Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Parasitol Int ; 85: 102431, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34352378

RESUMEN

The effect of Zingiber officinale rhizome methanolic extract (ZOR) on the in vitro growth of bovine Babesia (B. bovis, B. bigemina, and B. divergens) and equine piroplasm (B. caballi, and Theileria equi) parasites and on the growth of B. microti in mice was evaluated in this study. The possible in vitro synergistic interaction between ZOR and either diminazene aceturate (DA) or potent Medicines for Malaria Venture (MMV) hits from the malaria box was also investigated. In vitro, ZOR reduced the growth of B. bovis, B. bigemina, T. equi, and B. caballi in a dose-dependent manner. B. divergens was the most susceptible parasite to the in vitro inhibitory effect of ZOR. DA and MMV compounds enhanced the in vitro inhibitory antibabesial activity of ZOR. 12.5 mg/kg DA when administrated in combination with ZOR in mice exhibited a significant inhibition (P < 0.05) in B. microti growth better than those observed after treatment with 25 mg/kg DA monotherapy. These findings suggest that ZOR could be a viable medicinal plant for babesiosis treatment, particularly when combined with a modest dose of either DA or powerful anti-B. bigemina MMV hits.


Asunto(s)
Antiprotozoarios/farmacología , Babesia/efectos de los fármacos , Extractos Vegetales/farmacología , Theileria/efectos de los fármacos , Zingiber officinale/química , Animales , Bovinos , Femenino , Caballos , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/química , Rizoma/química
2.
Sci Rep ; 11(1): 9107, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907262

RESUMEN

Theileria equi, an intraerythrocytic protozoan parasite, causes equine piroplasmosis, a disease which negatively impacts the global horse industry. Genetic manipulation is one of the research tools under development as a control method for protozoan parasites, but this technique needs to be established for T. equi. Herein, we report on the first development of a stable transgenic T. equi line expressing enhanced green fluorescent protein/blasticidin S deaminase (eGFP/BSD). To express the exogenous fusion gene in T. equi, regulatory regions of the elongation factor-1 alpha (ef-1α) gene were identified in T. equi. An eGFP/BSD-expression cassette containing the ef-1α gene promoter and terminator regions was constructed and integrated into the T. equi genome. On day 9 post-transfection, blasticidin-resistant T. equi emerged. In the clonal line of T. equi obtained by limiting dilution, integration of the eGFP/BSD-expression cassette was confirmed in the designated B-locus of the ef-1α gene via PCR and Southern blot analyses. Parasitaemia dynamics between the transgenic and parental T. equi lines were comparable in vitro. The eGFP/BSD-expressing transgenic T. equi and the methodology used to generate it offer new opportunities for better understanding of T. equi biology, with the add-on possibility of discovering effective control methods against equine piroplasmosis.


Asunto(s)
Aminohidrolasas/genética , Proteínas Fluorescentes Verdes/genética , Organismos Modificados Genéticamente , Theileria/genética , Regulación de la Expresión Génica , Nucleósidos/farmacología , Factor 1 de Elongación Peptídica/genética , Plásmidos , Theileria/efectos de los fármacos , Transfección
3.
Ticks Tick Borne Dis ; 12(4): 101696, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33677232

RESUMEN

Theileria equi and Babesia caballi are the causative agents of equine piroplasmosis (EP). Currently, imidocarb dipropionate (ID) is the only available drug for treating the clinical form of EP. Serious side effects and incomplete clearance of infection is a major drawback of ID. Heat-shock proteins (Hsp) play a vital role in the life cycle of these haemoprotozoans by preventing alteration in protein conformation. These Hsp are activated during transmission of EP sporozoites from the tick vector (poikilotherm) to the natural host (homeotherm) and facilitate parasite survival. In the present study, we targeted the heat shock protein 90 (Hsp-90) pathway of T. equi and B. caballi by using its inhibitor drug - novobiocin. Dose-dependent efficacy of novobiocin on the growth of T. equi and B. caballi was observed in in vitro culture. Additionally, we examined dose-dependent cell cytotoxicity on host peripheral mononuclear cells (PBMCs) and haemolytic activity on equine red blood cells (RBC). In vivo organ toxicity of novobiocin was also assessed in a mouse model. The IC50 (50 % inhibitory concentration) value of novobiocin against T. equi and B. caballi was 165 µM and 84.85 µM, respectively. Novobiocin significantly arrested the in vitro growth of T. equi and B. caballi parasites at 100 µM and 200 µM drug concentration, respectively. In vitro treated parasites had distorted nuclear material and showed no further viability. Based on the equine PBMCs and RBC, the drug was found to be safe even at 1000 µM concentration and the CC50 (50 % cytotoxicity concentration) values were 11.63 mM and 261.97 mM. Very high specific selective index (SSI) values (70.47 and 1587) were observed for equine PBMCs and RBC, respectively. Organ-specific biochemical markers and histopathological examination indicated no adverse effect of the drug at a dose rate of 50 mg kg body weight in the mouse model. The results demonstrate the growth inhibitory effect of novobiocin against T. equi and B. caballi parasites and its safety for host cell lines with very high SSI. Hence, it can be inferred that the Theileria/Babesia Hsp-90 family are potential drug targets worthy of further investigation.


Asunto(s)
Antiprotozoarios/farmacología , Babesia/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Novobiocina/farmacología , Theileria/efectos de los fármacos , Babesia/genética , Babesia/crecimiento & desarrollo , Theileria/genética , Theileria/crecimiento & desarrollo
4.
Parasit Vectors ; 13(1): 606, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272316

RESUMEN

BACKGROUND: The most common apicomplexan parasites causing bovine babesiosis are Babesia bovis and B. bigemina, while B. caballi and Theileria equi are responsible for equine piroplasmosis. Treatment and control of these diseases are usually achieved using potentially toxic chemotherapeutics, such as imidocarb diproprionate, but drug-resistant parasites are emerging, and alternative effective and safer drugs are needed. The endochin-like quinolones (ELQ)-300 and ELQ-316 have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp., with ELQ-316 also being effective against Babesia microti, without showing toxicity in mammals. METHODS: The inhibitory effects of ELQ-300 and ELQ-316 were assessed on the growth of cultured B. bovis, B. bigemina, B. caballi and T. equi. The percentage of parasitized erythrocytes was measured by flow cytometry, and the effect of the ELQ compounds on the viability of horse and bovine peripheral blood mononuclear cells (PBMC) was assessed by monitoring cell metabolic activity using a colorimetric assay. RESULTS: We calculated the half maximal inhibitory concentration (IC50) at 72 h, which ranged from 0.04 to 0.37 nM for ELQ-300, and from 0.002 to 0.1 nM for ELQ-316 among all cultured parasites tested at 72 h. None of the parasites tested were able to replicate in cultures in the presence of ELQ-300 and ELQ-316 at the maximal inhibitory concentration (IC100), which ranged from 1.3 to 5.7 nM for ELQ-300 and from 1.0 to 6.0 nM for ELQ-316 at 72 h. Neither ELQ-300 nor ELQ-316 altered the viability of equine and bovine PBMC at their IC100 in in vitro testing. CONCLUSIONS: The compounds ELQ-300 and ELQ-316 showed significant inhibitory activity on the main parasites responsible for bovine babesiosis and equine piroplasmosis at doses that are tolerable to host cells. These ELQ drugs may be viable candidates for developing alternative protocols for the treatment of bovine babesiosis and equine piroplasmosis.


Asunto(s)
Antiprotozoarios/farmacología , Babesia/efectos de los fármacos , Babesiosis/parasitología , Enfermedades de los Caballos/parasitología , Quinolonas/farmacología , Theileria/efectos de los fármacos , Theileriosis/parasitología , Animales , Babesia/crecimiento & desarrollo , Babesia/fisiología , Babesiosis/tratamiento farmacológico , Eritrocitos/parasitología , Enfermedades de los Caballos/tratamiento farmacológico , Caballos , Leucocitos Mononucleares/parasitología , Theileria/crecimiento & desarrollo , Theileria/fisiología , Theileriosis/tratamiento farmacológico
5.
PLoS Negl Trop Dis ; 14(8): e0008489, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32853247

RESUMEN

Piroplasmosis treatment has been based on the use of imidocarb dipropionate or diminazene aceturate (DA), however, their toxic effects. Therefore, the discovery of new drug molecules and targets is urgently needed. Cryptolepine (CRY) is a pharmacologically active plant alkaloid; it has significant potential as an antiprotozoal and antibacterial under different in vitro and in vivo conditions. The fluorescence assay was used for evaluating the inhibitory effect of CRY on four Babesia species and Theileria equi in vitro, and on the multiplication of B. microti in mice. The toxicity assay was evaluated on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3), and human foreskin fibroblast (HFF) cell lines. The half-maximal inhibitory concentration (IC50) values of CRY on Babesia bovis, B. bigemina, B. divergens, B. caballi, and T. equi were 1740 ± 0.377, 1400 ± 0.6, 790 ± 0.32, 600 ± 0.53, and 730 ± 0.025 nM, respectively. The toxicity assay on MDBK, NIH/3T3, and HFF cell lines showed that CRY affected the viability of cells with a half-maximum effective concentration (EC50) of 86.67 ± 4.43, 95.29 ± 2.7, and higher than 100 µM, respectively. In mice experiments, CRY at a concentration of 5 mg/kg effectively inhibited the growth of B. microti, while CRY-atovaquone (AQ) and CRY-DA combinations showed higher chemotherapeutic effects than CRY alone. Our results showed that CRY has the potential to be an alternative remedy for treating piroplasmosis.


Asunto(s)
Antiinfecciosos/farmacología , Babesia/efectos de los fármacos , Babesiosis/tratamiento farmacológico , Alcaloides Indólicos/farmacología , Quinolinas/farmacología , Theileria/efectos de los fármacos , Animales , Antiinfecciosos/administración & dosificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones
6.
Parasitol Res ; 119(9): 3061-3073, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32677000

RESUMEN

The problems of parasite resistance, as well as the toxic residues to most of the commercially available antipiroplasmic drugs severely weaken their effective, curative, and environmental safe employment. Therefore, it is clear that the development of treatment options for piroplasmosis is vital for improving disease treatment and control. Ciprofloxacin is a broad-spectrum antibiotic that targets mainly the DNA replication machinery by inhibiting DNA gyrase and topoisomerase enzymes. As a result, ciprofloxacin is used for treating several bacterial and parasitic infections. In this study, the efficacy of 15 novel ciprofloxacin derivatives (NCD) that had been developed against drug-resistant Mycobacterium tuberculosis was evaluated against piroplasm parasite multiplication in vitro. The half-maximal inhibitory concentration (IC50) values of the most effective five compounds of NCD (No. 3, 5, 10, 14, 15) on Babesia bovis, Babesia bigemina, Babesia caballi, and Theileria equi were 32.9, 13.7, 14.9, and 30.9; 14.9, 25.8, 13.6, and 27.5; 34.9, 33.9, 21.1, and 22.3; 26.7, 28.3, 34.5, and 29.1; and 4.7, 26.6, 33.9, and 29.1 µM, respectively. Possible detrimental effects of tested NCD on host cells were assessed using mouse embryonic fibroblast (NIH/3T3) and Madin-Darby bovine kidney (MDBK) cell lines. Tested NCD did not suppress NIH/3T3 and MDBK cell viability, even at the highest concentration used (500 µM). Combination treatments of the identified most effective compounds of NCD/diminazene aceturate (DA), /atovaquone (AQ), and /clofazimine (CF) showed mainly synergistic and additive effects. The IC50 values of NCD showed that they are promising future candidates against piroplasmosis. Further in vivo trials are required to evaluate the therapeutic potential of NCD.


Asunto(s)
Antipruriginosos/farmacología , Babesia/efectos de los fármacos , Babesiosis/parasitología , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacología , Theileria/efectos de los fármacos , Theileriosis/parasitología , Animales , Babesia/crecimiento & desarrollo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Theileria/crecimiento & desarrollo
7.
Vet Parasitol ; 282: 109124, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32442844

RESUMEN

The aim of this study was to test the hypothesis that toltrazuril administered at 4 weeks post-turnout reduces the infection intensity of Theileria orientalis Ikeda type in dairy calves and so prevents serious clinical disease in these animals at 2-3 months of age. Two groups of 40 dairy calves on two separate dairy farms in the Waikato were followed for 16 weeks post-turnout onto pasture. On each farm, 20 calves were randomly selected and orally treated with toltrazuril (15 mg/kg) at 4 weeks post-turnout, whilst the remaining 20 calves were left untreated. All 40 calves were blood sampled and weighed at 2, 4, 6, 8, 12, and 16 weeks post-turnout i.e. 6 samplings per calf. A random subset of 10 calves from each treatment group on each farm were faecal sampled at each visit. The blood samples were used to estimate the T. orientalis Ikeda type infection intensity and haematocrit for each calf and the faecal samples were used to estimate the number of coccidia oocysts per gram of faeces. Three linear mixed effects models, to evaluate the effect of toltrazuril treatment on infection intensity, haematocrit (HCT) and weight respectively were fitted to the data. No calves on either farm developed clinical theileriosis or coccidiosis and the three mixed effects linear models, controlling for the effect of farm and days from turnout, showed that there was no effect of treatment on infection intensity (p = 0.81), on HCT (p = 0.99) and on weight gain (p = 0.79). In conclusion, this study showed no evidence supporting the use of toltrazuril to control T. orientalis Ikeda type infection levels and prevent disease.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Coccidiostáticos/uso terapéutico , Theileria/efectos de los fármacos , Theileriosis/prevención & control , Triazinas/uso terapéutico , Animales , Bovinos , Heces/parasitología , Femenino , Hematócrito/veterinaria , Masculino
8.
Acta Parasitol ; 65(3): 644-651, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32240490

RESUMEN

INTRODUCTION: Theileria equi is an intra-erythrocytic apicomplexean protozoa that infect equines. Protein kinases (PK), key molecules of the apicomplexean life cycle, have been implicated as significant drug targets. The growth inhibitory efficacy of PK inhibitors against Theileria/Babesia animal parasites have not been documented so far. METHODS: The present study aimed to carry out in-vitro growth inhibitory efficacy studies of four novel drug molecules-SB239063, PD0332991 isethionate, FR180204 and apigenin, targeting different protein kinases of T. equi. A continuous microaerophilic stationary-phase culture (MASP) system was established for propagation of T. equi parasites. This in-vitro culture technique was used to assess the growth inhibitory effect of protein kinase targeted drug molecules, whereas diminazene aceturate was taken as control drug against T. equi. The inhibitory concentration (IC50) was determined for comparative analysis. The potential cytotoxicity of the drug molecule was also assessed on horse's peripheral blood mononuclear cells (PBMCs) cell line. RESULTS: SB239063 and diminazene aceturate drugs significantly inhibited (p < 0.05) the in-vitro growth of T. equi parasite at 0.1 µM, 1 µM, 10 µM, 50 µM and 100 µM concentration at ≥ 48 h of incubation period and respective IC50 values were 4.25 µM and 1.23 µM. Furthermore, SB239063 was not cytotoxic to the horse PBMCs and found safer than diminazine aceturate drug. PD0332991 isethionate and FR180204 are extracellular signal-regulated kinase (ERK) inhibitors and significantly (p < 0.05) inhibited T. equi in-vitro growth at higher concentrations (≥ 48 h of incubation period) with respective IC50 value of 10.41 µM and 21.0 µM. Lower concentrations of these two drugs were not effective (p > 0.05) even after 96 h of treatment period. Apigenin (protein kinase-C inhibitor) drug molecule was unsuccessful in inhibiting the T. equi parasite growth completely. After 96 h of in-vitro treatment period, a parasite viability study was performed on drug-treated T. equi parasitized RBCs. These drugs-treated parasitized RBCs were collected and transferred to wells containing fresh culture media (without drug) and naïve host RBCs. Drug-treated RBCs collected from SB239063, PD0332991, diminazene aceturate treatment (1 µM to 100 µM concentration) were unsuccessful in growing/multiplying further. Apigenin drug-treated T. equi parasites were live after 96 h of treatment. CONCLUSION: It may be concluded that SB239063 was the most effective drug molecule (being lowest in IC50 value) out of the four different protein kinase inhibitors tested in this study. This drug molecule has insignificant cytotoxic activity against horse's PBMCs.


Asunto(s)
Enfermedades de los Caballos/parasitología , Inhibidores de Proteínas Quinasas/farmacología , Theileria/efectos de los fármacos , Theileria/crecimiento & desarrollo , Animales , Descubrimiento de Drogas , Eritrocitos/parasitología , Enfermedades de los Caballos/tratamiento farmacológico , Caballos/parasitología , Concentración 50 Inhibidora , Theileriosis/tratamiento farmacológico
9.
BMC Complement Med Ther ; 20(1): 87, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32183812

RESUMEN

BACKGROUND: The antiprotozoal and antioxidant activities of Viola tricolor and Laurus nobilis have been reported recently. Thus, the existing study pursued to assess the growth inhibition effect of methanolic extract of V. tricolor (MEVT) and acetonic extract of L. nobilis (AELN) against five Babesia parasites and Theileria equi in vitro and in vivo. RESULTS: MEVT and AELN suppressed Babesia bovis, B. bigemina, B. divergens, B. caballi, and T. equi growth at half-maximal inhibitory concentration (IC50) values of 75.7 ± 2.6, 43.3 ± 1.8, 67.6 ± 2.8, 48 ± 3.8, 54 ± 2.1 µg/mL, and 86.6 ± 8.2, 33.3 ± 5.1, 62.2 ± 3.3, 34.5 ± 7.5 and 82.2 ± 9.3 µg/mL, respectively. Qualitative phytochemical estimation revealed that both extracts containing multiple bioactive constituents and significant amounts of flavonoids and phenols. The toxicity assay revealed that MEVT and AELN affected the mouse embryonic fibroblast (NIH/3 T3) and Madin-Darby bovine kidney (MDBK) cell viability with half-maximum effective concentrations (EC50) of 930 ± 29.9, 1260 ± 18.9 µg/mL, and 573.7 ± 12.4, 831 ± 19.9 µg/mL, respectively, while human foreskin fibroblasts (HFF) cell viability was not influenced even at 1500 µg/mL. The in vivo experiment revealed that the oral administration of MEVT and AELN prohibited B. microti multiplication in mice by 35.1 and 56.1%, respectively. CONCLUSIONS: These analyses indicate the prospects of MEVT and AELN as good candidates for isolating new anti-protozoal compounds which could assist in the development of new drug molecules with new drug targets.


Asunto(s)
Antiprotozoarios/farmacología , Babesia/efectos de los fármacos , Laurus/química , Extractos Vegetales/farmacología , Theileria/efectos de los fármacos , Viola/química , Acetona , Antiprotozoarios/química , Cromatografía de Gases y Espectrometría de Masas , Metanol , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química
10.
Molecules ; 25(4)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102270

RESUMEN

Cinnamomum verum is a commonly used herbal plant that has several documented properties against various diseases. The existing study evaluated the inhibitory effect of acetonic extract of C. verum (AECV) and ethyl acetate extract of C. verum (EAECV) against piroplasm parasites in vitro and in vivo. The drug-exposure viability assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that AECV and EAECV containing multiple bioactive constituents namely alkaloids, tannins, saponins, terpenoids and remarkable amounts of polyphenols and flavonoids. AECV and EAECV inhibited B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi multiplication at half-maximal inhibitory concentrations (IC50) of 23.1 ± 1.4, 56.6 ± 9.1, 33.4 ± 2.1, 40.3 ± 7.5, 18.8 ± 1.6 µg/mL, and 40.1 ± 8.5, 55.6 ± 1.1, 45.7 ± 1.9, 50.2 ± 6.2, and 61.5 ± 5.2 µg/mL, respectively. In the cytotoxicity assay, AECV and EAECV affected the viability of MDBK, NIH/3T3 and HFF cells with half-maximum effective concentrations (EC50) of 440 ± 10.6, 816 ± 12.7 and 914 ± 12.2 µg/mL and 376 ± 11.2, 610 ± 7.7 and 790 ± 12.4 µg/mL, respectively. The in vivo experiment showed that AECV and EAECV were effective against B. microti in mice at 150 mg/kg. These results showed that C. verum extracts are potential antipiroplasm drugs after further studies in some clinical cases.


Asunto(s)
Antiprotozoarios/farmacología , Babesia bovis/efectos de los fármacos , Babesia microti/efectos de los fármacos , Babesia/efectos de los fármacos , Cinnamomum zeylanicum/química , Fitoquímicos/farmacología , Theileria/efectos de los fármacos , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Animales , Antiprotozoarios/aislamiento & purificación , Babesia/crecimiento & desarrollo , Babesia bovis/crecimiento & desarrollo , Babesia microti/crecimiento & desarrollo , Bovinos , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/parasitología , Fibroblastos/efectos de los fármacos , Fibroblastos/parasitología , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Concentración 50 Inhibidora , Ratones , Células 3T3 NIH , Pruebas de Sensibilidad Parasitaria , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Polifenoles/aislamiento & purificación , Polifenoles/farmacología , Saponinas/aislamiento & purificación , Saponinas/farmacología , Taninos/aislamiento & purificación , Taninos/farmacología , Terpenos/aislamiento & purificación , Terpenos/farmacología , Theileria/crecimiento & desarrollo
11.
PLoS One ; 15(2): e0228996, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32053698

RESUMEN

BACKGROUND: The plenteous resistance to and undesirable consequences of the existing antipiroplasmic therapies have emphasized the urgent need for new chemotherapeutics and drug targets for both prophylaxis and chemotherapy. Hydroxyurea (HYD) is an antineoplastic agent with antitrypanosomal activity. Eflornithine (α-difluoro-methyl ornithine, DFMO) is the best choice therapy for the treatment of late-stage Gambian human African trypanosomiasis. METHODS: In this study, the inhibitory and combination efficacy of HYD and DFMO with existing babesicidal drugs (diminazene aceturate (DA), atovaquone (ATV), and clofazimine (CLF)) deoxyribonucleotide in vitro against the multiplication of Babesia and Theileria. As well as, their chemotherapeutic effects were assessed on B. microti strain that infects rodents. The Cell Counting Kits-8 (CCK-8) test was used to examine their cytotoxicity on human foreskin fibroblast (HFF), mouse embryonic fibroblast (NIH/3T3), and Madin-Darby bovine kidney (MDBK) cells. FINDINGS: HYD and DFMO suppressed the multiplication of all tested species (B. bigemina, B. bovis, B. caballi, B. divergens, and T. equi) in a dose-related manner. HFF, NIH/3T3, or MDBK cell viability was not influenced by DFMO at 1000 µM, while HYD affected the MDBK cell viability at EC50 value of 887.5±14.4 µM. The in vitro combination treatments of DFMO and HYD with CLF, DA, and ATV exhibited synergistic and additive efficacy toward all tested species. The in vivo experiment revealed that HYD and DFMO oral administration at 100 and 50 mg/kg inhibited B. microti multiplication in mice by 60.1% and 78.2%, respectively. HYD-DA and DFMO-DA combined treatments showed higher chemotherapeutic efficacy than their monotherapies. CONCLUSION: These results indicate the prospects of HYD and DFMO as drug candidates for piroplasmosis treatment, when combined mainly with DA, ATV, and CLF. Therefore, further studies are needed to combine HYD or DFMO with either ATV or CLF and examine their impact on B. microti infection in mice.


Asunto(s)
Babesia/efectos de los fármacos , Eflornitina/efectos adversos , Eflornitina/farmacología , Hidroxiurea/efectos adversos , Hidroxiurea/farmacología , Theileria/efectos de los fármacos , Animales , Antineoplásicos , Antiprotozoarios/administración & dosificación , Antiprotozoarios/farmacología , Atovacuona/efectos adversos , Atovacuona/farmacología , Supervivencia Celular/efectos de los fármacos , Clofazimina/efectos adversos , Clofazimina/farmacología , Diminazeno/efectos adversos , Diminazeno/análogos & derivados , Diminazeno/farmacología , Perros , Prepucio/citología , Humanos , Masculino , Ratones , Células 3T3 NIH
12.
Vet Parasitol ; 276: 108977, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31775104

RESUMEN

The aims of this study were to monitor the change in Theileria orientalis Ikeda type infection intensity, haematocrit, milk production and reproduction on three New Zealand spring calving dairy herds, over the 2014-2015 milking season. Three spring calving dairy farms, A, B and C, from high risk (endemically stable), low risk (endemically unstable), and zero risk (disease-free) tick areas respectively were followed through the 2014-2015 milking season. On Farms, A and B, 100 cows were randomly selected at the first visit, and the same cows blood sampled every month thereafter, whilst on Farm C, the whole herd was blood sampled bimonthly (140 cows). Blood samples were tested for haematocrit, by centrifugation, and Ikeda infection intensity, using qPCR. Animals that were Ikeda type PCR positive at the first sampling were described as prevalence cases and cows that were negative at the first sampling and became PCR positive during the sampling period were described as incidence cases. Production and reproduction data were accessed through LIC MINDA® and milk production data was standardised to energy corrected milk (ECM). In addition, the effect of buparvaquone (BPQ) treatment on milk production was estimated on Farm B. The prevalence of infection at the first sampling was 100 % on Farm A, 57 % on Farm B and 26 % on Farm C. The incidence risk of infection over the sampling period on Farms B and C was 25 % and 2 % and the incident rate was 0.026 and 0.002 cases per cow-month respectively. The average infection intensity for prevalence cases on all farms was low throughout the milking season, <7000 Ikeda organisms/µL however, cases of anaemia still occurred. There was no direct effect of infection intensity on milk production or from being a prevalence case compared to an uninfected cow on milk production, across all farms. However, on Farm B there was a loss of 266 kg (95 % CI 82 ̶ 450) ECM (∼20 kg milk solids) for incidence cases and a loss of 458 kg (95 % CI 211 ̶ 710) of ECM for buparvaquone treated cows, compared to uninfected cows. No significant effect of Ikeda infection on reproduction could be shown for Farms B and C, reproductive data for Farm A was not available. The effect of T. orientalis Ikeda type infection on production and reproduction appears to be minimal once animals have passed through the acute phase of infection and reached the chronic, asymptomatic carrier phase of infection.


Asunto(s)
Lactancia , Reproducción , Theileriosis/fisiopatología , Animales , Antiprotozoarios/uso terapéutico , Bovinos , ADN Protozoario/sangre , Industria Lechera , Femenino , Dosificación de Gen , Hematócrito/veterinaria , Incidencia , Estudios Longitudinales , Naftoquinonas/uso terapéutico , Prevalencia , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Theileria/efectos de los fármacos , Theileria/genética , Theileriosis/tratamiento farmacológico , Theileriosis/epidemiología , Theileriosis/parasitología
13.
Vet Parasitol ; 274: 108895, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31494399

RESUMEN

There is an innovative approach to discovering and developing novel potent and safe anti-Babesia and anti-Theileria agents for the control of animal piroplasmosis. Large-scale screening of 400 compounds from a Malaria Box (a treasure trove of 400 diverse compounds with antimalarial activity has been established by Medicines for Malaria Venture) against the in vitro growth of bovine Babesia and equine Babesia and Theileria parasites was performed, and the data were published in a brief with complete dataset from 236 screens of the Malaria Box compounds. Therefore, in this review, we explored and discussed in detail the in vitro inhibitory effects of 400 antimalarial compounds (200 drug-like and 200 probe-like) from the Malaria Box against Babesia (B.) bovis, B. bigemina, B. caballi, and Theileria (T.) equi. Seventeen hits were the most interesting with regard to bovine Babesia parasites, with mean selectivity indices (SIs) greater than 300 and half maximal inhibitory concentration (IC50s) ranging from 50 to 410 nM. The most interesting compounds with regard to equine Babesia and Theileria parasites were MMV020490 and MMV020275, with mean SIs > 258.68 and >251.55, respectively, and IC50s ranging from 76 to 480 nM. Ten novel anti-B. bovis, anti-B. bigemina, anti-T. equi, and anti-B. caballi hits, MMV666093, MMV396794, MMV006706, MMV665941, MMV085203, MMV396693, MMV006787, MMV073843, MMV007092, and MMV665875, with nanomole levels of IC50 were identified. The most interesting hits were MMV396693, MMV073843, MMV666093, and MMV665875, with mean SIs greater than 307.8 and IC50s ranging from 43 to 630 nM for both bovine Babesia and equine Babesia and Theileria parasites. Screening the Malaria Box against the in vitro growth of Babesia and Theileria parasites helped with the discovery of new drugs than those traditionally used, diminazene aceturate and imidocarb dipropionate, and indicated the potential of the Malaria Box in finding new, potent antibabesial drugs.


Asunto(s)
Antimaláricos/farmacología , Babesia/efectos de los fármacos , Reposicionamiento de Medicamentos , Theileria/efectos de los fármacos , Animales , Humanos
14.
BMC Vet Res ; 15(1): 297, 2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31420047

RESUMEN

BACKGROUND: Raising cattle on pastures is known to be beneficial for animal welfare and cost reduction. However, grazing is associated with the risk of contracting tick-borne diseases, such as theileriosis. Here, the efficacy of ivermectin against these diseases and associated clinical symptoms were evaluated. RESULTS: A total of 68 cattle from a grazing cattle farm were selected and divided into two groups: the control group (17 cattle) with no preventive treatment and the ivermectin-treated group (51 cattle) in which cattle were treated with pour-on ivermectin prior to grazing. The infection rates of Theileria orientalis and the red blood cell (RBC) profile (e.g., RBC count, hematocrit value, and hemoglobin concentration) were compared in the spring (before grazing) and summer (during grazing) between the two groups. Based on PCR amplification of the major piroplasm surface protein (MPSP) gene, 12 cattle were positive for T. orientalis infection. Phylogenetic analysis revealed that the isolates identified in this study consisted of three MPSP types (1, 2, and 7). The T. orientalis infection rate in the control group during grazing was 3-fold higher than that in the ivermectin-treated group. Moreover, differences in RBC parameters during grazing were greater in the control group than in the ivermectin-treated group. In particular, the hematocrit value was significantly reduced in the control group. CONCLUSIONS: The results of this study demonstrated that ivermectin had protective effects against T. orientalis infection and RBC hemolysis in grazing cattle.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Ivermectina/farmacología , Theileria/efectos de los fármacos , Theileriosis/tratamiento farmacológico , Crianza de Animales Domésticos , Animales , Antiparasitarios/uso terapéutico , Bovinos , Enfermedades de los Bovinos/tratamiento farmacológico , Filogenia , Theileriosis/parasitología
15.
Artículo en Inglés | MEDLINE | ID: mdl-31254719

RESUMEN

Diminazene aceturate (DA) and imidocarb dipropionate are commonly used in livestock as antipiroplasm agents. However, toxic side effects are common in animals treated with these two drugs. Therefore, evaluations of novel therapeutic agents with high efficacy against piroplasm parasites and low toxicity to host animals are of paramount importance. In this study, the 400 compounds in the Pathogen Box provided by the Medicines for Malaria Venture foundation were screened against Babesia bovis, Babesia bigemina, Babesia caballi, and Theileria equi. A fluorescence-based method using SYBR Green 1 stain was used for initial in vitro screening and determination of the half maximal inhibitory concentration (IC50). The initial in vitro screening performed using a 1 µM concentration as baseline revealed nine effective compounds against four tested parasites. Two "hit" compounds, namely MMV021057 and MMV675968, that showed IC50 < 0.3 µM and a selectivity index (SI)> 100 were selected. The IC50s of MMV021057 and MMV675968 against B. bovis, B. bigemina, T. equi and B. caballi were 23, 39, 229, and 146 nM, and 2.9, 3, 25.7, and 2.9 nM, respectively. In addition, a combination of MMV021057 and DA showed additive or synergistic effects against four tested parasites, while combinations of MMV021057 with MMV675968 and of MMV675968 with DA showed antagonistic effects. In mice, treated with 50 mg/kg MMV021057 and 25 mg/kg MMV675968 inhibited the growth of Babesia microti by 54 and 64%, respectively, as compared to the untreated group on day 8. Interestingly, a combination treatment with 6.25 mg/kg DA and 25 mg/kg MMV021057 inhibited B. microti by 91.6%, which was a stronger inhibition than that by single treatments with 50 mg/kg MMV021057 and 25 mg/kg DA, which showed 54 and 83% inhibition, respectively. Our findings indicated that MMV021057, MMV675968, and the combination treatment with MMV021057 and DA are prospects for further development of antipiroplasm drugs.


Asunto(s)
Antipruriginosos/administración & dosificación , Babesia/efectos de los fármacos , Babesiosis/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Eritrocitos/parasitología , Theileria/efectos de los fármacos , Theileriosis/tratamiento farmacológico , Animales , Babesia/fisiología , Babesiosis/sangre , Babesiosis/parasitología , Bovinos , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Humanos , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Endogámicos BALB C , Theileria/fisiología , Theileriosis/sangre , Theileriosis/parasitología
16.
Ticks Tick Borne Dis ; 10(5): 949-958, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31101552

RESUMEN

Currently, chemotherapeutics against piroplasmosis are also associated with toxicity and the emergence of drug-resistant parasites. Therefore, the discovery of new drug compounds is necessary for the effective control of bovine and equine piroplasms. Syzygium aromaticum (clove) and Camellia sinensis (green tea) have several documented medicinal properties. In the present study, the growth-inhibiting effects of S. aromaticum and C. sinensis methanolic extracts were evaluated in vitro and in vivo. The half-maximal inhibitory concentration (IC50) values for methanolic S. aromaticum against Babesia bovis, B. bigemina, B. divergens, B. caballi, and Theileria equi were 109.8 ± 3.8, 8.7 ± 0.09, 76.4 ± 4.5, 19.6 ± 2.2, and 60 ± 7.3 µg/ml, respectively. Methanolic C. sinensis exhibited IC50 values of 114 ± 6.1, 71.3 ± 3.7, 35.9 ± 6.8, 32.7 ± 20.3, and 60.8 ± 7.9 µg/ml against B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi, respectively. The toxicity assay on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3), and human foreskin fibroblast (HFF) cell lines showed that methanolic S. aromaticum and methanolic C. sinensis affected only the viability of the MDBK cell line with half-maximal effective concentrations (EC50) of 894.7 ± 4.9 and 473.7 ± 7.4 µg/ml, respectively, while the viability of NIH/3T3 and HFF cell lines was not affected even at 1000 µg/ml. In the in vivo experiment, methanolic S. aromaticum and methanolic C. sinensis oral treatments at 150 mg/kg inhibited the growth of Babesia microti in mice by 69.2% and 42.4%, respectively. These findings suggest that methanolic S. aromaticum and methanolic C. sinensis extracts have the potential as alternative remedies for treating piroplasmosis.


Asunto(s)
Antiprotozoarios/farmacología , Babesia/efectos de los fármacos , Camellia sinensis/química , Extractos Vegetales/farmacología , Syzygium/química , Theileria/efectos de los fármacos , Células 3T3 , Animales , Babesia/crecimiento & desarrollo , Línea Celular , Perros , Humanos , Células de Riñón Canino Madin Darby , Ratones , Extractos Vegetales/química , Especificidad de la Especie , Theileria/crecimiento & desarrollo
17.
Parasit Vectors ; 12(1): 269, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138282

RESUMEN

BACKGROUND: There are no effective vaccines against Babesia and Theileria parasites; therefore, therapy depends heavily on antiprotozoal drugs. Treatment options for piroplasmosis are limited; thus, the need for new antiprotozoal agents is becoming increasingly urgent. Ellagic acid (EA) is a polyphenol found in various plant products and has antioxidant, antibacterial and effective antimalarial activity in vitro and in vivo without toxicity. The present study documents the efficacy of EA and EA-loaded nanoparticles (EA-NPs) on the growth of Babesia and Theileria. METHODS: In this study, the inhibitory effect of EA, ß-cyclodextrin ellagic acid (ß-CD EA) and antisolvent precipitation with a syringe pump prepared ellagic acid (APSP EA) was evaluated on four Babesia species and Theileria equi in vitro, and on the multiplication of B. microti in mice. The cytotoxicity assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cell lines. RESULTS: The half-maximal inhibitory concentration (IC50) values of EA and ß-CD EA on B. bovis, B. bigemina, B. divergens, B. caballi and T. equi were 9.58 ± 1.47, 7.87 ± 5.8, 5.41 ± 2.8, 3.29 ± 0.42 and 7.46 ± 0.6 µM and 8.8 ± 0.53, 18.9 ± 0.025, 11 ± 0.37, 4.4 ± 0.6 and 9.1 ± 1.72 µM, respectively. The IC50 values of APSP EA on B. bovis, B. bigemina, B. divergens, B. caballi and T. equi were 4.2 ± 0.42, 9.6 ± 0.6, 2.6 ± 1.47, 0.92 ± 5.8 and 7.3 ± 0.54 µM, respectively. A toxicity assay showed that EA, ß-CD EA and APSP EA affected the viability of cells with a half-maximal effective concentration (EC50) higher than 800 µM. In the experiments on mice, APSP EA at a concentration of 70 mg/kg reduced the peak parasitemia of B. microti by 68.1%. Furthermore, the APSP EA-atovaquone (AQ) combination showed a higher chemotherapeutic effect than that of APSP EA monotherapy. CONCLUSIONS: To our knowledge, this is the first study to demonstrate the in vitro and in vivo antibabesial action of EA-NPs and thus supports the use of nanoparticles as an alternative antiparasitic agent.


Asunto(s)
Antiprotozoarios/farmacología , Babesia microti/efectos de los fármacos , Babesia/efectos de los fármacos , Ácido Elágico/farmacología , Theileria/efectos de los fármacos , Animales , Babesia/crecimiento & desarrollo , Babesiosis/tratamiento farmacológico , Bovinos , Línea Celular , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/parasitología , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Extractos Vegetales/farmacología , Theileria/crecimiento & desarrollo , Theileriosis/tratamiento farmacológico
18.
PLoS Negl Trop Dis ; 13(5): e0007030, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31125333

RESUMEN

BACKGROUND: Chemotherapy is a principle tool for the control and prevention of piroplasmosis. The search for a new chemotherapy against Babesia and Theileria parasites has become increasingly urgent due to the toxic side effects of and developed resistance to the current drugs. Chalcones have attracted much attention due to their diverse biological activities. With the aim to discover new drugs and drug targets, in vitro and in vivo antibabesial activity of trans-chalcone (TC) and chalcone 4 hydrate (CH) alone and combined with diminazene aceturate (DA), clofazimine (CF) and atovaquone (AQ) were investigated. METHODOLOGY/PRINCIPAL FINDINGS: The fluorescence-based assay was used for evaluating the inhibitory effect of TC and CH on four Babesia species, including B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi, the combination with DA, CF, and AQ on in vitro cultures, and on the multiplication of a B. microti-infected mouse model. The cytotoxicity of compounds was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3), and human foreskin fibroblast (HFF) cell lines. The half maximal inhibitory concentration (IC50) values of TC and CH against B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi were 69.6 ± 2.3, 33.3 ± 1.2, 64.8 ± 2.5, 18.9 ± 1.7, and 14.3 ± 1.6 µM and 138.4 ± 4.4, 60.9 ± 1.1, 82.3 ± 2.3, 27.9 ± 1.2, and 19.2 ± 1.5 µM, respectively. In toxicity assays, TC and CH affected the viability of MDBK, NIH/3T3, and HFF cell lines the with half maximum effective concentration (EC50) values of 293.9 ± 2.9, 434.4 ± 2.7, and 498 ± 3.1 µM and 252.7 ± 1.7, 406.3 ± 9.7, and 466 ± 5.7 µM, respectively. In the mouse experiment, TC reduced the peak parasitemia of B. microti by 71.8% when administered intraperitoneally at 25 mg/kg. Combination therapies of TC-DA and TC-CF were more potent against B. microti infection in mice than their monotherapies. CONCLUSIONS/SIGNIFICANCE: In conclusion, both TC and CH inhibited the growth of Babesia and Theileria in vitro, and TC inhibited the growth of B. microti in vivo. Therefore, TC and CH could be candidates for the treatment of piroplasmosis after further studies.


Asunto(s)
Antiprotozoarios/administración & dosificación , Babesia/efectos de los fármacos , Babesia/crecimiento & desarrollo , Babesiosis/tratamiento farmacológico , Chalconas/administración & dosificación , Theileria/efectos de los fármacos , Theileria/crecimiento & desarrollo , Theileriosis/tratamiento farmacológico , Animales , Antiprotozoarios/química , Babesia/genética , Babesiosis/parasitología , Línea Celular , Chalconas/química , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Concentración 50 Inhibidora , Ratones Endogámicos BALB C , Theileria/genética , Theileriosis/parasitología
19.
Commun Biol ; 2: 152, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044177

RESUMEN

Metabolic reprogramming is an important feature of host-pathogen interactions and a hallmark of tumorigenesis. The intracellular apicomplexa parasite Theileria induces a Warburg-like effect in host leukocytes by hijacking signaling machineries, epigenetic regulators and transcriptional programs to create a transformed cell state. The molecular mechanisms underlying host cell transformation are unclear. Here we show that a parasite-encoded prolyl-isomerase, TaPin1, stabilizes host pyruvate kinase isoform M2 (PKM2) leading to HIF-1α-dependent regulation of metabolic enzymes, glucose uptake and transformed phenotypes in parasite-infected cells. Our results provide a direct molecular link between the secreted parasite TaPin1 protein and host gene expression programs. This study demonstrates the importance of prolyl isomerization in the parasite manipulation of host metabolism.


Asunto(s)
Proteínas Portadoras/genética , Transformación Celular Neoplásica/genética , Interacciones Huésped-Patógeno/genética , Proteínas de la Membrana/genética , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Proteínas Protozoarias/genética , Theileria/genética , Hormonas Tiroideas/genética , Animales , Antiprotozoarios/farmacología , Transporte Biológico , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Bovinos , Línea Celular Transformada , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Glucosa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Linfocitos/efectos de los fármacos , Linfocitos/enzimología , Linfocitos/parasitología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas/genética , Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Naftoquinonas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Theileria/efectos de los fármacos , Theileria/enzimología , Theileria/crecimiento & desarrollo , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
20.
Ticks Tick Borne Dis ; 10(3): 568-574, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30733146

RESUMEN

Theileria equi and Babesia caballi are tick-borne apicomplexan haemoprotozoan parasites of equines and are responsible for considerable economic losses to stakeholders. Chemotherapeutic drugs that are available not only require multiple dosages but also prompt multiple organ toxicity in treated host though incapable of clearing parasitaemia completely. In this study, we have screened the in vitro inhibitory efficacy of four different drug molecules (o-choline, DABCO®, lumefantrine and eugenol) against T. equi and B. caballi, targeting different parasite metabolism pathways. Imidocarb dipropionate and diminazene aceturate were used as reference control drugs. The 50% in vitro growth inhibitory concentration (IC50) of lumefantrine, o-choline, DABCO® and eugenol for T. equi were: 30.90 µM; 84.38 µM; 443 µM; 120 µM and for B. caballi growth inhibition were: 5.58 µM; 135.29 µM; 150 µM; 197.05 µM, respectively. Imidocarb dipropionate inhibited the in vitro growth of T. equi at IC50 of 257.5 nM, while diminazene aceturate inhibited the in vitro growth of B. caballi at IC50 of 22 nM. DABCO® and eugenol were not so effective in inhibiting the in vitro growth of T. equi and B. caballi, while lumefantrine and o-choline significantly (p ≤ 0.05) inhibited the in vitro growth of these piroplasms targeting haem digestion and parasite membrane phospholipid synthesis.


Asunto(s)
Babesia/efectos de los fármacos , Colina/farmacología , Lumefantrina/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Theileria/efectos de los fármacos , Animales , Babesia/crecimiento & desarrollo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Hemoglobinas/metabolismo , Caballos , Concentración 50 Inhibidora , Lactatos/metabolismo , Fosfolípidos/metabolismo , Filogenia , Theileria/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...