Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ISME J ; 9(1): 180-94, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25050524

RESUMEN

Microbial communities that underpin global biogeochemical cycles will likely be influenced by elevated temperature associated with environmental change. Here, we test an approach to measure how elevated temperature impacts the physiology of individual microbial groups in a community context, using a model microbial-based ecosystem. The study is the first application of tandem mass tag (TMT)-based proteomics to a microbial community. We accurately, precisely and reproducibly quantified thousands of proteins in biofilms growing at 40, 43 and 46 °C. Elevated temperature led to upregulation of proteins involved in amino-acid metabolism at the level of individual organisms and the entire community. Proteins from related organisms differed in their relative abundance and functional responses to temperature. Elevated temperature repressed carbon fixation proteins from two Leptospirillum genotypes, whereas carbon fixation proteins were significantly upregulated at higher temperature by a third member of this genus. Leptospirillum group III bacteria may have been subject to viral stress at elevated temperature, which could lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, these findings highlight the utility of proteomics-enabled community-based physiology studies, and provide a methodological framework for possible extension to additional mixed culture and environmental sample analyses.


Asunto(s)
Proteínas Bacterianas/análisis , Biopelículas , Calor , Leptospiraceae/fisiología , Proteoma , Proteínas Arqueales/análisis , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Humanos , Leptospiraceae/genética , Leptospiraceae/crecimiento & desarrollo , Proteoma/genética , Proteómica/métodos , Proteómica/normas , Thermoplasmales/fisiología
2.
BMC Genomics ; 14: 485, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23865623

RESUMEN

BACKGROUND: Metal sulfide mineral dissolution during bioleaching and acid mine drainage (AMD) formation creates an environment that is inhospitable to most life. Despite dominance by a small number of bacteria, AMD microbial biofilm communities contain a notable variety of coexisting and closely related Euryarchaea, most of which have defied cultivation efforts. For this reason, we used metagenomics to analyze variation in gene content that may contribute to niche differentiation among co-occurring AMD archaea. Our analyses targeted members of the Thermoplasmatales and related archaea. These results greatly expand genomic information available for this archaeal order. RESULTS: We reconstructed near-complete genomes for uncultivated, relatively low abundance organisms A-, E-, and Gplasma, members of Thermoplasmatales order, and for a novel organism, Iplasma. Genomic analyses of these organisms, as well as Ferroplasma type I and II, reveal that all are facultative aerobic heterotrophs with the ability to use many of the same carbon substrates, including methanol. Most of the genomes share genes for toxic metal resistance and surface-layer production. Only Aplasma and Eplasma have a full suite of flagellar genes whereas all but the Ferroplasma spp. have genes for pili production. Cryogenic-electron microscopy (cryo-EM) and tomography (cryo-ET) strengthen these metagenomics-based ultrastructural predictions. Notably, only Aplasma, Gplasma and the Ferroplasma spp. have predicted iron oxidation genes and Eplasma and Iplasma lack most genes for cobalamin, valine, (iso)leucine and histidine synthesis. CONCLUSION: The Thermoplasmatales AMD archaea share a large number of metabolic capabilities. All of the uncultivated organisms studied here (A-, E-, G-, and Iplasma) are metabolically very similar to characterized Ferroplasma spp., differentiating themselves mainly in their genetic capabilities for biosynthesis, motility, and possibly iron oxidation. These results indicate that subtle, but important genomic differences, coupled with unknown differences in gene expression, distinguish these organisms enough to allow for co-existence. Overall this study reveals shared features of organisms from the Thermoplasmatales lineage and provides new insights into the functioning of AMD communities.


Asunto(s)
Biopelículas , Genómica , Minería , Thermoplasmales/genética , Thermoplasmales/fisiología , Aerobiosis/genética , Aldehído Oxidorreductasas/genética , Aminoácidos/biosíntesis , Pared Celular/metabolismo , Resistencia a Medicamentos/genética , Transporte de Electrón , Metabolismo Energético/genética , Fermentación , Genes Arqueales/genética , Islas Genómicas/genética , Glioxilatos/metabolismo , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Metales/toxicidad , Imagen Molecular , Anotación de Secuencia Molecular , Complejos Multienzimáticos/genética , Filogenia , Thermoplasmales/citología , Thermoplasmales/metabolismo , Trehalosa/biosíntesis
3.
Appl Environ Microbiol ; 77(15): 5071-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21685165

RESUMEN

About 10 years ago, a new family of cell wall-deficient, iron-oxidizing archaea, Ferroplasmaceae, within the large archaeal phylum Euryarchaeota, was described. In this minireview, I summarize the research progress achieved since then and report on the current status of taxonomy, biogeography, physiological diversity, biochemistry, and other research areas involving this exciting group of acidophilic archaea.


Asunto(s)
Ambiente , Thermoplasmales , Concentración de Iones de Hidrógeno , Consorcios Microbianos , Filogeografía , ARN Ribosómico 16S/genética , Thermoplasmales/química , Thermoplasmales/clasificación , Thermoplasmales/genética , Thermoplasmales/fisiología
4.
Science ; 320(5879): 1047-50, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18497291

RESUMEN

Viruses shape microbial community structure and function by altering the fitness of their hosts and by promoting genetic exchange. The complexity of most natural ecosystems has precluded detailed studies of virus-host interactions. We reconstructed virus and host bacterial and archaeal genome sequences from community genomic data from two natural acidophilic biofilms. Viruses were matched to their hosts by analyzing spacer sequences that occur among clustered regularly interspaced short palindromic repeats (CRISPRs) that are a hallmark of virus resistance. Virus population genomic analyses provided evidence that extensive recombination shuffles sequence motifs sufficiently to evade CRISPR spacers. Only the most recently acquired spacers match coexisting viruses, which suggests that community stability is achieved by rapid but compensatory shifts in host resistance levels and virus population structure.


Asunto(s)
Archaea/genética , Archaea/virología , Virus de Archaea/fisiología , Bacterias/genética , Bacterias/virología , Bacteriófagos/fisiología , Secuencias Repetitivas de Ácidos Nucleicos , Secuencia de Aminoácidos , Archaea/fisiología , Virus de Archaea/genética , Fenómenos Fisiológicos Bacterianos , Bacteriófagos/genética , Secuencia de Bases , Biopelículas , ADN Intergénico , Ecosistema , Genoma Arqueal , Genoma Bacteriano , Genoma Viral , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , Recombinación Genética , Thermoplasmales/genética , Thermoplasmales/fisiología , Thermoplasmales/virología , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/fisiología
5.
Proc Natl Acad Sci U S A ; 104(6): 1883-8, 2007 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-17267615

RESUMEN

Evolutionary processes that give rise to, and limit, diversification within strain populations can be deduced from the form and distribution of genomic heterogeneity. The extent of genomic change that distinguishes the acidophilic archaeon Ferroplasma acidarmanus fer1 from an environmental population of the same species from the same site, fer1(env), was determined by comparing the 1.94-megabase (Mb) genome sequence of the isolate with that reconstructed from 8 Mb of environmental sequence data. The fer1(env) composite sequence sampled approximately 92% of the isolate genome. Environmental sequence data were also analyzed to reveal genomic heterogeneity within the coexisting, coevolving fer1(env) population. Analyses revealed that transposase movement and the insertion and loss of blocks of novel genes of probable phage origin occur rapidly enough to give rise to heterogeneity in gene content within the local population. Because the environmental DNA was derived from many closely related individuals, it was possible to quantify gene sequence variability within the population. All but a few gene variants show evidence of strong purifying selection. Based on the small number of distinct sequence types and their distribution, we infer that the population is undergoing frequent genetic recombination, resulting in a mosaic genome pool that is shaped by selection. The larger genetic potential of the population relative to individuals within it and the combinatorial process that results in many closely related genome types may provide the basis for adaptation to environmental fluctuations.


Asunto(s)
Genética de Población , Genoma Arqueal/fisiología , Dinámica Poblacional , Thermoplasmales/genética , Secuencia de Bases , Variación Genética , Datos de Secuencia Molecular , Thermoplasmales/aislamiento & purificación , Thermoplasmales/fisiología
6.
J Biotechnol ; 126(1): 3-10, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-16621083

RESUMEN

Thermoacidophiles are prokaryotic microorganisms with the stunning capability to survive and multiply at extremely low pH and simultaneously at high temperatures. The mechanisms by which these organisms, exclusively members of the Archaea, cope with their harsh surroundings are poorly understood. The genome sequences of several representatives of the thermoacidophilic genera Picrophilus, Thermoplasma and Sulfolobus have recently become available. Genome-wide comparison has revealed a number of features as possible facets of the overall acidophilic survival strategy of the most thermoacidophilic organisms known, such as a high ratio of secondary over primary transport systems, the composition of the respiratory chain, and the frequent genetic input via lateral gene transfer (LGT) during evolution.


Asunto(s)
Aclimatación/genética , Transferencia de Gen Horizontal/genética , Sulfolobus/genética , Thermoplasmales/genética , Transporte de Electrón/genética , Transporte de Electrón/fisiología , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/genética , Filogenia , ARN Ribosómico 16S/clasificación , Sulfolobus/fisiología , Thermoplasmales/fisiología
7.
Trends Microbiol ; 13(2): 49-51, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15680761

RESUMEN

Many Archaea live under conditions that challenge the physico-chemical limits to life: low or high temperature, extremes of pH, elevated pressure and high salt concentration. A recent paper reports the genome sequence of another record-setting archaeon, Picrophilus torridus, that thrives at 65 degrees C and pH 0. The genomic sequence provides several hints of the mechanisms used for adaptation to such hostile environment, but most secrets remain hidden and await further analysis to be disclosed.


Asunto(s)
Genoma Arqueal , Proteoma/fisiología , Thermoplasmales/genética , Membrana Celular/fisiología , ADN de Archaea/genética , Concentración de Iones de Hidrógeno , Proteoma/metabolismo , Thermoplasmales/metabolismo , Thermoplasmales/fisiología
8.
Proc Natl Acad Sci U S A ; 101(24): 9091-6, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15184674

RESUMEN

The euryarchaea Picrophilus torridus and Picrophilus oshimae are able to grow around pH 0 at up to 65 degrees C, thus they represent the most thermoacidophilic organisms known. Several features that may contribute to the thermoacidophilic survival strategy of P. torridus were deduced from analysis of its 1.55-megabase genome. P. torridus has the smallest genome among nonparasitic aerobic microorganisms growing on organic substrates and simultaneously the highest coding density among thermoacidophiles. An exceptionally high ratio of secondary over ATP-consuming primary transport systems demonstrates that the high proton concentration in the surrounding medium is extensively used for transport processes. Certain genes that may be particularly supportive for the extreme lifestyle of P. torridus appear to have been internalized into the genome of the Picrophilus lineage by horizontal gene transfer from crenarchaea and bacteria. Finally, it is noteworthy that the thermoacidophiles from phylogenetically distant branches of the Archaea apparently share an unexpectedly large pool of genes.


Asunto(s)
Thermoplasmales/genética , Secuencia de Bases , Genoma Arqueal , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , ARN Ribosómico 16S/genética , Thermoplasmales/metabolismo , Thermoplasmales/fisiología
9.
Mikrobiologiia ; 71(6): 809-18, 2002.
Artículo en Ruso | MEDLINE | ID: mdl-12526203

RESUMEN

Earlier, we described a new family of mesophilic, strictly autotrophic Fe(2+)-oxidizing archaebacteria, Ferroplasmaceae, which belongs to the order Thermoplasmales and includes the genus Ferroplasma and species F. acidiphilum (strain YT) [1]. The present work is concerned with a comparative study of phenotypic characteristics of the type strain YT and a new strain, F. acidiphilum Y-2, isolated from dense pulps produced during oxidation of arsenogold concentrates from the Bakyrchikskoe (Kazakhstan) and Olimpiadinskoe (Krasnoyarsk Krai) ore deposits, respectively. The G + C content of DNA from strains YT and Y-2 comprised 35.1 and 35.2 mol%, respectively; the level of DNA-DNA homology between the strains was 84%. Restriction profiles of chromosomal DNA from both strains exhibited a similarity coefficient of 0.87. Genotypic characteristics of these strains indicate their affiliation to the same species. The cells of both strains are polymorphic and lack cell walls. Strains of F. acidiphilum oxidized ferrous oxide and pyrite as the sole source of energy and fixed carbon dioxide as the sole carbon source. Strains required yeast extract as a growth factor. Optimum pH for cell growth ranged from 1.7 to 1.8; the temperature optima for the growth of strains YT and Y-2 were 34-36 and 40-42 degrees C, respectively. Comparative analysis of total lipids revealed their close similarity in the strains; two glycophospholipids comprised 90% of total lipids: lipid I, beta-D-glucopyranosylcaldarchaetidylglycerol (about 55%), and lipid II, trihexosylcaldarchaetidylglycerol (26%), whose isopranyl chains contained no cyclopentane rings. The carbohydrate fraction of lipid I hydrolysate contained only D-glucose, whereas hydrolysate of lipid II contained both D-glucose and D-galactose in a molar ratio of 2:1. Thus, it was established that the intraspecific phylogenetic divergence within F. acidiphilum is manifested in two the strains by different temperature optima against the background of similarity in other phenotypic properties.


Asunto(s)
Microbiología Ambiental , Thermoplasmales/aislamiento & purificación , Composición de Base , Dióxido de Carbono/metabolismo , Cromosomas de Archaea/genética , ADN de Archaea/análisis , ADN de Archaea/química , ADN de Archaea/genética , Compuestos Ferrosos/metabolismo , Sedimentos Geológicos/microbiología , Glucolípidos/química , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Kazajstán , Lípidos/análisis , Lípidos/química , Fenotipo , Mapeo Restrictivo , Federación de Rusia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Sulfuros/metabolismo , Temperatura , Thermoplasmales/citología , Thermoplasmales/fisiología
11.
Extremophiles ; 2(2): 67-74, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9672680

RESUMEN

Picrophilus oshimae is an extremely acidophilic, thermophilic archaeon that grows optimally at 60 degrees C and at pH 0.7. It is an obligatory acidophile that does not grow at pH values above 4.0. The proton motive force in respiring cells is composed of a large transmembrane pH gradient, inside less acid, and a reversed transmembrane electrical potential, inside positive. Cells maintain an intracellular pH at around 4.6 at extracellular pH values ranging from 0.8 to 4.0. Above pH 4.0 cells lyse rapidly and lose their viability. Liposomes prepared from lipids derived from P. oshimae have an extremely low proton permeability at acidic pH. However, at neutral pH, the lipids are unable to assemble into regular liposomal structures. These observations suggest that the loss of viability and cell integrity above pH 4.0 is due to an impairment of the barrier function of the cytoplasmic membrane.


Asunto(s)
Membrana Celular/fisiología , Metabolismo Energético , Thermoplasmales/citología , Thermoplasmales/fisiología , Permeabilidad de la Membrana Celular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA