Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(13): 7010-7020, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529524

RESUMEN

Cyetpyrafen is a recently developed acaricide. The citrus red mite, Panonychus citri (McGregor), has developed significant resistance to cyetpyrafen. However, the molecular mechanism underlying the cyetpyrafen resistance in P. citri remains unclear. Glutathione S-transferases (GSTs) play a critical role in arthropod pesticide resistance. This study showed that GSTs were potentially related to the resistance of P. citri to cyetpyrafen through synergistic experiments and enzyme activity analysis. An omega-family GST gene, PcGSTO1, was significantly up-regulated in the egg, nymph, and adult stages of the cyetpyrafen-resistant strain. Additionally, silencing of PcGSTO1 significantly increased the mortality of P. citri to cyetpyrafen and recombinant PcGSTO1 demonstrated the ability to metabolize cyetpyrafen. Our results indicated that the overexpression of PcGSTO1 is associated with cyetpyrafen resistance in P. citri, and they also provided valuable information for managing resistance in P. citri.


Asunto(s)
Acaricidas , Tetranychidae , Animales , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Tetranychidae/genética , Tetranychidae/metabolismo , Acaricidas/farmacología , Acaricidas/metabolismo
2.
Insect Biochem Mol Biol ; 164: 104039, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992878

RESUMEN

The molecular mechanisms of amitraz and chlorfenapyr resistance remain only poorly understood for major agricultural pests and vectors of human diseases. This study focusses on a multi-resistant field strain of the crop pest Tetranychus urticae, which could be readily selected in the laboratory to high levels of amitraz and chlorfenapyr resistance. Toxicity experiments using tralopyril, the active toxophore of chlorfenapyr, suggested decreased activation as a likely mechanism underlying resistance. Starting from the same parental strain, transcriptome profiling revealed that a cluster of detoxifying genes was upregulated after amitraz selection, but unexpectedly downregulated after chlorfenapyr selection. Further functional validation associated the upregulation of CYP392A16 with amitraz metabolism and the downregulation of CYP392D8 with reduced activation of chlorfenapyr to tralopyril. Genetic mapping (QTL analysis by BSA) was conducted in an attempt to unravel the genetic mechanisms of expression variation and resistance. This revealed that chlorfenapyr resistance was associated with a single QTL, while 3 QTLs were uncovered for amitraz resistance. Together with the observed contrasting gene expression patterns, we argue that transcriptional regulators most likely underly the distinct expression profiles associated with resistance, but these await further functional validation.


Asunto(s)
Acaricidas , Piretrinas , Tetranychidae , Humanos , Animales , Piretrinas/farmacología , Piretrinas/metabolismo , Toluidinas/farmacología , Toluidinas/metabolismo , Tetranychidae/genética , Tetranychidae/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Acaricidas/farmacología , Acaricidas/metabolismo
3.
Pest Manag Sci ; 80(4): 2154-2161, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38153938

RESUMEN

BACKGROUND: Rice is one of the most consumed cereals in the world. Productivity losses are caused by different biotic stresses. One of the most common is the phytophagous mite Schizotetranychus oryzae Rossi de Simons (Acari: Tetranychidae), which inhibits plant development and seed production. The identification of plant defense proteins is important for a better understanding of the mite-plant interaction. We previously detected a high expression of Osmotin1 protein in mite-resistant rice cultivars, under infested conditions, suggesting it could be involved in plant defense against mite attack. We therefore aimed to evaluate the responses of three rice lines overexpressing Osmotin1 (OSM1-OE) and three lines lacking the Osmotin1 gene (osm1-ko) to mite attack. RESULTS: The numbers of individuals (adults, immature stages, and eggs) were significantly lower in OSM1-OE lines than those in wild-type (WT) plants. On the other hand, the osm1-ko lines showed larger numbers of mites per leaf than WT plants. When plants reached the full maturity stage, two out of the three infested OSM1-OE lines presented lower plant height than WT, while the three osm1-ko lines (infested or not) presented higher plant height than WT. The reduction in seed number caused by mite infestation was lower in OSM1-OE lines (12-19%) than in WT plants (34%), while osm1-ko lines presented higher reduction (24-54%) in seed number than WT plants (13%). CONCLUSION: These data suggest that Osmotin1 is involved in rice resistance to S. oryzae infestation. This is the first work showing increased plant resistance to herbivory overexpressing an Osmotin gene. © 2023 Society of Chemical Industry.


Asunto(s)
Infestaciones por Ácaros , Ácaros , Oryza , Tetranychidae , Humanos , Animales , Tetranychidae/genética , Tetranychidae/metabolismo , Oryza/genética , Oryza/metabolismo , Ácaros/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Agric Food Chem ; 71(49): 19465-19474, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38048568

RESUMEN

The citrus red mite Panonychus citri has developed strong resistance to acaricides. Cytochrome P450 monooxygenases (P450s) can detoxify pesticides and are involved in pesticide resistance in many insects. Here, a pyridaben-resistant P. citri strain showed cross-resistance to cyenopyrafen, bifenazate, fenpyroximate, and tolfenpyrad. Piperonyl butoxide, a P450 inhibitor, significantly increased the toxicity of pyridaben to resistant (Pyr_Rs) and susceptible (Pyr_Control) P. citri strains. P450 activity was significantly higher in Pyr_Rs than in Pyr_Control. Analyses of RNA-Seq data identified a P450 gene (CYP4CL2) that is potentially involved in pyridaben resistance. Consistently, it was up-regulated in two field-derived resistant populations (CQ_WZ and CQ_TN). RNA interference-mediated knockdown of CYP4CL2 significantly decreased the pyridaben resistance in P. citri. Transgenic Drosophila melanogaster expressing CYP4CL2 showed increased pyridaben resistance. Molecular docking analysis showed that pyridaben could bind to several amino acids at substrate recognition sites in CYP4CL2. These findings shed light on P450-mediated pyridaben resistance in pest mites.


Asunto(s)
Acaricidas , Citrus , Ácaros , Tetranychidae , Animales , Citrus/metabolismo , Drosophila melanogaster/metabolismo , Simulación del Acoplamiento Molecular , Tetranychidae/genética , Tetranychidae/metabolismo , Acaricidas/farmacología , Acaricidas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
5.
Plant Mol Biol ; 113(4-5): 303-321, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37995005

RESUMEN

In response to herbivory, Capsicum annuum leaves adapt their specialized metabolome that may protect the plant against herbivore feeding either directly or indirectly through volatile metabolites acting as cues for natural enemies of the herbivore. The volatile blend of spider-mite infested leaves differs from non-challenged leaves predominantly by a higher contribution of mono- and sesquiterpenes. In addition to these terpenoids released into the headspace, the terpenoid composition of the leaves alters upon herbivory. All this suggests an important role for terpenoids and their biosynthetic machinery in the defence against herbivory. Here, we show that the C. annuum genome contains a terpene synthase (TPS) gene family of 103 putative members of which structural analysis revealed that 27 encode functional enzymes. Transcriptome analysis showed that several TPS loci were differentially expressed upon herbivory in leaves of two C. annuum genotypes, that differ in susceptibility towards spider mites. The relative expression of upstream biosynthetic genes from the mevalonate and the methylerythritol phosphate pathway also altered upon herbivory, revealing a shift in the metabolic flux through the terpene biosynthetic module. The expression of multiple genes potentially acting downstream of the TPSs, including cytochrome P450 monooxygenases, UDP-glucosyl transferases, and transcription factors strongly correlated with the herbivory-induced TPS genes. A selection of herbivory-induced TPS genes was functionally characterized through heterologous expression and the products that these enzymes catalysed matched with the volatile and non-volatile terpenoids induced in response to herbivory.


Asunto(s)
Transferasas Alquil y Aril , Capsicum , Sesquiterpenos , Tetranychidae , Animales , Terpenos/metabolismo , Herbivoria/fisiología , Capsicum/genética , Tetranychidae/genética , Tetranychidae/metabolismo , Sesquiterpenos/metabolismo , Mentol , Alcanfor
6.
J Agric Food Chem ; 71(38): 13979-13987, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37698370

RESUMEN

Plants activate direct and indirect defense mechanisms in response to perceived herbivore invasion, which results in negative consequences for herbivores. Tetranychus cinnabarinus is a polyphagous generalist herbivore that inflicts substantial agricultural and horticultural damage. Our study revealed that mite feeding significantly increased jasmonic acid (JA) in the eggplant. The damage inflicted by the mites decreased considerably following the artificial application of JA, thereby indicating that JA initiated the defense response of the eggplant against mites. The transcriptomic and metabolomic analyses demonstrated the activation of the JA-coumarin pathway in response to mite feeding. This pathway protects the eggplant by suppressing the reproductive capacity and population size of the mites. The JA and coumarin treatments suppressed the vitellogenin gene (TcVg6) expression level. Additionally, RNA interference with TcVg6 significantly reduced the egg production and hatching rate of mites. In conclusion, the JA-coumarin pathway in the eggplant decreases the egg-hatching rate of mites through suppression of TcVg6.


Asunto(s)
Ácaros , Solanum melongena , Tetranychidae , Animales , Ácaros/fisiología , Solanum melongena/genética , Vitelogeninas/genética , Tetranychidae/genética , Tetranychidae/metabolismo , Reproducción , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Transcriptoma , Herbivoria , Cumarinas/farmacología
7.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37373537

RESUMEN

Mites, the second largest arthropod group, exhibit rich phenotypic diversity in the development of appendages (legs). For example, the fourth pair of legs (L4) does not form until the second postembryonic developmental stage, namely the protonymph stage. These leg developmental diversities drive body plan diversity in mites. However, little is known about the mechanisms of leg development in mites. Hox genes, homeotic genes, can regulate the development of appendages in arthropods. Three Hox genes, Sex combs reduced (Scr), Fushi tarazu (Ftz) and Antennapedia (Antp), have previously been shown to be expressed in the leg segments of mites. Here, the quantitative real-time reverse transcription PCR shows that three Hox genes are significantly increased in the first molt stage. RNA interference results in a set of abnormalities, including L3 curl and L4 loss. These results suggest that these Hox genes are required for normal leg development. Furthermore, the loss of single Hox genes results in downregulating the expression of the appendage marker Distal-less (Dll), suggesting that the three Hox genes can work together with Dll to maintain leg development in Tetranychus urticae. This study will be essential to understanding the diversity of leg development in mites and changes in Hox gene function.


Asunto(s)
Artrópodos , Tetranychidae , Animales , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Tetranychidae/genética , Tetranychidae/metabolismo , Interferencia de ARN , Regulación del Desarrollo de la Expresión Génica
8.
Pestic Biochem Physiol ; 192: 105414, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37105623

RESUMEN

The γ-aminobutyric acid receptors (GABARs) mediate fast inhibitory transmission in central nervous system of insects and are important targets of insecticides. An auxiliary subunit, Shisa7, was identified in mammals as a single-passing transmembrane protein. However, the homology gene(s) of Shisa in invertebrates has not been reported to date. In the present study, a homolog Shisa gene was identified from the two-spotted spider mite, Tetranychus urticae Koch. Its open reading frame had 927 base pairs and encoded 308 amino acid residues, which has a typical Shisa domain at 13th-181st amino acid residues. According to the phylogenetic tree, the invertebrate Shisa was categorized apart with those of vertebrate, and TuShisa showed closest relationship with the Shisa9 of velvet mite, Dinothrombium tinctorium (L.). In the electrophysiological assay with two-electrode voltage clamp, the GABA-activated TuRDL channel was functionally formed in the Africa clawed frog Xenopus laevis (Daudin) oocytes (EC50 = 53.34 µM). No GABA-activated current could be observed in TuShisa-expressed oocytes, whereas TuShisa could reduce the sensitivity of TuRDL/TuShisa (mass ratio of 1: 4) channel to GABA. The homology structural models of TuRDL and TuShisa were built by the SWISS-MODEL server, their interaction was predicted using Z-DOCK and three predicted hydrogen bonds and interface residues were analysed by PyMOL. Meanwhile, the key interface residues of TuShisa affected the stability of complex were calculated by Discovery Studio 2019. In conclusion, the TuShisa, as the first reported invertebrate Shisa, was explored and functionally examined as the GABARs auxiliary subunit. Our findings provide a basis for research of invertebrate Shisa.


Asunto(s)
Proteínas de la Membrana , Tetranychidae , Animales , Aminoácidos/metabolismo , Insecticidas/metabolismo , Mamíferos/metabolismo , Filogenia , Receptores de GABA/química , Tetranychidae/genética , Tetranychidae/metabolismo
9.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675229

RESUMEN

Two-Spotted Spider Mites (TSSMs, Tetranychus urticae Koch 1836 (Acari: Tetranychidae)) is one of the most important pests in many crop plants, and their feeding activity is based on sucking leaf cell contents. The purpose of this study was to evaluate the interaction between TSSMs and their host Lima bean (Phaseolus lunatus) by analyzing the metabolomics of leaf pigments and the transcriptomics of TSSM guanine production. We also used epifluorescence, confocal laser scanning, and transmission electron microscopies to study the morphology and structure of TSSMs and their excreta. Finally, we evaluated the potential photosynthetic ability of TSSMs and the activity and content of Ribulose-1,5-bisphosphate Carboxylase/Oxigenase (RubisCO). We found that TSSMs express several genes involved in guanine production, including Guanosine Monophosphate Synthetase (GMPS) and decoyinine (DCY), a potential inhibitor of GMPS, was found to reduce TSSMs proliferation in infested Lima bean leaves. Despite the presence of intact chloroplasts and chlorophyll in TSSMs, we demonstrate that TSSMs do not retain any photosynthetic activity. Our results show for the first time the transcriptomics of guanine production in TSSMs and provide new insight into the catabolic activity of TSSMs on leaf chlorophyll and carotenoids. Finally, we preliminary demonstrate that DCY has an acaricidal potential against TSSMs.


Asunto(s)
Acaricidas , Phaseolus , Tetranychidae , Animales , Acaricidas/farmacología , Tetranychidae/metabolismo , Carotenoides/metabolismo , Transcriptoma , Clorofila/metabolismo , Phaseolus/metabolismo , Fotosíntesis , Biología
10.
J Adv Res ; 38: 29-39, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35572395

RESUMEN

Introduction: Investigation into the action mechanisms of plant secondary metabolites against pests is a vital strategy for the development of novel promising biopesticides. Scoparone (isolated from Artemisia capillaris), a renewable plant-derived bioresource, displays potent acaricidal activities against mites, but its targets of action remain unclear. Objectives: This study aimed to systematically explore the potential molecular targets of scoparone against Tetranychus cinnabarinus and provide insights to guide the future application of scoparone as an agent for the management of agricultural mite pests worldwide. Methods: The mechanism and potential targets of scoparone against mites were investigated using RNA-seq analysis; RNA interference (RNAi) assays; bioassays; and [Ca2+]i, pull-down and electrophysiological recording assays. Results: RNA-seq analysis identified Ca2+ signalling pathway genes, specifically 5 calmodulin (CaM1-5) genes and 1 each of L-, T-, N-type voltage-gated Ca2+ channel (VGCC) genes, as candidate target genes for scoparone against mites. Furthermore, RNAi and electrophysiological data showed that the CaM1- and L-VGCC-mediated Ca2+ signalling pathways were activated by scoparone. Interestingly, by promoting the interaction between CaM1 and the IQ motif (a consensus CaM-binding domain of L-VGCC), CaM1 markedly enhanced the activating effect of scoparone on L-VGCC. Pull-down assays further demonstrated that CaM interacted with the IQ motif, triggering L-VGCC opening. Importantly, mutation of the IQ motif significantly weakened CaM1 binding and eliminated the CaM1-mediated enhancement of scoparone-induced L-VGCC activation, indicating that the effect of scoparone was dependent on the CaM1-IQ interaction. Conclusion: This study demonstrates, for the first time, that the acaricidal compound scoparone targets the interface between CaM1 and L-VGCC and activates the CaM-binding site, located in the IQ motif at the L-VGCC C-terminus. This work may contribute to the development of target-specific green acaricidal compounds based on L-VGCC.


Asunto(s)
Acaricidas , Ácaros , Tetranychidae , Acaricidas/farmacología , Animales , Calmodulina/química , Calmodulina/metabolismo , Calmodulina/farmacología , Cumarinas/farmacología , Ácaros/metabolismo , Tetranychidae/metabolismo
11.
Insect Biochem Mol Biol ; 144: 103761, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35341907

RESUMEN

Succinate dehydrogenase (SDH) inhibitors such as cyflumetofen, cyenopyrafen and pyflubumide, are selective acaricides that control plant-feeding spider mite pests. Resistance development to SDH inhibitors has been investigated in a limited number of populations of the spider mite Tetranychus urticae and is associated with cytochrome P450 based detoxification and target-site mutations such as I260 T/V in subunit B and S56L in subunit C of SDH. Here, we report the discovery of a H258Y substitution in subunit B of SDH in a highly pyflubumide resistant population of T. urticae. As this highly conserved residue corresponds to one of the ubiquinone binding residues in fungi and bacteria, we hypothesized that H258Y could have a strong impact on SDH inhibitors toxicity. Marker assisted introgression and toxicity bioassays revealed that H258Y caused high cross resistance between cyenopyrafen and pyflubumide, but increased cyflumetofen toxicity. Resistance associated with H258Y was determined as dominant for cyenopyrafen, but recessive for pyflubumide. In vitro SDH assays with extracted H258 mitochondria showed that cyenopyrafen and the active metabolites of pyflubumide and cyflumetofen, interacted strongly with complex II. However, a clear shift in IC50s was observed for cyenopyrafen and the metabolite of pyflubumide when Y258 mitochondria were investigated. In contrast, the mutation slightly increased affinity of the cyflumetofen metabolite, likely explaining its increased toxicity for the mite lines carrying the substitution. Homology modeling and ligand docking further revealed that, although the three acaricides share a common binding motif in the Q-site of SDH, H258Y eliminated an important hydrogen bond required for cyenopyrafen and pyflubumide binding. In addition, the hydrogen bond between cyenopyrafen and Y117 in subunit D was also lost upon mutation. In contrast, cyflumetofen affinity was enhanced due to an additional hydrogen bond to W215 and hydrophobic interactions with the introduced Y258 in subunit B. Altogether, our findings not only highlight the importance of the highly conserved histidine residue in the binding of SDH inhibitors, but also reveal that a resistance mutation can provide both positive and negative cross-resistance within the same acaricide mode of action group.


Asunto(s)
Acaricidas , Tetranychidae , Acaricidas/metabolismo , Acaricidas/farmacología , Acrilonitrilo/análogos & derivados , Animales , Mutación , Propionatos , Pirazoles , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Tetranychidae/genética , Tetranychidae/metabolismo
12.
Sci Rep ; 12(1): 1914, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115562

RESUMEN

Plants employ different chemicals to protect themselves from herbivory. These defenses may be constitutive or triggered by stress. The chemicals can be toxic, act as repellents, phagosuppressants and/or phago-deterrents. The two-spotted spider mite (Tetranychus urticae) is a generalist arthropod herbivorous pest and its feeding causes extensive damage both to crops and wild plants. Cyclotides are cyclic peptides involved in host-plant defenses. A single Viola sp. can produce more than a hundred cyclotides with different biological activities and roles. The organ and tissue specific cyclotide patterns change over the seasons and/or with environment, but the role of biotic/abiotic stress in shaping them remains unclear. Here, we demonstrate the involvement of cyclotides in mutual interactions between violets and mites. We used immunohistochemistry and mass spectrometry imaging to show the ingested cyclotides in T. urticae and assess the Viola odorata response to mite feeding. Moreover, to assess how mites are affected by feeding on violets, acceptance and reproductive performance was compared between Viola uliginosa, V. odorata and Phaseolus vulgaris. We demonstrate that cyclotides had been taken in by mites feeding on the violets. The ingested peptides were found in contact with epithelial cells of the mite digestive system, in the fecal matter, feces, ovary and eggs. Mites preferred common bean plants (P. vulgaris) to any of the violet species; the latter affected their reproductive performance. The production of particular cyclotides in V. odorata (denoted by molecular weights: 2979, 3001, 3017, 3068, 3084, 3123) was activated by mite feeding and their levels were significantly elevated compared to the control after 5 and 21 days of infestation. Specific cyclotides may affect mites by being indigestible or through direct interaction with cells in the mite digestive tract and reproductive organs. A group of particular peptides in V. odorata appears to be involved in defense response against herbivores.


Asunto(s)
Ciclotidas/metabolismo , Herbivoria , Phaseolus/parasitología , Tetranychidae/patogenicidad , Viola/parasitología , Animales , Digestión , Interacciones Huésped-Parásitos , Phaseolus/metabolismo , Especificidad de la Especie , Tetranychidae/metabolismo , Factores de Tiempo , Distribución Tisular , Viola/metabolismo
13.
Insect Biochem Mol Biol ; 142: 103722, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063675

RESUMEN

Tetranychus urticae is a polyphagous spider mite that can feed on more than 1100 plant species including cyanogenic plants. The herbivore genome contains a horizontally acquired gene tetur10g01570 (TuCAS) that was previously shown to participate in cyanide detoxification. To understand the structure and determine the function of TuCAS in T. urticae, crystal structures of the protein with lysine conjugated pyridoxal phosphate (PLP) were determined. These structures reveal extensive TuCAS homology with the ß-substituted alanine synthase family, and they show that this enzyme utilizes a similar chemical mechanism involving a stable α-aminoacrylate intermediate in ß-cyanoalanine and cysteine synthesis. We demonstrate that TuCAS is more efficient in the synthesis of ß-cyanoalanine, which is a product of the detoxification reaction between cysteine and cyanide, than in the biosynthesis of cysteine. Also, the enzyme carries additional enzymatic activities that were not previously described. We show that TuCAS can detoxify cyanide using O-acetyl-L-serine as a substrate, leading to the direct formation of ß-cyanoalanine. Moreover, it catalyzes the reaction between the TuCAS-bound α-aminoacrylate intermediate and aromatic compounds with a thiol group. In addition, we have tested several compounds as TuCAS inhibitors. Overall, this study identifies additional functions for TuCAS and provides new molecular insight into the xenobiotic metabolism of T. urticae.


Asunto(s)
Liasas , Tetranychidae , Animales , Cianuros/metabolismo , Cisteína , Liasas/química , Liasas/genética , Liasas/metabolismo , Plantas/metabolismo , Tetranychidae/metabolismo
14.
Insect Biochem Mol Biol ; 142: 103709, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995778

RESUMEN

Cytochrome P450 mediated metabolism is a well-known mechanism of insecticide resistance. However, to what extent qualitative or quantitative changes are responsible for increased metabolism, is not well understood. Increased expression of P450 genes is most often reported, but the underlying regulatory mechanisms remain widely unclear. In this study, we investigate CYP392A16, a P450 from the polyphagous and major agricultural pest Tetranychus urticae. High expression levels of CYP392A16 and in vitro metabolism assays have previously associated this P450 with abamectin resistance. Here, we show that CYP392A16 is primarily localized in the midgut epithelial cells, as indicated by immunofluorescence analysis, a finding also supported by a comparison between feeding and contact toxicity bioassays. Silencing via RNAi of CYP392A16 in a highly resistant T. urticae population reduced insecticide resistance levels from 3400- to 1900- fold, compared to the susceptible reference strain. Marker-assisted backcrossing, using a single nucleotide polymorphism (SNP) found in the CYP392A16 allele from the resistant population, was subsequently performed to create congenic lines bearing this gene in a susceptible genetic background. Toxicity assays indicated that the allele derived from the resistant strain confers 3.6-fold abamectin resistance compared to the lines with susceptible genetic background. CYP392A16 is over-expressed at the same levels in these lines, pointing to cis-regulation of gene expression. In support of that, functional analysis of the putative promoter region from the resistant and susceptible parental strains revealed a higher reporter gene expression, confirming the presence of cis-acting regulatory mechanisms.


Asunto(s)
Tetranychidae , Animales , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Resistencia a los Insecticidas/genética , Ivermectina/análogos & derivados , Ivermectina/farmacología , Tetranychidae/genética , Tetranychidae/metabolismo
15.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202019

RESUMEN

Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1-C6, C2-C3, C4-C5) differing from that of insect counterparts (C1-C3, C2-C5, C4-C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destructor OBP1, shows protein folding different from that of insect OBPs, although with some common features. Ligand-binding experiments indicated some affinity to coniferyl aldehyde, but specific ligands may still need to be found among very large molecules, as suggested by the size of the binding pocket.


Asunto(s)
Receptores Odorantes/metabolismo , Tetranychidae/metabolismo , Secuencia de Aminoácidos , Animales , Ligandos , Modelos Moleculares , Estructura Molecular , Odorantes , Filogenia , Unión Proteica , Conformación Proteica , Proteoma , Proteómica/métodos , Receptores Odorantes/química , Receptores Odorantes/genética , Tetranychidae/genética
16.
Insect Mol Biol ; 30(6): 580-593, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34309936

RESUMEN

Colouration in spider mites is due to the presence of carotenoids with diverse colours, including yellows, oranges and reds. Tetranychus urticae has two main colour forms, red and green. Although a ketolase has been implicated in determining the colour, the underlying genetic basis of body colour divergence between the two forms has remained unclear. Based on a combination of comparative transcriptomes and RNA interference, we found that a gene encoding a cytochrome P450 enzyme of the CYP4 clan (CYP389B1) had remarkably high expression in adult females of the red T. urticae, as well as in hybrids obtained by crossing the red and green forms. Down-regulation of this gene by RNA interference resulted in decreased accumulation of red pigment. Up-regulation of the expressions of a scavenger receptor gene (SCARB1) and a mitochondrial glycine transporter (SLC25A38) also strongly contributed to red colour development in adult females. Suppressing the mRNA levels of these genes also resulted in reduced accumulation of red pigment in the three other spider mites with red body colour. Our results provide evidence that the body colour divergence between the two forms is caused by different expressions of pigmentation-related genes, and point to a possible role of a novel cytochrome P450 gene (CYP389B1) in regulating red-orange body colour. These findings expand the number of candidate cytochrome P450 genes involved in endogenous pigmentation and will help to understand their roles in determining colour patterns in mites and other species.


Asunto(s)
Pigmentación , Tetranychidae , Transcriptoma , Animales , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Pigmentación/genética , Tetranychidae/genética , Tetranychidae/metabolismo
17.
Bioorg Med Chem Lett ; 30(16): 127346, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631545

RESUMEN

Besides structural modification of natural bioactive products to afford promising agrochemical candidates, investigation of their mechanisms of action against pests is also an important strategy to obtain novel potentially botanical pesticides. N-(p-Ethyl)phenylsulfonylmatrinic acid (2), derived from an natural alkaloid matrine (1), exhibited about 5.9-fold more pronounced acaricidal activity than 1 against the adult females of Tetranychus cinnabarinus Boisduval, and good control efficiency in the greenhouse. By comparison of nAChR, AChE and VGSC of treated and untreated T. cinnabarinus via RT-PCR and qRT-PCR analysis, it was found that compound 2 could activate nAChR and VGSC via up-regulation of nAChR α1, α4 and α5 subunits and VGSC expressions; compound 2 may be the AChE and AChE enzyme inhibitor. Importantly, a scheme of compound 2 interaction with nAChR, AChE and VGSC of T. cinnabarinus was proposed. It will lay the foundation for future optimization and application of matrine derivatives as agrochemicals.


Asunto(s)
Alcaloides/farmacología , Productos Biológicos/farmacología , Insecticidas/farmacología , Estrés Fisiológico/efectos de los fármacos , Tetranychidae/efectos de los fármacos , Alcaloides/química , Animales , Productos Biológicos/química , Relación Dosis-Respuesta a Droga , Femenino , Insecticidas/química , Estructura Molecular , Relación Estructura-Actividad , Tetranychidae/metabolismo
18.
Insect Biochem Mol Biol ; 123: 103413, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32534987

RESUMEN

Differential expression of metabolic detoxification enzymes is an important mechanism involved in pesticide/acaricide resistance of mite pests. The competing endogenous RNA hypothesis offers a new opportunity to investigate post-transcriptional regulation of those genes. In this study, 4454 long non-coding RNAs were identified in the carmine spider mite Tetranychus cinnabarinus by transcriptome sequencing. Software-based predictions indicated that a long intergenic non-coding RNA, (lincRNA)_Tc13743.2 and a detoxification enzyme gene, TcGSTm02, both contained a microRNA (miR-133-5p) response element. Over-expression of lincRNA_Tc13743.2 and TcGSTm02 were detected in a cyflumetofen-resistant T. cinnabarinus strain (CyR), whereas down-regulation of miR-133-5p was observed in this strain. Conversely, up-regulation of miR-133-5p could inhibit TcGSTm02 expression levels, and both lincRNA_Tc13743.2 and TcGSTm02 were significantly enriched in miR-133-5p biotin-avidin pull-down assays. RNA-binding protein immunoprecipitation assay showed that lincRNA_Tc13743.2 and TcGSTm02 bound to a silencing complex containing miR-133-5p. Moreover, a luciferase reporter assay based on a human cell line revealed that over-expression of lincRNA_Tc13743.2 could significantly reduce the inhibition exerted by miR-133-5p through the TcGSTm02 3'UTR. In addition, co-localization of lincRNA_Tc13743.2 and miR-133-5p was detected using fluorescence in situ hybridization, suggesting that lincRNA_Tc13743.2 interacts directly with miR-133-5p in spider mites. More importantly, silencing the expression of lincRNA_Tc13743.2 significantly reduced the expression levels of TcGSTm02 and increased the sensitivity of spider mites to cyflumetofen. Our data show that lincRNA_Tc13743.2 up-regulates TcGSTm02 expression by competing for miR-133-5p binding, demonstrating that a lincRNA_Tc13743.2-miR-133-5p-TcGSTm02 pathway mediates cyflumetofen resistance in mites.


Asunto(s)
Resistencia a Medicamentos/genética , Glutatión Transferasa , Propionatos/farmacología , Tetranychidae , Acaricidas/farmacología , Animales , Proteínas de Artrópodos/efectos de los fármacos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Regulación de la Expresión Génica , Glutatión Transferasa/efectos de los fármacos , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , MicroARNs/metabolismo , Ácaros , ARN Largo no Codificante/metabolismo , Tetranychidae/efectos de los fármacos , Tetranychidae/metabolismo
19.
Bull Entomol Res ; 110(6): 743-755, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32419680

RESUMEN

Panonychus citri (McGregor) is the most common pest in citrus-producing regions. Special low-toxicity acaricides, such as spirocyclic tetronic acids and mite growth inhibitors, have been used for a long time in China. However, pesticide resistance in mites is a growing problem due to the lack of new acaricide development. Wide-spectrum insecticides, such as amitraz have gained acceptance among fruit growers. An amitraz-resistant strain of P. citri was obtained by indoor screening to examine field resistance monitoring of mites to acaricides and to explore the resistant mechanism of mites against amitraz. The amitraz-resistant strain of P. citri had an LC50 value of 2361.45 mg l-1. The resistance ratio was 81.35 times higher in the resistant strain of P. citri compared with the sensitive strain. Crossing experiments between the sensitive and resistant strains of P. citri were conducted, resulting in a D value of 0.11 for F1 SS♀×RS♂ and 0.06 for F1 RS♀×SS♂. Reciprocal cross experiments showed that the dose-mortality curves for the F1 generations coincided, indicating that the resistance trait was not affected by cytoplasmic inheritance. The dose-expected response relationship was evaluated in the backcross generation and a significant difference was observed compared with the actual value. The above results indicate that the inheritance of resistance trait was incompletely dominant, governed by polygenes on the chromosome. Synergism studies demonstrated that cytochrome P450s and esterase may play important roles in the detoxification of amitraz. Based on differential gene analysis, 23 metabolism-related genes of P. citri were identified, consistent with the results of synergism studies. Real-time PCR verification implied that P450s, ABC transporters, and acetylcholinesterase might influence the detoxification of amitraz by P. citri. These results provide the genetic and molecular foundation for the management of pest mite resistance.


Asunto(s)
Inactivación Metabólica/genética , Tetranychidae/genética , Tetranychidae/metabolismo , Toluidinas , Acaricidas , Animales , Sistema Enzimático del Citocromo P-450 , Esterasas , Tetranychidae/enzimología
20.
Insect Biochem Mol Biol ; 123: 103410, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32442626

RESUMEN

The acaricides cyflumetofen, cyenopyrafen, and pyflubumide act as inhibitors of the mitochondrial electron transport system at complex II (succinate dehydrogenase; SDH), a new mode of action in arthropods. The development and mechanisms of low-level resistance against cyenopyrafen and cyflumetofen have been previously reported in Tetranychus urticae. In the present study, we investigated high levels of resistance against three SDH inhibitors in T. urticae field populations and clarify the genetic basis of resistance using quantitative trait locus (QTL) analysis. First, we constructed a microsatellite linkage map comprising 64 markers assembled into three linkage groups (LGs) with total length of 683.8 cM and average marker spacing of 11.03 cM. We then used the linkage map to perform QTL mapping, and identified significant QTLs contributing to resistance to cyflumetofen (one QTL on LG1), cyenopyrafen (one QTL on LG3), and pyflubumide (two QTLs on LG1 and LG3). The QTL peaks on LG1 for cyflumetofen and pyflubumide overlapped and included the SdhB locus. For cyenopyrafen resistance, the QTLs on LG3 included the SdhC locus. For cyflumetofen resistance, we found an I260T mutation in SdhB. For pyflubumide and cyenopyrafen resistance, we detected I260V and S56L substitutions in SdhB and SdhC, respectively, by direct sequencing. Both I260 in SdhB and S56 in SdhC were present in highly conserved regions of the ubiquinone binding site formed at the interface among SdhB, SdhC, and SdhD. Mutations at these positions have been implicated in resistance against fungicides that act as Sdh inhibitors in various pathogens. Therefore, we consider these mutations to be target-site resistance mutations for these acaricidal SDH inhibitors.


Asunto(s)
Acaricidas/farmacología , Mapeo Cromosómico/métodos , Resistencia a Medicamentos/genética , Succinato Deshidrogenasa/antagonistas & inhibidores , Tetranychidae , Acrilonitrilo/análogos & derivados , Acrilonitrilo/farmacología , Animales , Proteínas de Artrópodos/antagonistas & inhibidores , Proteínas de Artrópodos/efectos de los fármacos , Proteínas de Artrópodos/metabolismo , Ligamiento Genético , Genoma de los Insectos , Repeticiones de Microsatélite , Mutación , Propionatos/farmacología , Pirazoles/farmacología , Sitios de Carácter Cuantitativo , RNA-Seq , Succinato Deshidrogenasa/efectos de los fármacos , Succinato Deshidrogenasa/metabolismo , Tetranychidae/efectos de los fármacos , Tetranychidae/genética , Tetranychidae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...