Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.787
Filtrar
1.
J Hazard Mater ; 471: 134437, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691934

RESUMEN

Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.


Asunto(s)
Biodegradación Ambiental , Glucolípidos , Oxigenasas de Función Mixta , Petróleo , Tensoactivos , Petróleo/metabolismo , Tensoactivos/metabolismo , Tensoactivos/química , Glucolípidos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Alcanos/metabolismo
2.
Eur J Med Chem ; 271: 116449, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691893

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 µg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.


Asunto(s)
Antibacterianos , Cumarinas , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Humanos , Relación Dosis-Respuesta a Droga , Ratones , Tensoactivos/farmacología , Tensoactivos/química , Tensoactivos/síntesis química
3.
Sci Rep ; 14(1): 10270, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704438

RESUMEN

Biosurfactants, as microbial bioproducts, have significant potential in the field of microbial enhanced oil recovery (MEOR). Biosurfactants are microbial bioproducts with the potential to reduce the interfacial tension (IFT) between crude oil and water, thus enhancing oil recovery. This study aims to investigate the production and characterization of biosurfactants and evaluate their effectiveness in increasing oil recovery. Pseudoxanthomonas taiwanensis was cultured on SMSS medium to produce biosurfactants. Crude oil was found to be the most effective carbon source for biosurfactant production. The biosurfactants exhibited comparable activity to sodium dodecyl sulfate (SDS) at a concentration of 400 ppm in reducing IFT. It was characterized as glycolipids, showing stability in emulsions at high temperatures (up to 120 °C), pH levels ranging from 3 to 9, and NaCl concentrations up to 10% (w/v). Response surface methodology revealed the optimized conditions for the most stable biosurfactants (pH 7, temperature of 40 °C, and salinity of 2%), resulting in an EI24 value of 64.45%. Experimental evaluations included sand pack column and core flooding studies, which demonstrated additional oil recovery of 36.04% and 12.92%, respectively. These results indicate the potential application of P. taiwanensis biosurfactants as sustainable and environmentally friendly approaches to enhance oil recovery in MEOR processes.


Asunto(s)
Petróleo , Tensoactivos , Tensoactivos/metabolismo , Tensoactivos/química , Petróleo/metabolismo , Xanthomonadaceae/metabolismo , Concentración de Iones de Hidrógeno , Tensión Superficial , Temperatura , Tecnología Química Verde/métodos , Dodecil Sulfato de Sodio/química , Emulsiones
4.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731483

RESUMEN

Rhamnolipids (RLs) are widely used biosurfactants produced mainly by Pseudomonas aeruginosa and Burkholderia spp. in the form of mixtures of diverse congeners. The global transcriptional regulator gene irrE from radiation-tolerant extremophiles has been widely used as a stress-resistant element to construct robust producer strains and improve their production performance. A PrhlA-irrE cassette was constructed to express irrE genes in the Pseudomonas aeruginosa YM4 of the rhamnolipids producer strain. We found that the expression of irrE of Deinococcus radiodurans in the YM4 strain not only enhanced rhamnolipid production and the strain's tolerance to environmental stresses, but also changed the composition of the rhamnolipid products. The synthesized rhamnolipids reached a maximum titer of 26 g/L, about 17.9% higher than the original, at 48 h. The rhamnolipid production of the recombinant strain was determined to be mono-rhamnolipids congener Rha-C10-C12, accounting for 94.1% of total products. The critical micelle concentration (CMC) value of the Rha-C10-C12 products was 62.5 mg/L and the air-water surface tension decreased to 25.5 mN/m. The Rha-C10-C12 products showed better emulsifying activity on diesel oil than the original products. This is the first report on the efficient production of the rare mono-rhamnolipids congener Rha-C10-C12 and the first report that the global regulator irrE can change the components of rhamnolipid products in Pseudomonas aeruginosa.


Asunto(s)
Glucolípidos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Glucolípidos/biosíntesis , Glucolípidos/metabolismo , Glucolípidos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Deinococcus/genética , Deinococcus/metabolismo , Tensoactivos/metabolismo , Tensoactivos/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Biomacromolecules ; 25(5): 2823-2837, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38602228

RESUMEN

Self-assembled nanostructures such as those formed by peptide amphiphiles (PAs) are of great interest in biological and pharmacological applications. Herein, a simple and widely applicable chemical modification, a urea motif, was included in the PA's molecular structure to stabilize the nanostructures by virtue of intermolecular hydrogen bonds. Since the amino acid residue nearest to the lipid tail is the most relevant for stability, we decided to include the urea modification at that position. We prepared four groups of molecules (13 PAs in all), with varying levels of intermolecular cohesion, using amino acids with distinct ß-sheet promoting potential and/or containing hydrophobic tails of distinct lengths. Each subset contained one urea-modified PA and nonmodified PAs, all with the same peptide sequence. The varied responses of these PAs to variations in pH, temperature, counterions, and biologically related proteins were examined using microscopic, X-ray, spectrometric techniques, and molecular simulations. We found that the urea group contributes to the stabilization of the morphology and internal arrangement of the assemblies against environmental stimuli for all peptide sequences. In addition, microbiological and biological studies were performed with the cationic PAs. These assays reveal that the addition of urea linkages affects the PA-cell membrane interaction, showing the potential to increase the selectivity toward bacteria. Our data indicate that the urea motif can be used to tune the stability of a wide range of PA nanostructures, allowing flexibility on the biomaterial's design and opening a myriad of options for clinical therapies.


Asunto(s)
Enlace de Hidrógeno , Urea , Urea/química , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Péptidos/farmacología , Nanoestructuras/química , Tensoactivos/química
6.
Bioresour Technol ; 401: 130738, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670290

RESUMEN

Depolymerization of carbohydrate biomass using a long-chain alcohol (transglycosylation) to produce alkyl glycoside-based bio-surfactants has been gaining industrial interest. This study introduces microwave-assisted transglycosylation in transforming wheat bran, a substantial agricultural side stream, into these valuable compounds. Compared to traditional heating, microwave-assisted processing significantly enhances the product yield by 53 % while reducing the reaction time by 72 %, achieving a yield of 29 % within 5 h. This enhancement results from the microwave's capacity to activate intermolecular hydrogen and glycosidic bonds, thereby facilitating transglycosylation. Life-cycle assessment and techno-economic analysis demonstrate the benefits of microwave heating in reducing energy consumption by 42 %, CO2 emissions by 56 %, and equipment, operational and production costs by 44 %, 35 % and 30 %, respectively. The study suggests that microwave heating is a promising approach for efficiently producing bio-surfactants from agricultural wastes, with potential cost reductions and environmental benefits that could enhance industrial biomass conversion processes.


Asunto(s)
Biomasa , Fibras de la Dieta , Glicósidos , Microondas , Tensoactivos , Tensoactivos/química , Glicosilación , Tecnología Química Verde/métodos
7.
Eur J Pharm Sci ; 197: 106765, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608735

RESUMEN

Lipid-based formulations (LBFs) are an enabling-formulation approach for lipophilic poorly water-soluble compounds. In LBFs, drugs are commonly pre-dissolved in lipids, and/or surfactants/cosolvents, hereby avoiding the rate-limiting dissolution step. According to the Lipid formulation classification system, proposed by Pouton in 2006, in type II LBFs a surfactant with an HLB-value lower than 12 is added to the lipids. If high drug doses are required, e.g. for preclinical toxicity studies, supersaturated LBFs prepared at elevated temperatures may be a possibility to increase drug exposure. In the present study, the impact of digestion on drug absorption in rats was studied by pre-dosing of the lipase inhibitor orlistat. The lipid chain length of the type II LBFs was varied by administration of a medium-chain- (MC) and a long-chain (LC)-based formulation. Different drug doses, both non-supersaturated and supersaturated, were applied. Due to an inherent precipitation tendency of cinnarizine in supersaturated LBFs, the effect of the addition of the precipitation inhibitor Soluplus® was also investigated. The pharmacokinetic results were also evaluated by multiple linear regression. In most cases LC-based LBFs did not perform better in vivo, in terms of a higher area under the curve (AUC0-24 h) and maximal plasma concentration (Cmax), than MC-based LBFs. The administration of supersaturated LBFs resulted in increased AUC0-24 h (1.5 - 3.2-fold) and Cmax (1.1 - 2.6-fold)-values when compared to the non-supersaturated equivalents. Lipase inhibition led to a decreased drug exposure in most cases, especially for LC formulations (AUC0-24 h reduced to 47 - 67%, Cmax to 46 - 62%). The addition of Soluplus® showed a benefit to drug absorption from supersaturated type II LBFs (1.2 - 1.7-fold AUC0-24 h), due to an increased solubility of cinnarizine in the formulation. Upon dose-normalization of the pharmacokinetic parameters, no beneficial effect of Soluplus® could be demonstrated.


Asunto(s)
Cinarizina , Lípidos , Cinarizina/química , Cinarizina/farmacocinética , Cinarizina/administración & dosificación , Animales , Masculino , Lípidos/química , Solubilidad , Lactonas/química , Lactonas/farmacocinética , Lactonas/administración & dosificación , Ratas Wistar , Orlistat/administración & dosificación , Orlistat/farmacocinética , Absorción Intestinal , Ratas , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Lipasa/antagonistas & inhibidores , Polivinilos/química , Precipitación Química , Tensoactivos/química , Química Farmacéutica/métodos
8.
ACS Appl Mater Interfaces ; 16(17): 22558-22570, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38637157

RESUMEN

The development of nanopesticides provides new avenues for pesticide reduction and efficiency improvement. However, the size effect of nanopesticides remains unclear, and its underlying mechanisms of influence have become a major obstacle in the design and application of pesticide nanoformulations. In this research, the noncarrier-coated emamectin benzoate (EB) solid dispersions (Micro-EB and Nano-EB) were produced under a constant surfactant-to-active ingredient ratio by a self-emulsifying-carrier solidification technique. The particle size of Micro-EB was 162 times that of spherical Nano-EB. The small size and large specific surface area of Nano-EB facilitated the adsorption of surfactants on the surface of the particles, thereby improving its dispersibility, suspensibility, and stability. The pinning effect of nanoparticles significantly suppressed droplet retraction and rebounding. Moreover, Nano-EB exhibited a 25% higher retention of the active ingredient on cabbage leaves and a 70% higher washing resistance than Micro-EB, and both were significantly different. The improvement of abilities in wetting, spreading, and retention of Nano-EB on crop leaves contributed to the increase in foliar utilization, which further resulted in a 1.6-fold enhancement of bioactivity against target Spodoptera exigua compared to Micro-EB. Especially, Nano-EB did not exacerbate the safety risk to the nontarget organism zebrafish with no significant difference. This study elaborates the size effect on the effectiveness and safety of pesticide formulations and lays a theoretical foundation for the development and rational utilization of efficient and environmentally friendly nanopesticides.


Asunto(s)
Ivermectina , Ivermectina/análogos & derivados , Nanopartículas , Tamaño de la Partícula , Spodoptera , Ivermectina/farmacología , Ivermectina/química , Animales , Spodoptera/efectos de los fármacos , Nanopartículas/química , Insecticidas/farmacología , Insecticidas/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Tensoactivos/química , Tensoactivos/farmacología , Brassica/efectos de los fármacos
9.
Environ Sci Technol ; 58(19): 8565-8575, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38575864

RESUMEN

Benzo[a]pyrene is difficult to remove from soil due to its high octanol/water partition coefficient. The use of mixed surfactants can increase solubility but with the risk of secondary soil contamination, and the compounding mechanism is still unclear. This study introduced a new approach using environmentally friendly fatty acid methyl ester sulfonate (MES) and alkyl polyglucoside (APG) to solubilize benzo[a]pyrene. The best result was obtained when the ratio of MES/APG was 7:1 under 6 g/L total concentration, with an apparent solubility (Sw) of 8.58 mg/L and a molar solubilization ratio (MSR) of 1.31 for benzo[a]pyrene, which is comparable to that of Tween 80 (MSR, 0.95). The mechanism indicates that the hydroxyl groups (-OH) in APG form "O-H···OSO2-" hydrogen bonding with the sulfonic acid group (-SO3-) of MES, which reduces the electrostatic repulsion between MES molecules, thus facilitating the formation of large and stable micelles. Moreover, the strong solubilizing effect on benzo[a]pyrene should be ascribed to the low polarity of ester groups (-COOCH3) in MES. Functional groups capable of forming hydrogen bonds and having low polarity are responsible for the enhanced solubilization of benzo[a]pyrene. This understanding helps choose suitable surfactants for the remediation of PAH-contaminated soils.


Asunto(s)
Benzo(a)pireno , Solubilidad , Tensoactivos , Tensoactivos/química , Benzo(a)pireno/química , Contaminantes del Suelo/química
10.
Forensic Sci Int ; 358: 112019, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599146

RESUMEN

Iron oxide powder suspension (FePS) is a fingermark development technique that can be used on adhesive and non-porous surfaces, the efficacy of which is known to be influenced by the surfactant used in the formulation. Despite previous work optimising surfactants for use in FePS, there is limited understanding of the interactions between surfactants, powders and fingermark residue which aid the successful development of fingermarks. To better understand the effect of surfactant on development quality produced by FePS, this research assessed a wide range of surfactants of different ionic natures and evaluated their ability to develop fingermarks based on the quality of ridge detail, contrast and background development produced. It was found that surfactants play a critical role in the selective deposition of powder on fingermark residue, as formulations made with only water (no surfactant) produced heavy background deposition. The efficacy of each surfactant depended on the quality parameter considered, and the addition of some surfactants hindered fingermark development. Effective surfactants such as T20, KP and TX100 prevented background development and produced well contrasted developed marks. Poor contrast was produced by LN, SP80/T80 and T80 due to indiscriminate powder deposition either across the entire sample or preventing any powder to deposit on the surface, demonstrating the role surfactants play in allowing powder deposition in this technique. The effectiveness of a surfactant in PS was not directly dependent on its ionic nature, and most surfactants were more effective when diluted from stock concentrations. This research has provided a robust base for future work improving fundamental understanding of FePS, which will greatly aid the efficacy of future optimisation efforts.


Asunto(s)
Dermatoglifia , Compuestos Férricos , Polvos , Tensoactivos , Suspensiones , Tensoactivos/química , Humanos , Compuestos Férricos/química , Propiedades de Superficie
11.
J Hazard Mater ; 470: 134190, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593659

RESUMEN

Organophosphorus compounds (OPs), such as VX, pose a significant threat due to their neurotoxic and hazardous properties. Skin decontamination is essential to avoid irreversible effects. Fuller's earth (FE), a phyllosilicate conventionally employed in powder form, has demonstrated decontamination capacity against OPs. The aim of this study was to develop a formulation that forms a film on the skin, with a significant OP removal capacity (>95 %) coupled with sequestration capabilities, favorable drying time and mechanical properties to allow for easy application and removal, particularly in emergency context. Various formulations were prepared using different concentrations of polyvinyl alcohol (PVA), FE and surfactants. Their removal and sequestration capacity was tested using paraoxon-ethyl (POX), a chemical that simulates the behavior of VX. Formulations with removal capacity levels surpassing 95 % were mechanically characterized and cell viability assays were performed on Normal Human Dermal Fibroblast (NHDF). The four most promising formulations were used to assess decontamination efficacy on pig ear skin explants. These formulations showed decontamination levels ranging from 84.4 ± 4.7 % to 96.5 ± 1.3 %, which is equivalent to current decontamination methods. These results suggest that this technology could be a novel and effective tool for skin decontamination following exposure to OPs.


Asunto(s)
Descontaminación , Paraoxon , Piel , Descontaminación/métodos , Animales , Piel/efectos de los fármacos , Humanos , Porcinos , Paraoxon/toxicidad , Paraoxon/química , Compuestos de Aluminio/química , Supervivencia Celular/efectos de los fármacos , Silicatos/química , Alcohol Polivinílico/química , Compuestos de Magnesio/química , Compuestos de Magnesio/farmacología , Tensoactivos/química , Fibroblastos/efectos de los fármacos
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124237, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579427

RESUMEN

In this study, we have co-loadedatorvastatin (ATR) and quercetin (QCT) in a nonionic microemulsion. After developing a derivative ratio spectrophotometric technique for simultaneous analysis of ATR and QCT, pseudoternary phase diagram was constructed utilizing1:4 d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and ethanol as surfactant and cosurfactant, respectively. Oleic acid was used as oil phase. Structural characterization of the formulation was carried out along a water dilution line created in monophasic region. Characterizations at these dilution points were performed using dynamic light scattering and polarized light microscopy. The average hydrodynamic size of the optimized formulation was found to be 18.9 nm and it did not change upon loading of ATR and QCT. In vitro release was assessed for the formulations loaded with different ratios of ATR and QCT, and the data were fitted to different mathematical models. Interestingly, we noticed differences in release kinetics during changes in dose ratios, particularly for QCT. Higuchi kinetics, observed at equal dose, shifted to Korsmeyer-Peppas model at higher QCT-ATR ratio (2:1 and 4:1). This difference is attributable to the ability of QCT molecules of overwhelming the interface at higher concentrations. Altogether, our observations highlight that the ratio of payloads should be selected carefully in order to avoid unpredictable release patterns.


Asunto(s)
Quercetina , Tensoactivos , Quercetina/química , Atorvastatina , Solubilidad , Tensoactivos/química , Emulsiones/química
13.
Soft Matter ; 20(15): 3243-3247, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572565

RESUMEN

In this study, by fabricating DNA doped with tetraphenylethene-containing ammonium surfactant, the resulting solvent-free DNA ionic complex could undergo a humidity-induced phase change that could be well tracked by the fluorescence signal of the surfactant. Taking advantage of the humidity-induced change in fluorescence, the reported ionic DNA complex could accurately indicate the humidity in real time.


Asunto(s)
Cristales Líquidos , Cristales Líquidos/química , Humedad , Materiales Biocompatibles , ADN/química , Tensoactivos/química
14.
Pestic Biochem Physiol ; 201: 105897, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685223

RESUMEN

Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization. Our formulation, consisting of 8% abamectin, 1% antioxidant BHT (2,6-di-tert-butyl-4-methylphenol), 12% complex surfactants, and 79% sodium benzoate, significantly increased the pseudo-solubility of abamectin by at least 3300 times and reduced its particle size to a mere 15 nm, much smaller than traditional emulsion in water (EW) and water-dispersible granule (WDG) forms. This reduction in particle size and increase in surface activity resulted in improved foliar adhesion and retention, enabling a more efficient application without the need for organic solvents. The inclusion of antioxidants also enhanced photostability compared to EW, and overall stability tests confirmed SND's resilience under various storage conditions. Bioactivity tests demonstrated a marked increase in toxicity against diamondback moths (Plutella xylostella L.) with abamectin SND, which exhibited 3.7 and 7.6 times greater efficacy compared to EW and WDG, respectively. These findings underscore the critical role of small particle size, high surface activity, and strong antioxidant properties in improving the performance and bioactivity of abamectin SND, highlighting its significance in the design and development of high-efficiency, eco-friendly nanopesticides and contributing valuably to sustainable agricultural practices.


Asunto(s)
Ivermectina , Ivermectina/análogos & derivados , Ivermectina/farmacología , Ivermectina/química , Animales , Insecticidas/farmacología , Insecticidas/química , Tamaño de la Partícula , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Mariposas Nocturnas/efectos de los fármacos , Tensoactivos/farmacología , Tensoactivos/química , Larva/efectos de los fármacos , Emulsiones
15.
Molecules ; 29(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675589

RESUMEN

The aim of this study was to develop cholic-acid-stabilized itraconazole nanosuspensions (ITZ-Nanos) with the objective of enhancing drug dissolution and oral absorption. A laboratory-scale microprecipitation-high-pressure homogenization method was employed for the preparation of the ITZ-Nanos, while dynamic light scattering, transmission electron microscope analysis, X-ray diffraction, differential scanning calorimetry, and high-performance liquid chromatography analysis were utilized to evaluate their physicochemical properties. The absorption and bioavailability of the ITZ-Nanos were assessed using Caco-2 cells and rats, with Sporanox® pellets as a comparison. Prior to lyophilization, the particle size of the ITZ-Nanos measured approximately 225.7 nm. Both X-ray diffraction and differential scanning calorimetry confirmed that the ITZ remained crystalline within the nanocrystals. Compared to the pellets, the ITZ-Nanos exhibited significantly higher levels of supersaturation dissolution and demonstrated enhanced drug uptake by the Caco-2 cells. The AUC(0-t) value for the ITZ-Nanos in rats was 1.33-fold higher than that observed for the pellets. These findings suggest that cholic acid holds promise as a stabilizer for ITZ nanocrystals, as well as potentially other nanocrystals.


Asunto(s)
Itraconazol , Nanopartículas , Solubilidad , Tensoactivos , Itraconazol/química , Itraconazol/farmacocinética , Itraconazol/administración & dosificación , Nanopartículas/química , Humanos , Células CACO-2 , Animales , Ratas , Administración Oral , Tensoactivos/química , Masculino , Disponibilidad Biológica , Tamaño de la Partícula , Difracción de Rayos X , Rastreo Diferencial de Calorimetría , Ácido Cólico/química
16.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675617

RESUMEN

Nanoemulsions are gaining interest in a variety of products as a means of integrating easily degradable bioactive compounds, preserving them from oxidation, and increasing their bioavailability. However, preparing stable emulsion compositions with the desired characteristics is a difficult task. The aim of this study was to encapsulate the Tinospora cordifolia aqueous extract (TCAE) into a water in oil (W/O) nanoemulsion and identify its critical process and formulation variables, like oil (27-29.4 mL), the surfactant concentration (0.6-3 mL), and sonication amplitude (40% to 100%), using response surface methodology (RSM). The responses of this formulation were studied with an analysis of the particle size (PS), free fatty acids (FFAs), and encapsulation efficiency (EE). In between, we have studied a fishbone diagram that was used to measure risk and preliminary research. The optimized condition for the formation of a stable nanoemulsion using quality by design was surfactant (2.43 mL), oil concentration (27.61 mL), and sonication amplitude (88.6%), providing a PS of 171.62 nm, FFA content of 0.86 meq/kg oil and viscosity of 0.597 Pa.s for the blank sample compared to the enriched TCAE nanoemulsion with a PS of 243.60 nm, FFA content of 0.27 meq/kg oil and viscosity of 0.22 Pa.s. The EE increases with increasing concentrations of TCAE, from 56.88% to 85.45%. The RSM response demonstrated that both composition variables had a considerable impact on the properties of the W/O nanoemulsion. Furthermore, after the storage time, the enriched TCAE nanoemulsion showed better stability over the blank nanoemulsion, specially the FFAs, and the blank increased from 0.142 to 1.22 meq/kg oil, while TCAE showed 0.266 to 0.82 meq/kg.


Asunto(s)
Emulsiones , Tamaño de la Partícula , Extractos Vegetales , Tinospora , Agua , Emulsiones/química , Extractos Vegetales/química , Tinospora/química , Agua/química , Sonicación , Nanopartículas/química , Aceites/química , Tensoactivos/química
17.
Anal Chem ; 96(17): 6746-6755, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38632675

RESUMEN

Nonionic surfactant excipients (NISEs) are commonly added to biologics formulations to mitigate the effects of stress incurred by the active biotherapeutic during manufacturing, transport, and storage. During manufacturing, NISEs are added by dilution of a stock solution directly into a protein formulation, and their accurate addition is critical in maintaining the quality and integrity of the drug product and thus ensuring patient safety. This is especially true for the common NISEs, polysorbates 20 and 80 (PS20 and PS80, respectively) and poloxamer 188 (P188). With the increasing diversity of biologic modalities within modern pharmaceutical pipelines, there is thus a critical need to develop and deploy convenient and user-accessible analytical techniques that can rapidly and reliably quantify these NISEs under biopharmaceutically relevant conditions. We thus pursued 60 MHz benchtop quantitative NMR (qNMR) as a nondestructive and user-friendly analytical technique for the quantification of PS20, PS80, and P188 under such conditions. We demonstrated the ability of benchtop qNMR (1) to quantify simulated PS20, PS80, and P188 stock solutions representative of those used during the drug substance (DS) formulation step in biomanufacturing and (2) to quantify these NISEs at and below their target concentrations (≤0.025% w/v) directly in biologics formulations containing histidine, sucrose, and one of three biotherapeutic modalities (monoclonal antibody, antibody-drug conjugate, and Fc-fusion protein). Our results demonstrate that benchtop qNMR offers a fit-for-purpose, reliable, user-friendly, and green analytical route by which NISE of interest to the biopharmaceutical industry may be readily and reliably quantified. We conclude that benchtop qNMR has the potential to be applied to other excipient formulation components in the presence of various biological modalities as well as the potential for routine integration within analytical and QC laboratories across pharmaceutical development and manufacturing sites.


Asunto(s)
Excipientes , Espectroscopía de Resonancia Magnética , Tensoactivos , Tensoactivos/química , Excipientes/química , Excipientes/análisis , Espectroscopía de Resonancia Magnética/métodos , Polisorbatos/química , Poloxámero/química , Productos Biológicos/química , Productos Biológicos/análisis
18.
Environ Sci Technol ; 58(17): 7628-7635, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38646668

RESUMEN

Partitioning from water to nonaqueous phases is an important process that controls the behavior of contaminants in the environment and biota. However, for ionic chemicals including many perfluoroalkyl and polyfluoroalkyl substances (PFAS), environmentally relevant partition coefficients cannot be predicted using the octanol/water partition coefficient, which is commonly used as a hydrophobicity indicator for neutral compounds. As an alternative, this study measured C18 liquid chromatography retention times of 39 anionic PFAS and 20 nonfluorinated surfactants using isocratic methanol/water eluent systems. By measuring a series of PFAS with different perfluoroalkyl chain lengths, retention factors at 100% water (k0) were successfully extrapolated even for long-chain PFAS. Molecular size was the most important factor determining the k0 of PFAS and non-PFAS, suggesting that the cavity formation process is the key driver for retention. Log k0 showed a high correlation with the log of partition coefficients from water to the phospholipid membrane, air/water interface, and soil organic carbon. The results indicate the potential of C18 retention factors as predictive descriptors for anionic PFAS partition coefficients and the possibility of developing a more comprehensive multiparameter model for the partitioning of anionic substances in general.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Aniones/química , Adsorción , Fluorocarburos/química , Tensoactivos/química , Agua/química , Cromatografía Liquida
19.
Environ Monit Assess ; 196(5): 430, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578570

RESUMEN

Arsenic contamination in soils poses a critical global challenge, yet the influence of surfactants on arsenic adsorption behavior is often underestimated. This study aims to investigate the effects of three representative surfactants, namely cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyethylene glycol anhydrous sugar alcohol monooleate (Tween 80), on arsenic adsorption behavior in soils. The adsorption isotherm shifts from a single Temkin model without surfactants to both the Langmuir and Temkin models in the presence of surfactants, indicating the simultaneous occurrence of monolayer and multilayer adsorption for arsenic in soils. Moreover, the surfactants can inhibit the adsorption and hasten the attainment of adsorption equilibrium. SDS displayed the most inhibitory effect on arsenic adsorption, followed by Tween 80 and CTAB, due to the competitive adsorption, electrostatic interaction, and hydrophobic interaction. Variations in zeta potential with different surfactants further elucidate this inhibitory phenomenon. Through orthogonal experiment analyses, pH emerges as a primary factor influencing arsenic adsorption in soils, with surfactant concentration and type identified as secondary factors. Temperature notably affects CTAB, with the adsorption inhibition rate plummeting to a mere 0.88% at 50 °C. Sequential extraction analysis revealed that surfactants enhanced the bioavailability of arsenic. The FTIR, XRD, SEM, and CA analyses further support the mechanism underlying the effect of surfactants on arsenic adsorption in soil. These analyses indicate that surfactants modify the composition and abundance of functional groups, hinder the formation of arsenic-containing substances, and improve soil compactness, smoothness, and hydrophilicity. This study provides valuable insights into the effect of surfactants in arsenic-contaminated soils, which is often ignored in previous work.


Asunto(s)
Arsénico , Tensoactivos , Tensoactivos/química , Suelo/química , Polisorbatos , Cetrimonio , Adsorción , Arsénico/química , Monitoreo del Ambiente
20.
Top Curr Chem (Cham) ; 382(2): 11, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589726

RESUMEN

Silicone surfactants have garnered significant research attention owing to their superior properties, such as wettability, ductility, and permeability. Small-molecular silicone surfactants with simple molecular structures outperform polymeric silicone surfactants in terms of surface activity, emulsification, wetting, foaming, and other areas. Moreover, silicone surfactants with small molecules exhibit a diverse and rich molecular structure. This review discusses various synthetic routes for the synthesis of different classes of surfactants, including single-chain, "umbrella" structure, double chain, bolaform, Gemini, and stimulus-responsive surfactants. The fundamental surface/interface properties of the synthesized surfactants are also highlighted. Additionally, these surfactants have demonstrated enormous potential in agricultural synergism, drug delivery, mineral flotation, enhanced oil recovery, separation, and extraction, and foam fire-fighting.


Asunto(s)
Siliconas , Tensoactivos , Tensoactivos/química , Propiedades de Superficie , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...