Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 588
Filtrar
1.
Plant Physiol Biochem ; 213: 108867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936069

RESUMEN

Understanding the heavy metals (HMs) tolerance mechanism is crucial for improving plant growth in metal-contaminated soil. In order to evaluate the lead (Pb) tolerance mechanism in Brassica species, a comparative proteomic study was used. Thirteen-day-old seedlings of B. juncea and B. napus were treated with different Pb(NO3)2 concentrations at 0, 3, 30, and 300 mg/L. Under 300 mg/L Pb(NO3)2 concentration, B. napus growth was significantly decreased, while B. juncea maintained normal growth similar to the control. The Pb accumulation was also higher in B. napus root and shoot compared to B. juncea. Gel-free proteomic analysis of roots revealed a total of 68 and 37 differentially abundant proteins (DAPs) in B. juncea and B. napus-specifically, after 300 mg/L Pb exposure. The majority of these proteins are associated with protein degradation, cellular respiration, and enzyme classification. The upregulated RPT2 and tetrapyrrole biosynthesis pathway-associated proteins maintain the cellular homeostasis and photosynthetic rate in B. juncea. Among the 55 common DAPs, S-adenosyl methionine and TCA cycle proteins were upregulated in B. juncea and down-regulated in B. napus after Pb exposure. Furthermore, higher oxidative stress also reduced the antioxidant enzyme activity in B. napus. The current finding suggests that B. juncea is more Pb tolerant than B. napus, possibly due to the upregulation of proteins involved in protein recycling, degradation, and tetrapyrrole biosynthesis pathway.


Asunto(s)
Plomo , Proteínas de Plantas , Proteómica , Tetrapirroles , Plomo/toxicidad , Plomo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica/métodos , Tetrapirroles/metabolismo , Tetrapirroles/biosíntesis , Planta de la Mostaza/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/genética , Brassica/metabolismo , Brassica/efectos de los fármacos , Brassica/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos
2.
Chemistry ; 30(35): e202401288, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38634697

RESUMEN

Breakdown of chlorophyll (Chl), as studied in angiosperms, follows the pheophorbide a oxygenase/phyllobilin (PaO/PB) pathway, furnishing linear tetrapyrroles, named phyllobilins (PBs). In an investigation with fern leaves we have discovered iso-phyllobilanones (iPBs) with an intriguingly rearranged and oxidized carbon skeleton. We report here a key second group of iPBs from the fern and on their structure analysis. Previously, these additional Chl-catabolites escaped their characterization, since they exist in aqueous media as mixtures of equilibrating isomers. However, their chemical dehydration furnished stable iPB-derivatives that allowed the delineation of the enigmatic structures and chemistry of the original natural catabolites. The structures of all fern-iPBs reflect the early core steps of a PaO/PB-type pathway and the PB-to-iPB carbon skeleton rearrangement. A striking further degradative chemical ring-cleavage was observed, proposed to consume singlet molecular oxygen (1O2). Hence, Chl-catabolites may play a novel active role in detoxifying cellular 1O2. The critical deviations from the PaO/PB pathway, found in the fern, reflect evolutionary developments of Chl-breakdown in the green plants in the Paleozoic era.


Asunto(s)
Clorofila , Helechos , Clorofila/química , Helechos/química , Tetrapirroles/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Oxígeno Singlete/química
3.
Funct Plant Biol ; 512024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38388445

RESUMEN

Microalgae are photosynthetic organisms and a potential source of sustainable metabolite production. However, different stress conditions might affect the production of various metabolites. In this study, a meta-analysis of RNA-seq experiments in Dunaliella tertiolecta was evaluated to compare metabolite biosynthesis pathways in response to abiotic stress conditions such as high light, nitrogen deficiency and high salinity. Results showed downregulation of light reaction, photorespiration, tetrapyrrole and lipid-related pathways occurred under salt stress. Nitrogen deficiency mostly induced the microalgal responses of light reaction and photorespiration metabolism. Phosphoenol pyruvate carboxylase, phosphoglucose isomerase, bisphosphoglycerate mutase and glucose-6-phosphate-1-dehydrogenase (involved in central carbon metabolism) were commonly upregulated under salt, light and nitrogen stresses. Interestingly, the results indicated that the meta-genes (modules of genes strongly correlated) were located in a hub of stress-specific protein-protein interaction (PPI) network. Module enrichment of meta-genes PPI networks highlighted the cross-talk between photosynthesis, fatty acids, starch and sucrose metabolism under multiple stress conditions. Moreover, it was observed that the coordinated expression of the tetrapyrrole intermediated with meta-genes was involved in starch biosynthesis. Our results also showed that the pathways of vitamin B6 metabolism, methane metabolism, ribosome biogenesis and folate biosynthesis responded specifically to different stress factors. Since the results of this study revealed the main pathways underlying the abiotic stress, they might be applied in optimised metabolite production by the microalga Dunaliella in future studies. PRISMA check list was also included in the study.


Asunto(s)
Chlorophyceae , Chlorophyceae/genética , Chlorophyceae/metabolismo , Estrés Fisiológico/genética , Almidón/metabolismo , RNA-Seq , Nitrógeno/metabolismo , Tetrapirroles
4.
Molecules ; 29(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38398620

RESUMEN

Cyclic tetrapyrrole derivatives such as porphyrins, chlorins, corrins (compounds with a corrin core), and phthalocyanines are a family of molecules containing four pyrrole rings usually coordinating a metal ion (Mg, Cu, Fe, Zn, etc.). Here, we report the characterization of some representative cyclic tetrapyrrole derivatives by MALDI-ToF/ToF MS analyses, including heme b and c, phthalocyanines, and protoporphyrins after proper matrix selection. Both neutral and acidic matrices were evaluated to assess potential demetallation, adduct formation, and fragmentation. While chlorophylls exhibited magnesium demetallation in acidic matrices, cyclic tetrapyrroles with Fe, Zn, Co, Cu, or Ni remained steadfast against demetallation across all conditions. Phthalocyanines and protoporphyrins were also detectable without a matrix using laser desorption ionization (LDI); however, the incorporation of matrices achieved the highest ionization yield, enhanced sensitivity, and negligible fragmentation. Three standard proteins, i.e., myoglobin, hemoglobin, and cytochrome c, were analyzed either intact or enzymatically digested, yielding heme b and heme c ions along with accompanying peptides. Furthermore, we successfully detected and characterized heme b in real samples, including blood, bovine and cod liver, and mussel. As a result, MALDI MS/MS emerged as a powerful tool for straightforward cyclic tetrapyrrole identification, even in highly complex samples. Our work paves the way for a more comprehensive understanding of cyclic tetrapyrroles in biological and industrial settings, including the geochemical field, as these compounds are a source of significant geological and geochemical information in sediments and crude oils.


Asunto(s)
Espectrometría de Masas en Tándem , Tetrapirroles , Animales , Bovinos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Protoporfirinas , Mioglobina , Hemo
5.
J Exp Bot ; 75(7): 2027-2045, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38070484

RESUMEN

The biosynthesis of the tetrapyrrole end-products chlorophyll and heme depends on a multifaceted control mechanism that acts primarily at the post-translational level upon the rate-limiting step of 5-aminolevulinic acid synthesis and upon light-dependent protochlorophyllide oxidoreductase (POR). These regulatory processes require auxiliary factors that modulate the activity, stability, complex formation, and subplastidal localization of the relevant proteins. Together, they ensure optimal metabolic flow during the day and at night. As an Arabidopsis homolog of the POR-interacting tetratricopeptide-repeat protein (Pitt) first reported in Synechocystis, we characterize tetrapyrrole biosynthesis-regulating tetratricopeptide-repeat protein1 (TTP1). TTP1 is a plastid-localized, membrane-bound factor that interacts with POR, the Mg protoporphyrin monomethylester cyclase CHL27, glutamyl-tRNA reductase (GluTR), GluTR-binding protein, and FLUORESCENCE IN BLUE LIGHT. Lack of TTP1 leads to accumulation of GluTR, enhanced 5-aminolevulinic acid synthesis and lower levels of POR. Knockout mutants show enhanced sensitivity to reactive oxygen species and a slower greening of etiolated seedlings. Based on our studies, the interaction of TTP1 with GluTR and POR does not directly inhibit their enzymatic activity and contribute to the control of 5-aminolevulinic acid synthesis. Instead, we propose that TTP1 sequesters a fraction of these proteins on the thylakoid membrane, and contributes to their stability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Protoclorofilida/metabolismo , Ácido Aminolevulínico/metabolismo , Arabidopsis/genética , Aldehído Oxidorreductasas/genética , Clorofila/metabolismo , Tetrapirroles/metabolismo
6.
New Phytol ; 241(3): 1236-1249, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37986097

RESUMEN

Biogenesis of the photosynthetic apparatus requires complicated molecular machinery, individual components of which are either poorly characterized or unknown. The BtpA protein has been described as a factor required for the stability of photosystem I (PSI) in cyanobacteria; however, how the BtpA stabilized PSI remains unexplained. To clarify the role of BtpA, we constructed and characterized the btpA-null mutant (ΔbtpA) in the cyanobacterium Synechocystis sp. PCC 6803. The mutant contained only c. 1% of chlorophyll and nearly no thylakoid membranes. However, this strain, growing only in the presence of glucose, was genetically unstable and readily generated suppressor mutations that restore the photoautotrophy. Two suppressor mutations were mapped into the hemA gene encoding glutamyl-tRNA reductase (GluTR) - the first enzyme of tetrapyrrole biosynthesis. Indeed, the GluTR was not detectable in the ΔbtpA mutant and the suppressor mutations restored biosynthesis of tetrapyrroles and photoautotrophy by increased GluTR expression or by improved GluTR stability/processivity. We further demonstrated that GluTR associates with a large BtpA oligomer and that BtpA is required for the stability of GluTR. Our results show that the BtpA protein is involved in the biogenesis of photosystems at the level of regulation of tetrapyrrole biosynthesis.


Asunto(s)
Cianobacterias , Tilacoides , Tilacoides/metabolismo , Clorofila/metabolismo , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Tetrapirroles/metabolismo , Cianobacterias/metabolismo
7.
Molecules ; 28(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630384

RESUMEN

Tolyporphins were discovered some 30 years ago as part of a global search for antineoplastic compounds from cyanobacteria. To date, the culture HT-58-2, comprised of a cyanobacterium-microbial consortium, is the sole known producer of tolyporphins. Eighteen tolyporphins are now known-each is a free base tetrapyrrole macrocycle with a dioxobacteriochlorin (14), oxochlorin (3), or porphyrin (1) chromophore. Each compound displays two, three, or four open ß-pyrrole positions and two, one, or zero appended C-glycoside (or -OH or -OAc) groups, respectively; the appended groups form part of a geminal disubstitution motif flanking the oxo moiety in the pyrroline ring. The distinct structures and repertoire of tolyporphins stand alone in the large pigments-of-life family. Efforts to understand the cyanobacterial origin, biosynthetic pathways, structural diversity, physiological roles, and potential pharmacological properties of tolyporphins have attracted a broad spectrum of researchers from diverse scientific areas. The identification of putative biosynthetic gene clusters in the HT-58-2 cyanobacterial genome and accompanying studies suggest a new biosynthetic paradigm in the tetrapyrrole arena. The present review provides a comprehensive treatment of the rich science concerning tolyporphins.


Asunto(s)
Glicósidos Cardíacos , Cianobacterias , Porfirinas , Tetrapirroles , Cianobacterias/genética , Porfirinas/farmacología
8.
J Org Chem ; 88(15): 11205-11216, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37471708

RESUMEN

A strategy for the synthesis of bacteriochlorophyll a relies on joining AD and BC halves that contain the requisite stereochemical configurations of the target macrocycle. The BC half (1) is a dihydrodipyrrin bearing a dimethoxymethyl group at the 1-position, a ß-ketoester at the 8-position, and (R)-2-methyl and (R)-3-ethyl substituents in the pyrroline ring. An established route to AD-dihydrodipyrrins (Pd-mediated coupling of a 2-halopyrrole with a chiral 4-pentynoic acid followed by Petasis methenylation, acidic hydrolysis, Paal-Knorr ring closure, and Riley oxidation) proved to be unviable for BC-dihydrodipyrrins given the presence of the ß-ketoester unit. A route presented here entails Pd-mediated coupling of a 2-halopyrrole (2) with (3R,4R)-4-ethyl-1,1-dimethoxy-3-methylhex-5-yn-2-one (3), anti-Markovnikov hydration of the alkyne to give the 1,4-diketone, and Paal-Knorr ring closure. Compound 3 was prepared by Schreiber-modified Nicholas reaction beginning with (S)-4-isopropyl-3-propionyloxazolidin-2-one and the hexacarbonyldicobalt complex of (±) 3-methoxy-1-(trimethylsilyl)pentyne followed by transformation of the aldehyde derived therefrom to the 1,1-dimethoxymethylcarbonyl motif. The absolute stereochemical configuration of the Schreiber-Nicholas alkylation product was confirmed by single-crystal X-ray diffraction, whereas the BC half (1) by 1H NMR spectroscopy showed a J value of 2.9 Hz consistent with the trans-configuration. Taken together, the route provides a key chiral building block for the synthesis of photosynthetic tetrapyrroles and analogues.


Asunto(s)
Porfirinas , Porfirinas/química , Bacterioclorofila A , Espectroscopía de Resonancia Magnética , Ácidos , Tetrapirroles
9.
J Biol Chem ; 299(7): 104902, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302554

RESUMEN

Fusobacterium nucleatum is an opportunistic oral pathogen that is associated with various cancers. To fulfill its essential need for iron, this anaerobe will express heme uptake machinery encoded at a single genetic locus. The heme uptake operon includes HmuW, a class C radical SAM-dependent methyltransferase that degrades heme anaerobically to release Fe2+ and a linear tetrapyrrole called anaerobilin. The last gene in the operon, hmuF encodes a member of the flavodoxin superfamily of proteins. We discovered that HmuF and a paralog, FldH, bind tightly to both FMN and heme. The structure of Fe3+-heme-bound FldH (1.6 Å resolution) reveals a helical cap domain appended to the ⍺/ß core of the flavodoxin fold. The cap creates a hydrophobic binding cleft that positions the heme planar to the si-face of the FMN isoalloxazine ring. The ferric heme iron is hexacoordinated to His134 and a solvent molecule. In contrast to flavodoxins, FldH and HmuF do not stabilize the FMN semiquinone but instead cycle between the FMN oxidized and hydroquinone states. We show that heme-loaded HmuF and heme-loaded FldH traffic heme to HmuW for degradation of the protoporphyrin ring. Both FldH and HmuF then catalyze multiple reductions of anaerobilin through hydride transfer from the FMN hydroquinone. The latter activity eliminates the aromaticity of anaerobilin and the electrophilic methylene group that was installed through HmuW turnover. Hence, HmuF provides a protected path for anaerobic heme catabolism, offering F. nucleatum a competitive advantage in the colonization of anoxic sites of the human body.


Asunto(s)
Flavodoxina , Fusobacterium nucleatum , Hemo , Tetrapirroles , Humanos , Mononucleótido de Flavina/metabolismo , Flavodoxina/química , Flavodoxina/clasificación , Flavodoxina/genética , Flavodoxina/metabolismo , Fusobacterium nucleatum/química , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Oxidación-Reducción , Tetrapirroles/metabolismo , Transporte Biológico , Genes Bacterianos , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Infecciones por Fusobacterium/microbiología
10.
New Phytol ; 239(2): 624-638, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161708

RESUMEN

During photoperiodic growth, the light-dependent nature of chlorophyll synthesis in angiosperms necessitates robust control of the production of 5-aminolevulinic acid (ALA), the rate-limiting step in the initial stage of tetrapyrrole biosynthesis (TBS). We are interested in dissecting the post-translational control of this process, which suppresses ALA synthesis for chlorophyll synthesis in dark-grown plants. Using biochemical approaches for analysis of Arabidopsis wild-type (WT) and mutant lines as well as complementation lines, we show that the heme-synthesizing ferrochelatase 2 (FC2) interacts with protochlorophyllide oxidoreductase and the regulator FLU which both promote the feedback-controlled suppression of ALA synthesis by inactivation of glutamyl-tRNA reductase, thus preventing excessive accumulation of potentially deleterious tetrapyrrole intermediates. Thereby, FC2 stabilizes POR by physical interaction. When the interaction between FC2 and POR is perturbed, suppression of ALA synthesis is attenuated and photoreactive protochlorophyllide accumulates. FC2 is anchored in the thylakoid membrane via its membrane-spanning CAB (chlorophyll-a-binding) domain. FC2 is one of the two isoforms of ferrochelatase catalyzing the last step of heme synthesis. Although FC2 belongs to the heme-synthesizing branch of TBS, its interaction with POR potentiates the effects of the GluTR-inactivation complex on the chlorophyll-synthesizing branch and ensures reciprocal control of chlorophyll and heme synthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Aminolevulínico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Ferroquelatasa/genética , Ferroquelatasa/metabolismo , Hemo/metabolismo , Protoclorofilida/metabolismo , Tetrapirroles/metabolismo
11.
J Am Chem Soc ; 145(17): 9834-9839, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37074904

RESUMEN

Tolyporphin A is an unusual tetrapyrrole secondary metabolite containing pendant deoxysugars and unsubstituted pyrrole ß sites. Herein, we describe the biosynthesis of the tolyporphin aglycon core. HemF1 catalyzes the oxidative decarboxylation of two propionate side chains of coproporphyrinogen III, an intermediate in heme biosynthesis. HemF2 then processes the two remaining propionate groups to generate a tetravinyl intermediate. All four vinyl groups from the macrocycle are truncated by TolI via repeated C-C bond cleavages to generate the unsubstituted pyrrole ß sites of tolyporphins. This study illustrates how the unprecedented C-C bond cleavage reactions branch from canonical heme biosynthesis to produce tolyporphins.


Asunto(s)
Propionatos , Tetrapirroles , Hemo , Catálisis
12.
New Phytol ; 238(6): 2545-2560, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36967598

RESUMEN

Tetrapyrrole biosynthesis (TBS) is a dynamically and strictly regulated process. Disruptions in tetrapyrrole metabolism influence many aspects of plant physiology, including photosynthesis, programmed cell death (PCD), and retrograde signaling, thus affecting plant growth and development at multiple levels. However, the genetic and molecular basis of TBS is not fully understood. We report here PCD8, a newly identified thylakoid-localized protein encoded by an essential gene in Arabidopsis. PCD8 knockdown causes a necrotic phenotype due to excessive chloroplast damage. A burst of singlet oxygen that results from overaccumulated tetrapyrrole intermediates upon illumination is suggested to be responsible for cell death in the knockdown mutants. Genetic and biochemical analyses revealed that PCD8 interacts with ClpC1 and a number of TBS enzymes, such as HEMC, CHLD, and PORC of TBS. Taken together, our findings uncover the function of chloroplast-localized PCD8 and provide a new perspective to elucidate molecular mechanism of how TBS is finely regulated in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Tetrapirroles/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Homeostasis
13.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770988

RESUMEN

The photosynthetic tetrapyrroles share a common structural feature comprised of a ß-ketoester motif embedded in an exocyclic ring (ring E). As part of a total synthesis program aimed at preparing native structures and analogues, 3-(3-methoxy-1,3-dioxopropyl)pyrrole was sought. The pyrrole is a precursor to analogues of ring C and the external framework of ring E. Four routes were developed. Routes 1-3 entail a Pd-mediated coupling process of a 3-iodopyrrole with potassium methyl malonate, whereas route 4 relies on electrophilic substitution of TIPS-pyrrole with methyl malonyl chloride. Together, the four routes afford considerable latitude. A long-term objective is to gain the capacity to create chlorophylls and bacteriochlorophylls and analogues thereof by facile de novo means for diverse studies across the photosynthetic sciences.


Asunto(s)
Pirroles , Tetrapirroles , Pirroles/química , Clorofila/química , Bacterioclorofilas/química , Fotosíntesis
14.
Phys Chem Chem Phys ; 25(8): 6016-6024, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36752541

RESUMEN

Cyanobacteriochromes (CBCRs) are small and versatile photoreceptor proteins with high potential for biotechnological applications. Among them, the so-called DXCF-CBCRs exhibit an intricate secondary photochemistry: miliseconds after activation with light, a covalent linkage between a conserved cysteine residue and the light-absorbing tetrapyrrole chromophore is reversibly formed or broken. We employed time-resolved IR spectroscopy over ten orders of magnitude in time in conjunction with 2D-IR spectroscopy to investigate the molecular mechanism of this intriguing reaction in the DXCF-CBCR model system TePixJ from T. elongatus. The crosspeak pattern in the 2D-IR spectrum facilitated the assignment of the dominant signals to vibrational modes of the chromophore, which in turn enabled us to construct a mechanistic model for the photocycle reactions from the time-resolved IR spectra. Here, we assigned the time-resolved signals to several proton transfer steps and distinct geometric changes of the chromophore. We propose a model that describes how these events lead to the rearrangement of charges in the chromophore binding pocket, which serves as the trigger for the light-induced bond formation and breakage with the nearby cysteine.


Asunto(s)
Cianobacterias , Fotorreceptores Microbianos , Cianobacterias/metabolismo , Cisteína/química , Proteínas Bacterianas/química , Tetrapirroles/metabolismo , Fotoquímica , Fotorreceptores Microbianos/química
15.
Int J Biol Macromol ; 233: 123474, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36720327

RESUMEN

Phycocyanin, a natural blue colorant, derived from Spirulina platensis, is now widely used in the food industry. However, its main drawbacks are loss of color and denature of structure in an acidic environment. In this study, carboxylated chitosan (0.1 %-1 % w/v) was chosen as an additive in acid-denatured phycocyanin for preserving phycocyanin's blue color and natural structure. Zeta-potential and particle size revealed that the carboxylated chitosan with high negative charge adsorbed on phycocyanin and provided stronger electrostatic repulsion to overcome the protein aggregation. Ultraviolet-visible absorption spectrum and fluorescence spectroscopy showed that the carboxylated chitosan recovered the microenvironment of tetrapyrrole chromophores and ß-subunits, which led the secondary structure changed and the trimers depolymerized into the monomers changed by the acidic environment. Furthermore, Fourier transform infrared spectroscopy revealed highly negatively charged carboxylated chitosan with the groups (NH2, COOH and OH) could restored the microenvironment of tetrapyrrole chromophores and ß-subunits of phycocyanin, and interact with phycocyanin through hydrogen bonding, NH bonding, ionic bonding and van der Waals, which led to a change in secondary structure and depolymerization of trimers into monomers. Our study demonstrated the carboxylated chitosan played a beneficial role in recovering the structure of acid-denatured phycocyanin and its blue color.


Asunto(s)
Quitosano , Spirulina , Ficocianina/química , Quitosano/metabolismo , Spirulina/química , Luz , Estructura Secundaria de Proteína , Tetrapirroles/metabolismo
16.
Plant Commun ; 4(1): 100411, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-35836377

RESUMEN

Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast developmental status and is essential for the photoautotrophic lifestyle of plants. Previous studies have established that tetrapyrrole biosynthesis (TPB) and plastid gene expression (PGE) play essential roles in plastid retrograde signaling during early chloroplast biogenesis; however, their functional relationship remains unknown. In this study, we generated a series of rice TPB-related gun (genome uncoupled) mutants and systematically analyzed their effects on nuclear and plastid gene expression under normal conditions or when subjected to treatments with norflurazon (NF; a noncompetitive inhibitor of carotenoid biosynthesis) and/or lincomycin (Lin; a specific inhibitor of plastid translation). We show that under NF treatment, expression of plastid-encoded polymerase (PEP)-transcribed genes is significantly reduced in the wild type but is derepressed in the TPB-related gun mutants. We further demonstrate that the derepressed expression of PEP-transcribed genes may be caused by increased expression of the PEP core subunit and nuclear-encoded sigma factors and by elevated copy numbers of plastid genome per haploid genome. In addition, we show that expression of photosynthesis-associated nuclear genes (PhANGs) and PEP-transcribed genes is correlated in the rice TPB-related gun mutants, with or without NF or Lin treatment. A similar correlation between PhANGs and PGE is also observed in the Arabidopsis gun4 and gun5 mutants. Moreover, we show that increased expression of PEP-transcribed plastid genes is necessary for the gun phenotype in NF-treated TPB-related gun mutants. Further, we provide evidence that these TPB-related GUN genes act upstream of GUN1 in the regulation of retrograde signaling. Taken together, our results suggest that the TPB-related GUN genes control retrograde plastid signaling by regulating the PGE-dependent retrograde signaling pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Plastidios/genética , Arabidopsis/metabolismo , Transducción de Señal/genética , Tetrapirroles/metabolismo , Expresión Génica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Unión al ADN/genética
17.
Rapid Commun Mass Spectrom ; 37(1): e9413, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36222097

RESUMEN

RATIONALE: Cyclic tetrapyrroles, such as chlorophylls and their diagenetic derivatives, are structurally diverse and often chelated with certain metal species in the natural environment. A high throughput analytical method enabling quick tetrapyrrole screening in complex samples will promote the study of tetrapyrrole biogeochemistry and probably discoveries of new tetrapyrroles. METHODS: Total lipid extracts of biological and environmental samples were injected onto a C18 column to separate compounds with a reverse-phase gradient. Collision-induced dissociation (CID) was performed at different energy levels, from 40 to 200 eV, on a quadrupole time-of-flight mass spectrometry (QTOF-MS) to identify cyclic tetrapyrroles in complex matrices. RESULTS: Under 200 eV CID cyclic tetrapyrroles exhibit a unique fragmentation behavior, the production of fragments larger than 300 Da. Utilizing such feature as a filter to extract product ions in the range of 300-500 Da, various cyclic tetrapyrrole derivatives are readily recognized in all tested biological and environmental samples. The 200 eV CID setup also dissociates chelated to porphyrin metals, including Cu, Fe, Mn, Ni, and V, as single-charged ions for direct MS detection. CONCLUSIONS: The 200 eV CID setup provides an efficient approach for the identification of cyclic tetrapyrroles, such as chlorophylls and fossil metalloporphyrins, in complex environmental samples. The direct detection of chelated to porphyrin metal ions with QTOF-MS shows the potential for compound-specific metal isotope analysis.


Asunto(s)
Porfirinas , Tetrapirroles , Tetrapirroles/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Metales/química , Iones/química
18.
Phys Chem Chem Phys ; 24(48): 29393-29405, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36468544

RESUMEN

Phytochromes are a superfamily of photoreceptors that harbor linear tetrapyrroles as chromophores. Upon light illumination, the linear tetrapyrrole chromophore undergoes a double bond isomerization which starts a photocycle. In this work, we studied the photoisomerization of chromophore models designed based on the C- and D-rings of the phycocyanobilin (PCB) chromophore. In total, five different models with varying substitutions were investigated. Firstly, the vertical excitation energies were benchmarked using different computational methods to establish the relative order of the excited states. Based on these calculations, we computed the photoisomerization profiles using the extended multi-state (XMS) version of the CASPT2 method. The profiles were obtained for both the clockwise and counterclockwise rotations of the C15C16 bond in the Z and E isomers using a linear interpolation of internal coordinates between the Franck-Condon and MECI geometries. In the minimal chromophore model that lacks the substitutions at the pyrrole rings, the isomerization involves both C14-C15 and C15C16 bonds of the methine bridge between the C- and D-rings, resembling the hula-twist motion. The MECIs are characterized by a partial charge transfer between the two pyrrole rings pointing towards a twisted intramolecular charge transfer. Systematic introduction of substituents leads to an increase in the steric repulsion between the two pyrrole rings causing a pretwist of the dihedral around the C15C16 bond, which creates a preference for the counterclockwise isomerization. An introduction of the carbonyl group at the D-ring increases the extent of charge transfer which changes the isomerization mechanism from hula-twist to one-bond flip.


Asunto(s)
Fitocromo , Fitocromo/química , Tetrapirroles , Pirroles/química
19.
Mar Drugs ; 20(11)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36355019

RESUMEN

Phycocyanin is an excellent antioxidant with anti-inflammatory effects on which recent studies are growing; however, its specific target remains unclear. Linear tetrapyrrole compounds such as bilirubin have been shown to lead to the induction of heme oxygenase 1 expression in vivo, thus achieving antioxidant and anti-inflammatory effects. Phycocyanin is bound internally with linear tetrapyrrole phycocyanobilin in a similar structure to bilirubin. We speculate that there is probably a way of inducing the expression of heme oxygenase 1, with which tissue oxidative stress and inflammation can be inhibited, thus inhibiting pulmonary fibrosis caused by oxidative damage and inflammation of lung. By optimizing the enzymatic hydrolysis process, phycocyanobilin-bound phycocyanin peptide were obtained, and its in vitro antioxidant, anti-inflammatory, and anti-pulmonary fibrosis activities were investigated. The results show that the phycocyanobilin peptide was able to alleviate oxidative and inflammatory damage in cells through the Keap1-Nrf2-HO-1 pathway, which in turn relieved pulmonary fibrosis symptoms.


Asunto(s)
Hemo-Oxigenasa 1 , Ficocianina , Humanos , Ficocianina/farmacología , Ficocianina/uso terapéutico , Ficocianina/metabolismo , Hemo-Oxigenasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Bilirrubina/metabolismo , Bilirrubina/farmacología , Bilirrubina/uso terapéutico , Antiinflamatorios/farmacología , Tetrapirroles/farmacología , Tetrapirroles/uso terapéutico , Fibrosis
20.
J Phys Chem B ; 126(41): 8177-8187, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36219580

RESUMEN

Oxidoreductases have evolved over millions of years to perform a variety of metabolic tasks crucial for life. Understanding how these tasks are engineered relies on delivering external electron donors or acceptors to initiate electron transfer reactions. This is a challenge. Small-molecule redox reagents can act indiscriminately, poisoning the cell. Natural redox proteins are more selective, but finding the right partner can be difficult due to the limited number of redox potentials and difficulty tuning them. De novo proteins offer an alternative path. They are robust and can withstand mutations that allow for tailorable changes. They are also devoid of evolutionary artifacts and readily bind redox cofactors. However, no reliable set of engineering principles have been developed that allow for these proteins to be fine-tuned so their redox midpoint potential (Em) can form donor/acceptor pairs with any natural oxidoreductase. This work dissects protein-cofactor interactions that can be tuned to modulate redox potentials of acceptors and donors using a mutable de novo designed tetrahelical protein platform with iron tetrapyrrole cofactors as a test case. We show a series of engineered heme b-binding de novo proteins and quantify their resulting effect on Em. By focusing on the surface charge and buried charges, as well as cofactor placement, chemical modification, and ligation of cofactors, we are able to achieve a broad range of Em values spanning a range of 330 mV. We anticipate this work will guide the design of proteinaceous tools that can interface with natural oxidoreductases inside and outside the cell while shedding light on how natural proteins modulate Em values of bound cofactors.


Asunto(s)
Hemo , Proteínas , Oxidación-Reducción , Hemo/química , Proteínas/química , Oxidorreductasas/química , Tetrapirroles , Hierro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA