Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Toxins (Basel) ; 16(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38668611

RESUMEN

Nemerteans, or ribbon worms, possess tetrodotoxin and its analogues (TTXs), neurotoxins of bacterial origin, which they presumably use for capturing prey and self-defense. Most TTXs-containing nemertean species have low levels of these toxins and, therefore, have usually been neglected in studies of TTXs functions and accumulation. In the present study, Kulikovia alborostrata and K. manchenkoi, two closely related species, were analyzed for TTXs distribution in the body using the HPLC-MS/MS and fluorescence microscopy methods. The abundance of TTXs-positive cells was determined in the proboscis, integument, and digestive system epithelium. As a result, six TTXs-positive cell types were identified in each species; however, only four were common. Moreover, the proportions of the toxins in different body parts were estimated. According to the HPLC-MS/MS analysis, the TTXs concentrations in K. alborostrata varied from 0.91 ng/g in the proboscis to 5.52 ng/g in the precerebral region; in K. manchenkoi, the concentrations ranged from 7.47 ng/g in the proboscis to 72.32 ng/g in the posterior body region. The differences observed between the two nemerteans in the distribution of the TTXs were consistent with the differences in the localization of TTXs-positive cells. In addition, TTXs-positive glandular cell types were found in the intestine and characterized for the first time. TTXs in the new cell types were assumed to play a unique physiological role for nemerteans.


Asunto(s)
Tetrodotoxina , Animales , Tetrodotoxina/toxicidad , Tetrodotoxina/metabolismo , Tetrodotoxina/análisis , Japón , Espectrometría de Masas en Tándem , Invertebrados/química , Invertebrados/metabolismo , Bahías , Cromatografía Líquida de Alta Presión , Monitoreo del Ambiente
2.
Toxicon ; 237: 107539, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042308

RESUMEN

Tetrodotoxin (TTX) is a potent neurotoxin that binds to voltage-gated sodium channels and blocks the passage of sodium ions. TTX is widely distributed in both terrestrial and marine organisms, and the toxic puffers are believed to accumulate TTX through the food chain. Although pufferfish was previously thought to be attracted by TTX, recent finding from electroolfactogram (EOG) studies have indicated that the olfactory epithelium of T. alboplumbeus responded to 5, 6, 11-trideoxyTTX (TDT), but not to TTX itself. In this study, we examined behavioral experiments for Takifugu rubripes to distinguish between TTX and TDT under static and flow-through conditions. Our data clearly suggested that T. rubripes juveniles were attracted to TDT, not TTX. Moreover, we determined that the minimum effective dose of TDT to attract the puffer was 1-2 nmol of TDT under static conditions and 50-60 nmol of TDT under flow-through conditions. Following the experiments under static conditions, numerous bite marks by the pufferfish were found solely on the agarose gel infused with TDT. Based on these finding, we hypothesize that the pufferfish are attracted to TDT derived from prey, leading them effectively become toxic.


Asunto(s)
Neurotoxinas , Takifugu , Animales , Takifugu/metabolismo , Tetrodotoxina/toxicidad , Tetrodotoxina/metabolismo , Neurotoxinas/metabolismo , Cadena Alimentaria
3.
Biosci Biotechnol Biochem ; 87(10): 1155-1168, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37458754

RESUMEN

Efficient enrichment of tetrodotoxin (TTX)-binding proteins from the plasma of cultured tiger pufferfish (Takifugu rubripes) was achieved by ammonium sulfate fractionation and wheat germ agglutinin (WGA) affinity chromatography. The enrichment efficiency was validated by ultrafiltration-LC/MS-based TTX-binding assay and proteomics. Major proteins in the WGA-bound fraction were identified as isoform X1 (125 kDa) and X2 variants (88 and 79 kDa) derived from pufferfish saxitoxin and tetrodotoxin-binding protein (PSTBP) 1-like gene (LOC101075943). The 125-kDa X1 protein was found to be a novel member of the lipocalin family, having three tandemly repeated domains. X2 variants, X2α and X2ß, were estimated to have two domains, and X2ß is structurally related to Takifugu pardalis PSTBP2 in their domain type and arrangement. Among 11 potential N-glycosylation sites in the X2 precursor, 5 N-glycosylated Asn residues (N55, N89, N244, N308, and N449) were empirically determined. Structural relationships among PSTBP homologs and complexity of their proteoforms are discussed.


Asunto(s)
Proteómica , Takifugu , Animales , Takifugu/genética , Tetrodotoxina/metabolismo , Cromatografía de Afinidad
4.
Phytomedicine ; 115: 154791, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094425

RESUMEN

BACKGROUND: α-Mangostin is a xanthone isolated from the pericarps of mangosteen fruit with, and has analgesic properties. Although the effects suggest an interaction of α-mangostin with ion channels in the nociceptive neurons, electrophysiological investigation of the underlying mechanism has not been performed. HYPOTHESIS: We hypothesized that α-Mangostin exerts its analgesic effects by modulating the activity of various ion channels in dorsal root ganglion (DRG) neurons. METHODS: We performed a whole-cell patch clamp study using mouse DRG neurons, HEK293T cells overexpressing targeted ion channels, and ND7/23 cells. Molecular docking (MD) and in silico absorption, distribution, metabolism, and excretion (ADME) analyses were conducted to obtain further insights into the binding sites and pharmacokinetics, respectively. RESULTS: Application of α-mangostin (1-3 µM) hyperpolarized the resting membrane potential (RMP) of small-sized DRG neurons by increasing background K+ conductance and thereby inhibited action potential generation. At micromolar levels, α-mangostin activates TREK-1, TREK-2, or TRAAK, members of the two-pore domain K+ channel (K2P) family known to be involved in RMP formation in DRG neurons. Furthermore, capsaicin-induced TRPV1 currents were potently inhibited by α-mangostin (0.43 ± 0.27 µM), and partly suppressed tetrodotoxin-sensitive voltage-gated Na+ channel (NaV) currents. MD simulation revealed that multiple oxygen atoms in α-mangostin may form stable hydrogen bonds with TREKs, TRAAK, TRPV1, and NaV channels. In silico ADME tests suggested that α-mangostin may satisfy the drug-likeness properties without penetrating the blood-brain barrier. CONCLUSION: The analgesic properties of α-mangostin might be mediated by the multi-target modulation of ion channels, including TREK/TRAAK activation, TRPV1 inhibition, and reduction of the tetrodotoxin-sensitive NaV current. The findings suggest that the phytochemical can be a multi-ion channel-targeting drug and an alternative drug for effective pain management.


Asunto(s)
Ganglios Espinales , Neuronas , Ratones , Humanos , Animales , Tetrodotoxina/metabolismo , Tetrodotoxina/farmacología , Células HEK293 , Simulación del Acoplamiento Molecular
5.
BMC Anesthesiol ; 23(1): 145, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120567

RESUMEN

BACKGROUND: Chloral hydrate is a sedative-hypnotic drug widely used for relieving fear and anxiety in pediatric patients. However, mechanisms underlying the chloral hydrate-mediated analgesic action remain unexplored. Therefore, we investigated the effect of 2',2',2'-trichloroethanol (TCE), the active metabolite of chloral hydrate, on tetrodotoxin-resistant (TTX-R) Na+ channels expressed in nociceptive sensory neurons. METHODS: The TTX-R Na+ current (INa) was recorded from acutely isolated rat trigeminal ganglion neurons using the whole-cell patch-clamp technique. RESULTS: Trichloroethanol decreased the peak amplitude of transient TTX-R INa in a concentration-dependent manner and potently inhibited persistent components of transient TTX-R INa and slow voltage-ramp-induced INa at clinically relevant concentrations. Trichloroethanol exerted multiple effects on various properties of TTX-R Na+ channels; it (1) induced a hyperpolarizing shift on the steady-state fast inactivation relationship, (2) increased use-dependent inhibition, (3) accelerated the onset of inactivation, and (4) retarded the recovery of inactivated TTX-R Na+ channels. Under current-clamp conditions, TCE increased the threshold for the generation of action potentials, as well as decreased the number of action potentials elicited by depolarizing current stimuli. CONCLUSIONS: Our findings suggest that chloral hydrate, through its active metabolite TCE, inhibits TTX-R INa and modulates various properties of these channels, resulting in the decreased excitability of nociceptive neurons. These pharmacological characteristics provide novel insights into the analgesic efficacy exerted by chloral hydrate.


Asunto(s)
Nociceptores , Canales de Sodio , Ratas , Animales , Tetrodotoxina/farmacología , Tetrodotoxina/metabolismo , Nociceptores/metabolismo , Canales de Sodio/metabolismo , Canales de Sodio/farmacología , Hidrato de Cloral/farmacología , Hidrato de Cloral/metabolismo , Potenciales de la Membrana/fisiología , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-36470397

RESUMEN

Takifugu bimaculatus is a marine fish with high nutritional value. Its ovary contains tetrodotoxin (TTX) which is a severe neurotoxin that limits its edible value of it. To understand the mechanism of oogenesis and production of TTX in T. bimaculatus, an ovarian cell line named TBO from an adolescent ovary was established. TBO was composed of fibroblast-like cells that expressed the ovarian follicle cells marker gene Foxl2 and highly expressed TTX binding protein 2 (PSTBP2) but did not express the germ cells marker gene Vasa. Therefore, TBO seems to be mainly composed of follicle cells and possibly a small percentage of oocytes. Electroporation was used to successfully transfect the pEGFP-N1 and pNanog-N1 vectors into the TBO cell line with a high transfection efficiency. The morphological changes and survival rates of the exposed cells proved that this cell line was effective for exposure to conotoxins (CTXs), another group of toxins related to food safety. Furthermore, PSTBP2 was knocked out in TBO using CRISPR/Cas9 technology, showing that sgRNA2 could mutate PSTBP2. The results suggested that TBO will be more convenient, efficient, and rapid for reproduction and toxicology investigation, and gene editing. This study laid the groundwork for future research into the fish gonadal cell culture and food-related marine toxins. In conclusion, a cell line has been generated from T. bimaculatus, which might represent a valuable model for fish studies in the fields of toxicology and gene editing.


Asunto(s)
Edición Génica , Takifugu , Animales , Femenino , Takifugu/genética , Takifugu/metabolismo , Ovario/metabolismo , Tetrodotoxina/análisis , Tetrodotoxina/metabolismo , Línea Celular
7.
Nutrients ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296985

RESUMEN

Butyrate, a by-product of gut bacteria fermentation as well as the digestion of fat in mother's milk, exerts a wide spectrum of beneficial effects in the gastrointestinal tissues. The present study aimed to determine the effects of sodium butyrate on small intestine contractility in neonatal piglets. Piglets were fed milk formula alone (group C) or milk formula supplemented with sodium butyrate (group B). After a 7-day treatment period, isometric recordings of whole-thickness segments of the duodenum and middle jejunum were obtained by electric field stimulation under the influence of increasing doses of Ach (acetylocholine) in the presence of TTX (tetrodotoxin) and atropine. Moreover, structural properties of the intestinal wall were assessed, together with the expression of cholinergic and muscarinic receptors (M1 and M2). In both intestinal segments (duodenum and middle jejunum), EFS (electric field stimulation) impulses resulted in increased contractility and amplitude of contractions in group B compared to group C. Additionally, exposure to dietary butyrate led to a significant increase in tunica muscularis thickness in the duodenum, while mitotic and apoptotic indices were increased in the middle jejunum. The expression of M1 and M2 receptors in the middle jejunum was significantly higher after butyrate treatment. The results indicate increased cholinergic signaling and small intestinal growth and renewal in response to feeding with milk formula enriched with sodium butyrate in neonatal piglets.


Asunto(s)
Intestino Delgado , Leche , Porcinos , Animales , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Leche/metabolismo , Tetrodotoxina/metabolismo , Tetrodotoxina/farmacología , Intestino Delgado/metabolismo , Colinérgicos/metabolismo , Colinérgicos/farmacología , Derivados de Atropina/metabolismo , Derivados de Atropina/farmacología
8.
BMC Genomics ; 23(1): 553, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922761

RESUMEN

Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.


Asunto(s)
Takifugu , Testículo , Animales , Femenino , Feminización , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Masculino , ARN Interferente Pequeño/metabolismo , Takifugu/genética , Takifugu/metabolismo , Testículo/metabolismo , Tetrodotoxina/metabolismo , Tetrodotoxina/toxicidad
9.
Br J Pharmacol ; 179(21): 4992-5011, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35853139

RESUMEN

BACKGROUND AND PURPOSE: ATP plays an important role as an extracellular messenger acting via different types of purinoceptors. Whereas most of the actions of ATP at intestinal epithelia are thought to be mediated by metabotropic P2Y receptors, the role of ionotropic P2X receptors remains unclear. Consequently, we investigated the role of P2X4 and P2X7 receptors on ion transport across rat colonic epithelia by using BzATP, a potent agonist at P2X7 (and weak agonist at P2X4). EXPERIMENTAL APPROACH: Ussing chamber and Ca2+ imaging experiments were performed on rat colonic epithelia, combined with P2X receptor expression studies. KEY RESULTS: Ussing chamber experiments revealed that serosal BzATP induced a neuronally mediated increase in short-circuit current caused by Cl- secretion. In contrast, the effect of mucosal BzATP was smaller, insensitive to tetrodotoxin and Cl- -independent. When epithelia were basolaterally depolarized to measure currents across the apical membrane, BzATP stimulated a cation current consistent with the activation of apical nonselective cation channels. Experiments with isolated colonic crypts revealed a BzATP-induced increase in the cytosolic Ca2+ concentration. Sensitivity to antagonists indicates stimulation of P2X4 and P2X7 receptors by serosal BzATP and of P2X7 receptors by mucosal BzATP. A similar pattern was observed with native ATP, which induced larger transepithelial currents in comparison to BzATP. RT-PCR and immunohistochemistry experiments confirmed the expression of P2X4 and P2X7 receptors in the colon localized in the epithelium and in submucosal ganglia. CONCLUSIONS AND IMPLICATIONS: Epithelial and neuronal ionotropic P2X receptors are involved in the regulation of intestinal ion transport.


Asunto(s)
Adenosina Trifosfato , Receptores Purinérgicos P2X7 , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Colon/metabolismo , Transporte Iónico , Ratas , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Tetrodotoxina/metabolismo
10.
Am J Physiol Cell Physiol ; 323(3): C749-C762, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35876287

RESUMEN

Isolated smooth muscle cells (SMCs) from mouse bronchus were studied using the whole cell patch-clamp technique at ∼21°C. Stepping from -100 mV to -20 mV evoked inward currents of mean amplitude -275 pA. These inactivated (tau = 1.1 ms) and were abolished when external Na+ was substituted with N-Methyl-d-glucamine. In current-voltage protocols, current peaked at -10 mV and reversed between +20 and +30 mV. The V1/2s of activation and inactivation were -25 and -86 mV, respectively. The current was highly sensitive to tetrodotoxin (IC50 = 1.5 nM) and the NaV1.7 subtype-selective blocker, PF-05089771 (IC50 = 8.6 nM), consistent with NaV1.7 as the underlying pore-forming α subunit. Two NaV1.7-selective antibodies caused membrane-delineated staining of isolated SMC, as did a nonselective pan-NaV antibody. RT-PCR, performed on groups of ∼15 isolated SMCs, revealed transcripts for NaV1.7 in 7/8 samples. Veratridine (30 µM), a nonselective NaV channel activator, reduced peak current evoked by depolarization but induced a sustained current of 40 pA. Both effects were reversed by tetrodotoxin (100 nM). In tension experiments, veratridine (10 µM) induced contractions that were entirely blocked by atropine (1 µM). However, in the presence of atropine, veratridine was able to modulate the pattern of activity induced by a combination of U-46619 (a thromboxane A2 mimetic) and PGE2 (prostaglandin E2), by eliminating bursts in favor of sustained phasic contractions. These effects were readily reversed to control-like activity by tetrodotoxin (100 nM). In conclusion, mouse bronchial SMCs functionally express NaV1.7 channels that are capable of modulating contractile activity, at least under experimental conditions.


Asunto(s)
Bronquios , Miocitos del Músculo Liso , Animales , Derivados de Atropina/metabolismo , Derivados de Atropina/farmacología , Bronquios/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Sodio/metabolismo , Tetrodotoxina/metabolismo , Tetrodotoxina/farmacología , Veratridina/metabolismo , Veratridina/farmacología
11.
J Org Chem ; 87(14): 9023-9033, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35765754

RESUMEN

The collective synthesis of the four spiro-cyclic guanidines Tb-210B, Tb-226, Tb-242C, and Tb-258, all of which have been isolated from puffer fish and are considered possible biosynthetic intermediates of tetrodotoxin, has been achieved. Our synthesis is based on the stepwise deoxygenation or hydroxylation of a common intermediate, prepared from a known oxazoline.


Asunto(s)
Tetraodontiformes , Animales , Guanidina , Guanidinas , Hidroxilación , Tetraodontiformes/metabolismo , Tetrodotoxina/metabolismo
12.
Chemosphere ; 303(Pt 1): 134962, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35580645

RESUMEN

Tetrodotoxin (TTX) is a potent marine neurotoxin that exists in a variety of aquatic and terrestrial organisms. Pufferfish in different habitats show great variation in their TTX contents. Exploring the genes involved in TTX metabolism could contribute to our understanding of the molecular mechanisms underlying TTX accumulation, translocation, and detoxification in pufferfish. In this study, transcriptomic analysis was used to identify the functional genes related to TTX metabolism in the blood, liver, and muscle of the toxic and non-toxic tiger puffer (Takifugu rubripes). A total of 6101 differentially expressed genes (DEGs) were obtained after transcriptomic analysis; of these, 2401 were identified in the blood, 2262 in the liver, and 1438 in the muscle. After enrichment analysis, fourteen genes encoding glutathione S-transferases (GSTs), glutathione peroxidase (GPx), thioredoxins (TXNs), superoxide dismutase (SOD), ATP-binding cassettes (ABCs), apolipoproteins (APOs), inhibitors of apoptosis protein (IAP), and solute carrier (SLC), which are mainly antioxidant enzymes, membrane transporters, or anti-apoptotic factors, were revealed in the blood. Thirty-six genes encoding SLCs, ABCs, long-chain-fatty-acid-CoA ligases (ACSLs), interleukin 6 cytokine family signal transducer (IL6ST), endoplasmic reticulum (ER), and heat shock protein family A (Hsp70) were involved in transmembrane transporter activity and innate immune response. Notably, a large number of slc genes were found to play critical and diverse roles in TTX accumulation and translocation in the liver of T. rubripes. Nine genes from the slc, hsp70, complement C5 (c5), acsl, er, and serpin peptidase inhibitor (serpin) gene families were found to participate in the regulation of protein processing and anti-apoptosis. These results reflect the diverse functions of genes closely related to TTX accumulation, translocation, and detoxification in T. rubripes.


Asunto(s)
Takifugu , Transcriptoma , Animales , Perfilación de la Expresión Génica , Hígado/metabolismo , Takifugu/genética , Takifugu/metabolismo , Tetrodotoxina/metabolismo
13.
Anesth Analg ; 134(6): 1140-1152, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35436248

RESUMEN

BACKGROUND: Cholinergic stimulation of prefrontal cortex (PFC) can reverse anesthesia. Conversely, inactivation of PFC can delay emergence from anesthesia. PFC receives cholinergic projections from basal forebrain, which contains wake-promoting neurons. However, the role of basal forebrain cholinergic neurons in arousal from the anesthetized state requires refinement, and it is currently unknown whether the arousal-promoting effect of basal forebrain is mediated through PFC. To address these gaps in knowledge, we implemented a novel approach to the use of chemogenetic stimulation and tested the role of basal forebrain cholinergic neurons in behavioral arousal during sevoflurane anesthesia. Next, we investigated the effect of tetrodotoxin-mediated inactivation of PFC on behavioral arousal produced by electrical stimulation of basal forebrain during sevoflurane anesthesia. METHODS: Adult male and female transgenic rats (Long-Evans-Tg [ChAT-Cre]5.1 Deis; n = 22) were surgically prepared for expression of excitatory hM3D(Gq) receptors or mCherry in basal forebrain cholinergic neurons, and activation of these neurons by local delivery of compound 21, an agonist for hM3D(Gq) receptors. The transgenic rats were fitted with microdialysis probes for agonist delivery into basal forebrain and simultaneous prefrontal acetylcholine measurement. Adult male and female Sprague Dawley rats were surgically prepared for bilateral electrical stimulation of basal forebrain and tetrodotoxin infusion (156 µM and 500 nL) into PFC (n = 9) or bilateral electrical stimulation of piriform cortex (n = 9) as an anatomical control. All rats were implanted with electrodes to monitor the electroencephalogram. Heart and respiration rates were monitored using noninvasive sensors. A 6-point scale was used to score behavioral arousal (0 = no arousal and 5 = return of righting reflex). RESULTS: Compound 21 delivery into basal forebrain of rats with hM3D(Gq) receptors during sevoflurane anesthesia produced increases in arousal score (P < .001; confidence interval [CI], 1.80-4.35), heart rate (P < .001; CI, 36.19-85.32), respiration rate (P < .001; CI, 22.81-58.78), theta/delta ratio (P = .008; CI, 0.028-0.16), and prefrontal acetylcholine (P < .001; CI, 1.73-7.46). Electrical stimulation of basal forebrain also produced increases in arousal score (P < .001; CI, 1.85-4.08), heart rate (P = .018; CI, 9.38-98.04), respiration rate (P < .001; CI, 24.15-53.82), and theta/delta ratio (P = .020; CI, 0.019-0.22), which were attenuated by tetrodotoxin-mediated inactivation of PFC. CONCLUSIONS: This study validates the role of basal forebrain cholinergic neurons in behavioral arousal and demonstrates that the arousal-promoting effects of basal forebrain are mediated in part through PFC.


Asunto(s)
Anestesia , Prosencéfalo Basal , Acetilcolina/metabolismo , Animales , Nivel de Alerta , Prosencéfalo Basal/metabolismo , Colinérgicos/farmacología , Electroencefalografía , Femenino , Imidazoles , Masculino , Corteza Prefrontal/metabolismo , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Sevoflurano/farmacología , Sulfonamidas , Tetrodotoxina/metabolismo , Tiofenos
14.
Leg Med (Tokyo) ; 57: 102078, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35483105

RESUMEN

Identifying poisonous plants and animals is very important because they not only can cause food poisoning, but also can be eaten for the purpose of suicide. A pufferfish is a poisonous fish that contains tetrodotoxin. In Japan, 136 pufferfish poisoning cases occurred from 2015 to 2019, but in many cases, the specific species involved was unidentified. To address this, we focused on a rapid and simple DNA chromatography technology called Single-stranded Tag Hybridization (STH). We collected seven pufferfish species of the genus Takifugu and designed species-specific primers as target regions of cytochrome c oxidase subunit I (COI) and cytochrome b with a specific base sequence at the 3' end. STH-PCR was performed in two separate reactions. After mixing the PCR products, a developing solution was added to perform chromatograph development and the results were visually analyzed. Specific lines were detected in all seven species. The pufferfish species could be properly determined using between 0.1 ng and 50 ng of template DNA. The PCR product length was 85-149 bp, making it very resistant to degradation. The species could be properly identified even in a mixture of multiple pufferfish species DNA. Furthermore, verification was performed using the supernatants of digested samples with artificial gastric juice and processed foods. Extracted DNA was obtained in all but the highly roasted fins, enabling discrimination. Overall, we applied a novel DNA chromatography detection system capable of discriminating seven species of the genus Takifugu, which have closely related DNA sequences.


Asunto(s)
ADN , Takifugu , Animales , Cromatografía , ADN/metabolismo , Humanos , Reacción en Cadena de la Polimerasa , Takifugu/genética , Takifugu/metabolismo , Tetrodotoxina/análisis , Tetrodotoxina/metabolismo
15.
Br J Pharmacol ; 179(5): 1082-1101, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767251

RESUMEN

BACKGROUND AND PURPOSE: Corpus cavernosum smooth muscle (CCSM) exhibits phasic contractions that are coordinated by ion channels. Mouse models are commonly used to study erectile dysfunction, but there are few published electrophysiological studies of mouse CCSM. We describe the voltage-dependent sodium (NaV ) currents in mouse CCSM and investigate their function. EXPERIMENTAL APPROACH: We used electrophysiological, pharmacological and immunocytochemical methods to study the NaV currents in isolated CCSM cells from C57BL/6 mice. Tension measurements were carried out using crural sections of the corpus cavernosum in whole tissue. KEY RESULTS: Fast, voltage-dependent, sodium currents in mouse CCSM were induced by depolarising steps. Steady-state activation and inactivation curves revealed a window current between -60 and -30 mV. Two populations of NaV currents, 'TTX-sensitive' and 'TTX-insensitive', were identified. TTX-sensitive currents showed 48% block with the NaV channel subtype-specific blockers ICA-121431 (NaV 1.1-1.3), PF-05089771 (NaV 1.7) and 4,9-anhydro-TTX (NaV 1.6). TTX-insensitive currents were resistant to blockade by A803467, specific for NaV 1.8 channels. Immunocytochemistry confirmed expression of NaV 1.5 and NaV 1.4 in freshly dispersed CCSM cells. Veratridine, a NaV channel activator, reduced time-dependent inactivation of NaV currents and increased duration of evoked action potentials. Veratridine induced phasic contractions in CCSM strips, reversible with TTX and nifedipine but not KB-R7943. CONCLUSION AND IMPLICATIONS: There are fast, voltage-dependent, sodium currents in mouse CCSM. Stimulation of these currents increased contractility of CCSM in vitro, suggesting an involvement in detumescence and potentially providing a clinically relevant target in erectile dysfunction. Further work will be necessary to define its role.


Asunto(s)
Disfunción Eréctil , Animales , Disfunción Eréctil/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/metabolismo , Veratridina/metabolismo
16.
Mar Drugs ; 19(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806251

RESUMEN

The von Willebrand factor type D (VWD) domain in vitellogenin has recently been found to bind tetrodotoxin. The way in which this protein domain associates with tetrodotoxin and participates in transporting tetrodotoxin in vivo remains unclear. A cDNA fragment of the vitellogenin gene containing the VWD domain from pufferfish (Takifugu flavidus) (TfVWD) was cloned. Using in silico structural and docking analyses of the predicted protein, we determined that key amino acids (namely, Val115, ASP116, Val117, and Lys122) in TfVWD mediate its binding to tetrodotoxin, which was supported by in vitro surface plasmon resonance analysis. Moreover, incubating recombinant rTfVWD together with tetrodotoxin attenuated its toxicity in vivo, further supporting protein-toxin binding and indicating associated toxicity-neutralizing effects. Finally, the expression profiling of TfVWD across different tissues and developmental stages indicated that its distribution patterns mirrored those of tetrodotoxin, suggesting that TfVWD may be involved in tetrodotoxin transport in pufferfish. For the first time, this study reveals the amino acids that mediate the binding of TfVWD to tetrodotoxin and provides a basis for further exploration of the molecular mechanisms underlying the enrichment and transfer of tetrodotoxin in pufferfish.


Asunto(s)
Proteínas de Peces/metabolismo , Takifugu/metabolismo , Tetrodotoxina/metabolismo , Vitelogeninas/metabolismo , Factor de von Willebrand/metabolismo , Animales , Proteínas de Peces/genética , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Vitelogeninas/genética , Factor de von Willebrand/genética
17.
Mar Drugs ; 19(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450969

RESUMEN

Most marine biotoxins are produced by microalgae. The neurotoxin tetrodotoxin (TTX) has been reported in many seafood species worldwide but its source is unknown, making accumulation and depuration studies in shellfish difficult. Tetrodotoxin is a water-soluble toxin and cannot be directly ingested by shellfish. In the present study, a method was developed which involved binding TTX to solid particles of humic acid and encapsulating them in agar-gelatin capsules. A controlled quantity of TTX-containing microcapsules (size range 20-280 µm) was fed to Paphies australis, a bivalve known to accumulate TTX in the wild. The TTX-containing microcapsules were fed to P. australis every second day for 13 days. Ten P. australis (including five controls fed non-toxic microalgae) were harvested after 7 days and ten after 13 days. Paphies australis accumulated TTX, reaching concentrations of up to 103 µg kg-1 by day 13, exceeding the European Food Safety Authority recommended concentration of 44 µg kg-1 in shellfish. This novel method will allow future studies to explore the effects, accumulation and depuration rates of TTX in different animals and document how it is transferred through food webs.


Asunto(s)
Bivalvos/efectos de los fármacos , Bivalvos/metabolismo , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Tetrodotoxina/administración & dosificación , Tetrodotoxina/metabolismo , Animales , Espectrometría de Masas en Tándem/métodos
18.
Nat Prod Rep ; 38(3): 586-667, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021301

RESUMEN

Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.


Asunto(s)
Anuros/metabolismo , Bacterias/metabolismo , Productos Biológicos/química , Hongos/metabolismo , Guanidinas/metabolismo , Animales , Organismos Acuáticos/química , Organismos Acuáticos/metabolismo , Bacterias/química , Bacterias/genética , Productos Biológicos/metabolismo , Hongos/química , Invertebrados/química , Invertebrados/metabolismo , Estructura Molecular , Plantas/química , Plantas/metabolismo , Saxitoxina/química , Saxitoxina/metabolismo , Metabolismo Secundario , Arañas/química , Arañas/metabolismo , Tetrodotoxina/química , Tetrodotoxina/metabolismo
20.
Toxins (Basel) ; 12(12)2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256088

RESUMEN

Some nemertean species from the genus Cephalothrix accumulate tetrodotoxin (TTX) in extremely high concentrations. The current study is the first to provide high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) data on tetrodotoxin and its analogues (TTXs) profile and concentration in different regions and organs of Cephalothrix cf. simula, and its secretions produced in response to stimulation. Different specimens of C. cf. simula possessed 7-11 analogues, including nine previously found in this species and two new for nemerteans-4,9-anhydro-8-epi-5,6,11-trideoxyTTX and 1-hydroxy-8-epi-5,6,11-trideoxyTTX. The study of the toxins' distribution in different regions and organs of nemerteans revealed the same qualitative composition of TTXs throughout the body but differences in the total concentration of the toxins. The total concentration of TTXs was highest in the anterior region of the body and decreased towards the posterior; the ratio of the analogues also differed between regions. The data obtained suggest a pathway of TTXs uptake in C. cf. simula and the role of toxins in the life activity of nemerteans.


Asunto(s)
Secreciones Corporales/metabolismo , Invertebrados/metabolismo , Tetrodotoxina/análogos & derivados , Tetrodotoxina/metabolismo , Animales , Organismos Acuáticos/metabolismo , Cromatografía Líquida de Alta Presión , Japón , Océano Pacífico , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...