactions within the expanded white adipose tissue (WAT) in obesity contribute to inflammation and studies have suggested that inflammation is triggered by inflamed adipocytes that recruit M1 macrophages into WAT. What causes accumulation of unhealthy adipocytes is an important topic of investigation. This study aims to understand the action of Cellular Retinoic Acid Binding Protein 1 (CRABP1) in WAT inflammation. METHODS: Eight weeks-old wild type (WT) and Crabp1 knockout (CKO) mice were fed with a normal diet (ND) or high-fat diet (HFD) for 8 weeks. Body weight and food intake were monitored. WATs and serum were collected for cellular and molecular analyses to determine affected signaling pathways. In cell culture studies, primary adipocyte differentiation and bone marrow-derived macrophages (BMDM) were used to examine adipocytes' effects, mediated by CRABP1, in macrophage polarization. The 3T3L1-adipocyte was used to validate relevant signaling pathways. RESULTS: CKO mice developed an obese phenotype, more severely under high-fat diet (HFD) feeding. Further, CKO's WAT exhibited a more severe inflammatory state as compared to wild type (WT) WAT, with a significantly expanded M1-like macrophage population. However, this was not caused by intrinsic defects of CKO macrophages. Rather, CKO adipocytes produced a significantly reduced level of adiponectin and had significantly lowered mitochondrial DNA content. CKO adipocyte-conditioned medium, compared to WT control, inhibited M2-like (CD206+) macrophage polarization. Mechanistically, defects in CKO adipocytes involved the ERK1/2 signaling pathway that could be modulated by CRABP1. CONCLUSIONS: This study shows that CRABP1 plays a protective role against HFD-induced WAT inflammation through, in part, its regulation of adiponectin production and mitochondrial homeostasis in adipocytes, thereby modulating macrophage polarization in WAT to control its inflammatory potential.


Asunto(s)
Tejido Adiposo Blanco , Inflamación , Obesidad , Receptores de Ácido Retinoico , Adipocitos/metabolismo , Adiponectina/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Medios de Cultivo Condicionados , ADN Mitocondrial/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo
20.
Biofabrication ; 14(3)2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35504266

RESUMEN

Cancer-associated cachexia (CAC) is a complex metabolic and behavioral syndrome with multiple manifestations that involve systemic inflammation, weight loss, and adipose lipolysis. It impacts the quality of life of patients and is the direct cause of death in 20%-30% of cancer patients. The severity of fat loss and adipose tissue remodeling negatively correlate with patients' survival outcomes. To address the mechanism of fat loss and design potential approaches to prevent the process, it will be essential to understand CAC pathophysiology through white adipose tissue models. In the present study, an engineered human white adipose tissue (eWAT) model based on three-dimensional (3D) bioprinting was developed and induced with pancreatic cancer cell-conditioned medium (CM) to mimic the status of CACin vitro. We found that the CM induction significantly increased the lipolysis and accumulation of the extracellular matrix (ECM). The 3D eWATs were further vascularized to study the influence of vascularization on lipolysis and CAC progression, which was largely unknown. Results demonstrated that CM induction improved the angiogenesis of vascularized eWATs (veWATs), and veWATs demonstrated decreased glycerol release but increasedUCP1expression, compared to eWATs. Many unique inflammatory cytokines (IL-8, CXCL-1, GM-CSF, etc) from the CM were detected and supposed to contribute to eWAT lipolysis,UCP1up-regulation, and ECM development. In response to CM induction, eWATs also secreted inflammatory adipokines related to the metastatic ability of cancer, muscle atrophy, and vascularization (NGAL, CD54, IGFBP-2, etc). Our work demonstrated that the eWAT is a robust model for studying cachectic fat loss and the accompanying remodeling of adipose tissue. It is therefore a useful tool for future research exploring CAC physiologies and developing potential therapies.


Asunto(s)
Caquexia , Neoplasias , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Caquexia/etiología , Caquexia/metabolismo , Medios de Cultivo Condicionados/farmacología , Humanos , Lipólisis , Neoplasias/patología , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...