Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 11(1): 20397, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650134

RESUMEN

The rapid spread of many weeds into intensely disturbed landscapes is boosted by clonal growth and self-fertilization strategies, which conversely increases the genetic structure of populations. Here, we use empirical and modeling approaches to evaluate the spreading dynamics of Tillandsia recurvata (L.) L. populations, a common epiphytic weed with self-reproduction and clonal growth widespread in dry forests and deforested landscapes in the American continent. We introduce the TRec model, an individual-based approach to simulate the spreading of T. recurvata over time and across landscapes subjected to abrupt changes in tree density with the parameters adjusted according to the empirical genetic data based on microsatellites genotypes. Simulations with this model showed that the strong spatial genetic structure observed from empirical data in T. recurvata can be explained by a rapid increase in abundance and gene flow followed by stabilization after ca. 25 years. TRec model's results also indicate that deforestation is a turning point for the rapid increase in both individual abundance and gene flow among T. recurvata subpopulations occurring in formerly dense forests. Active reforestation can, in turn, reverse such a scenario, although with a milder intensity. The genetic-based study suggests that anthropogenic changes in landscapes may strongly affect the population dynamics of species with 'weedy' traits.


Asunto(s)
Conservación de los Recursos Naturales , Especies Introducidas , Tillandsia , Brasil , Flujo Génico/genética , Repeticiones de Microsatélite/genética , Dinámica Poblacional , Tillandsia/genética , Tillandsia/fisiología
2.
An Acad Bras Cienc ; 92(1): e20180813, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32294692

RESUMEN

The air quality and distribution of trace elements in a metropolitan area of the Peruvian Andes were evaluated using transplanted epiphytic Tillandsia capillaris as biomonitors. Biomonitors were collected from the non-contaminated area and exposed to five sites with different types of contamination for three months in 2017. After exposure, the content of twenty-one elements were determined by ICP-MS analysis. Datasets were evaluated by one-way ANOVA, exposed-to-baseline (EB), hierarchical cluster analysis (HCA) and principal component analysis (PCA). Results showed significant differences among sampling sites for several elements. According to EF ratios for Ba, Cr, Cu, Pb, Sb, and Zn EB ratios value greater than 1.75 were found around urban areas, indicating anthropogenic influence, which can be attributed to vehicular sources. The highest values of As and Cd were found in areas of agricultural practices, therefore their presence could be related to the employment of agrochemicals (pesticides, herbicides, and phosphate fertilizers). HCA shows that most elements come from vehicular sources and lower from agricultural and natural sources.


Asunto(s)
Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Tillandsia/fisiología , Oligoelementos/análisis , Salud Ambiental , Contaminantes Ambientales/efectos adversos , Estado de Salud , Humanos , Perú , Población Rural , Población Urbana
3.
Nat Commun ; 11(1): 396, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959754

RESUMEN

The bromeliad Tillandsia landbeckii thrives in the Atacama desert of Chile using the fog captured by specialized leaf trichomes to satisfy its water needs. However, it is still unclear how the trichome of T. landbeckii and other Tillandsia species is able to absorb fine water droplets during intermittent fog events while also preventing evaporation when the plant is exposed to the desert's hyperarid conditions. Here, we explain how a 5800-fold asymmetry in water conductance arises from a clever juxtaposition of a thick hygroscopic wall and a semipermeable membrane. While absorption is achieved by osmosis of liquid water, evaporation under dry external conditions shifts the liquid-gas interface forcing water to diffuse through the thick trichome wall in the vapor phase. We confirm this mechanism by fabricating artificial composite membranes mimicking the trichome structure. The reliance on intrinsic material properties instead of moving parts makes the trichome a promising basis for the development of microfluidics valves.


Asunto(s)
Materiales Biomiméticos , Microfluídica/instrumentación , Tillandsia/fisiología , Tricomas/ultraestructura , Agua/metabolismo , Chile , Clima Desértico , Membranas Artificiales , Microfluídica/métodos , Microscopía Fluorescente , Hojas de la Planta/fisiología , Hojas de la Planta/ultraestructura , Tillandsia/ultraestructura , Tricomas/fisiología
4.
Physiol Plant ; 168(3): 547-562, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30136347

RESUMEN

Climate change is expected to increase the frequency of extreme climatic events, yet few studies have addressed the capacity of plant species to deal with such events. Species that are widespread are predicted to be highly plastic and able to acclimate to highly changing conditions. To study the plasticity in physiological responses of the widely distributed epiphyte Tillandsia utriculata, we transplanted individuals from a coastal scrub and broadleaf evergreen forest to a similar coastal scrub site and forest. After a 45-day acclimation, the plants were moved to a semi-controlled greenhouse at each site, and then subjected to a 20-day drought. Physiological variables were measured during the acclimation and the drought. The individuals of scrub and forest populations had similar relative water content and carbon assimilation in the contrasting conditions of the two transplantation sites despite the high discrepancy between the environments at their original site. Electron transport rates were higher in individuals from the scrub population. Electron transport rates were also higher than estimated from carbon assimilation, suggesting that photorespiration was present. The individuals of the coastal scrub population had a higher capacity to dissipate excess energy this way. The relative distance index of plasticity was high overall, indicating that some traits are highly plastic (titratable acidity, carbon assimilation) in order to maintain the stability of others (maximum quantum yield Fv /Fm and relative water content). We conclude that T. utriculata is a highly plastic species with a high capacity to tolerate extreme environmental changes over a short time.


Asunto(s)
Cambio Climático , Sequías , Estrés Fisiológico , Tillandsia/fisiología , Carbono/metabolismo , Fotosíntesis , Agua
5.
Plant Biol (Stuttg) ; 22(2): 243-251, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31736163

RESUMEN

Biotic and abiotic interactions are important factors that explain community assembly. For example, epiphytic communities are shaped by tree traits that can act as environmental filters, but also by positive and/or negative interactions among coexisting epiphytes on a tree. Here, we studied interactions among three widespread atmospheric bromeliads with overlapping niches (Tillandsia recurvata, T. tricholepis and T. pohliana), using experimental data about facilitation through seed capture, interspecific interaction during seed germination and competition among adult individuals. We aim to understand how species interactions are reflected in the natural coexisting patterns of epiphytes in communities at high and low tree densities. Tillandsia pohliana showed higher facilitation by capturing almost all wind-dispersing seeds, and had the largest reduction in seed germination in the presence of any adult individual, also presenting a relatively high rate of adult mortality in the presence of other individuals. Our results indicate higher colonisation ability for T. pohliana and distinct strategies of rapid exploitation of T. recurvata and T. tricholepis individuals. In natural communities, the coexistence among atmospheric bromeliads may be hampered by dispersal limitations in wind-dispersed epiphytes at high tree density conditions, but a negative effect of T. recurvata on T. pohliana is still reflected in their reduced coexistence. However, competitive patterns observed in the experimental data may be overshadowed by a possible mass effect driving large communities under such conditions. Our results show the joint effect of positive interactions and high dispersal levels on the community patterns of atmospheric bromeliads.


Asunto(s)
Estaciones del Año , Tillandsia , Semillas , Tillandsia/fisiología , Árboles , Viento
6.
Plant Physiol Biochem ; 132: 385-390, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30268929

RESUMEN

Radon (222Rn) is the most abundant natural radioactive gas in nature and triggers carcinogenesis. Few reports exist on whether radon can damage plants as it does animals. Therefore, we chose Tillandsia brachycaulos, a common indicator plant, as the material to detect the physiological and genetic changes caused by radon. With an increase in radon concentration, DNA indices (tail length, tail DNA, tail moment and Olive tail moment) from the comet assay and malondialdehyde (MDA) content increased significantly, suggesting that T. brachycaulos inevitably suffered from radiation damage. However, neither the leaf relative conductivity nor the soluble protein content changed significantly with radon fumigation, and no dose-dependent effect existed between the chlorophyll content and radon concentration, indicating that T. brachycaulos had resistance to radon stress. Foliar trichomes most likely excluded the pollutant from plants because DNA damage in T. brachycaulos with trichomes manually removed was considerably greater than that with trichomes. Moreover, the antioxidant enzyme system further reduced the damage of radon to plants because the activity of superoxide dismutase (SOD) increased significantly with the radon concentration.


Asunto(s)
Gas Natural , Radón/farmacología , Tillandsia/genética , Tillandsia/fisiología , Catalasa/metabolismo , Clorofila/metabolismo , Daño del ADN , Malondialdehído/metabolismo , Peroxidasa/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Solubilidad , Superóxido Dismutasa/metabolismo , Tillandsia/efectos de los fármacos , Tricomas/efectos de los fármacos , Tricomas/metabolismo
7.
PLoS One ; 12(2): e0171614, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28158320

RESUMEN

Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4-5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds.


Asunto(s)
Lluvia , Tillandsia/fisiología , Árboles/fisiología , México , Semillas/fisiología , Clima Tropical
8.
Ann Bot ; 118(6): 1199-1208, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27578765

RESUMEN

BACKGROUND AND AIMS: Bromeliads are able to occupy some of the most nutrient-poor environments especially because they possess absorptive leaf trichomes, leaves organized in rosettes, distinct photosynthetic pathways [C3, Crassulacean acid metabolism (CAM) or facultative C3-CAM], and may present an epiphytic habit. The more derived features related to these traits are described for the Tillandsioideae subfamily. In this context, the aims of this study were to evaluate how terrestrial predators contribute to the nutrition and performance of bromeliad species, subfamilies and ecophysiological types, whether these species differ in their ecophysiological traits and whether the physiological outcomes are consistent among subfamilies and types (e.g. presence/absence of tank, soil/tank/atmosphere source of nutrients, trichomes/roots access to nutrients). METHODS: Isotopic (15N-enriched predator faeces) and physiological methods (analyses of plant protein, amino acids, growth, leaf mass per area and total N incorporated) in greenhouse experiments were used to investigate the ecophysiological contrasts between Tillandsioideae and Bromelioideae, and among ecophysiological types when a predatory anuran contributes to their nutrition. KEY RESULTS: It was observed that Bromelioideae had higher concentrations of soluble protein and only one species grew more (Ananas bracteatus), while Tillandsioideae showed higher concentrations of total amino acids, asparagine and did not grow. The ecophysiological types that showed similar protein contents also had similar growth. Additionally, an ordination analysis showed that the subfamilies and ecophysiological types were discrepant considering the results of the total nitrogen incorporated from predators, soluble protein and asparagine concentrations, relative growth rate and leaf mass per area. CONCLUSIONS: Bromeliad subfamilies showed a trade-off between two strategies: Tillandsioideae stored nitrogen into amino acids possibly for transamination reactions during nutritional stress and did not grow, whereas Bromelioideae used nitrogen for soluble protein production for immediate utilization, possibly for fast growth. These results highlight that Bromeliaceae evolution may be directly associated with the ability to stock nutrients.


Asunto(s)
Bromeliaceae/metabolismo , Proteínas de Plantas/metabolismo , Aminoácidos/metabolismo , Aminoácidos/fisiología , Ananas/metabolismo , Ananas/fisiología , Asparagina/metabolismo , Asparagina/fisiología , Bromelia/metabolismo , Bromelia/fisiología , Bromeliaceae/crecimiento & desarrollo , Bromeliaceae/fisiología , Isótopos de Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/fisiología , Tillandsia/metabolismo , Tillandsia/fisiología
9.
Plant Biol (Stuttg) ; 18(3): 463-70, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26456164

RESUMEN

The effects that epiphytes have on their hosts have been poorly explored in an experimentally. Correlational evidence suggests that epiphytes may be either mutualists or structural parasites, as has been proposed for Tillandsia recurvata on Parkinsonia praecox. To test the effect of T. recurvata upon P. praecox, the epiphyte load on branches of P. praecox was measured and two 1-year experiments were performed to detect the effect of transplantation/removal of epiphytes and shade (0%, 35%. 50% and 80%) on shoot dynamics. If T. recurvata represents a selective pressure for P. praecox, then the frequency of branches carrying large epiphyte loads will be high, and host shoot survival will decrease in the presence of T. recurvata and with increased shade. A weak inverse relationship between epiphyte load and percentage of dead shoots in the host was detected. Shoot survival was independent of epiphyte presence. Shade decreased shoot survival by 35-72%. Results suggest that at the study site, T. recurvata is a commensalist of P. praecox. An alternative hypothesis to explain the correlation between high epiphyte load and branch/tree decay is that older branches carry more epiphytes, receive more shade from neighbouring branches and could be undergoing a natural decline process.


Asunto(s)
Fabaceae/fisiología , Tillandsia/fisiología , Brotes de la Planta/fisiología , Simbiosis , Árboles
10.
Plant Biol (Stuttg) ; 18(1): 37-45, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25683682

RESUMEN

In order to compare the effectiveness of diurnal and nocturnal pollinators, we studied the reproductive biology and pollinators of Tillandsia heterophylla E. Morren, an epiphytic tank bromeliad endemic to southeastern Mexico. Since anthesis in T. heterophylla is predominantly nocturnal but lasts until the following day, we hypothesised that this bromeliad would receive visits from both diurnal and nocturnal visitors, but that nocturnal visitors would be the most effective pollinators, since they arrive first to the receptive flower, and that bats would be the most frequent nocturnal visitors, given the characteristics of the nectar. Flowering of T. heterophylla began in May and lasted until July. The species is fully self-compatible, with an anthesis that lasts for ca. 15-16 h. Mean volume of nectar produced per flower was 82.21 µl, with a mean sugar concentration of 6.33%. The highest volume and concentration of nectar were found at 20:00 h, with a subsequent decline in both to almost zero over the following 12-h period. T. heterophylla has a generalist pollination system, since at least four different morphospecies of visitors pollinate its flowers: bats, moths, hummingbirds and bees. Most of the pollinating visits corresponded to bats and took place in the early evening, when stigma receptivity had already begun; making bats the probable pollinator on most occasions. However, diurnal pollinators may be important as a 'fail-safe' system by which to guarantee the pollination of T. heterophylla.


Asunto(s)
Flores/fisiología , Polinización/fisiología , Tillandsia/fisiología , Animales , Abejas , Aves , Quirópteros , México , Mariposas Nocturnas , Néctar de las Plantas/metabolismo , Factores de Tiempo
11.
Ecology ; 95(1): 185-96, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24649658

RESUMEN

Facilitation cascades arise where primary foundation species facilitate secondary (dependent) foundation species, and collectively, they increase habitat complexity and quality to enhance biodiversity. Whether such phenomena occur in nonmarine systems and if secondary foundation species enhance food web structure (e.g., support novel feeding guilds) and ecosystem function (e.g., provide nursery for juveniles) remain unclear. Here we report on field experiments designed to test whether trees improve epiphyte survival and epiphytes secondarily increase the number and diversity of adult and juvenile invertebrates in a potential live oak-Tillandsia usneoides (Spanish moss) facilitation cascade. Our results reveal that trees reduce physical stress to facilitate Tillandsia, which, in turn, reduces desiccation and predation stress to facilitate invertebrates. In experimental removals, invertebrate total density, juvenile density, species richness and H' diversity were 16, 60, 1.7, and 1.5 times higher, and feeding guild richness and H' were 5 and 11 times greater in Tillandsia-colonized relative to Tillandsia-removal limb plots. Tillandsia enhanced communities similarly in a survey across the southeastern United States. These findings reveal that a facilitation cascade organizes this widespread terrestrial assemblage and expand the role of secondary foundation species as drivers of trophic structure and ecosystem function. We conceptualize the relationship between foundation species' structural attributes and associated species abundance and composition in a Foundation Species-Biodiversity (FSB) model. Importantly, the FSB predicts that, where secondary foundation species form expansive and functionally distinct structures that increase habitat availability and complexity within primary foundation species, they generate and maintain hot spots of biodiversity and trophic interactions.


Asunto(s)
Biodiversidad , Cadena Alimentaria , Quercus/fisiología , Tillandsia/fisiología , Árboles , Animales , Invertebrados , Factores de Tiempo
12.
Ann Bot ; 113(6): 1047-55, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24651370

RESUMEN

BACKGROUND AND AIMS: Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. METHODS: The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. KEY RESULTS: Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). CONCLUSIONS: This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats.


Asunto(s)
Quirópteros/fisiología , Polinización , Tillandsia/fisiología , Animales , Flores , Reproducción
13.
J Plant Physiol ; 170(1): 70-3, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23000465

RESUMEN

It has been well-established that many epiphytic bromeliads of the atmospheric-type morphology, i.e., with leaf surfaces completely covered by large, overlapping, multicellular trichomes, are capable of absorbing water vapor from the atmosphere when air humidity increases. It is much less clear, however, whether this absorption of water vapor can hydrate the living cells of the leaves and, as a consequence, enhance physiological processes in such cells. The goal of this research was to determine if the absorption of atmospheric water vapor by the atmospheric epiphyte Tillandsia usneoides results in an increase in turgor pressure in leaf epidermal cells that subtend the large trichomes, and, by using chlorophyll fluorescence techniques, to determine if the absorption of atmospheric water vapor by leaves of this epiphyte results in increased photosynthetic activity. Results of measurements on living cells of attached leaves of this epiphytic bromeliad, using a pressure probe and of whole-shoot fluorescence imaging analyses clearly illustrated that the turgor pressure of leaf epidermal cells did not increase, and the photosynthetic activity of leaves did not increase, following exposure of the leaves to high humidity air. These results experimentally demonstrate, for the first time, that the absorption of water vapor following increases in atmospheric humidity in atmospheric epiphytic bromeliads is mostly likely a physical phenomenon resulting from hydration of non-living leaf structures, e.g., trichomes, and has no physiological significance for the plant's living tissues.


Asunto(s)
Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Tillandsia/fisiología , Agua/fisiología , Absorción , Atmósfera , Transporte Biológico , Clorofila/metabolismo , Fluorescencia , Humedad , Epidermis de la Planta/fisiología , Presión , Vapor
14.
New Phytol ; 193(3): 745-754, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22066982

RESUMEN

• Vascular epiphytes have developed distinct lifeforms to maximize water uptake and storage, particularly when delivered as pulses of precipitation, dewfall or fog. The seasonally dry forest of Chamela, Mexico, has a community of epiphytic bromeliads with Crassulacean acid metabolism showing diverse morphologies and stratification within the canopy. We hypothesize that niche differentiation may be related to the capacity to use fog and dew effectively to perform photosynthesis and to maintain water status. • Four Tillandsia species with either 'tank' or 'atmospheric' lifeforms were studied using seasonal field data and glasshouse experimentation, and compared on the basis of water use, leaf water δ(18) O, photosynthetic and morphological traits. • The atmospheric species, Tillandsia eistetteri, with narrow leaves and the lowest succulence, was restricted to the upper canopy, but displayed the widest range of physiological responses to pulses of precipitation and fog, and was a fog-catching 'nebulophyte'. The other atmospheric species, Tillandsia intermedia, was highly succulent, restricted to the lower canopy and with a narrower range of physiological responses. Both upper canopy tank species relied on tank water and stomatal closure to avoid desiccation. • Niche differentiation was related to capacity for water storage, dependence on fog or dewfall and physiological plasticity.


Asunto(s)
Adaptación Fisiológica , Desecación , Estaciones del Año , Tillandsia/fisiología , Árboles/fisiología , Clima Tropical , Sequías , México , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Carácter Cuantitativo Heredable , Especificidad de la Especie , Tillandsia/anatomía & histología , Agua/fisiología
15.
Rev Biol Trop ; 57(3): 761-70, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19928469

RESUMEN

Floral phenology and breeding system of Tillandsia streptophylla (Bromeliaceae) were studied in a low inundated forest in Yucatan, Mexico. During the flowering season, from March to August, terminal scapose 1-branched, paniculate inflorescences are produced with one flower per branch opening per day, over a period of 11-29 days. Flowers are tubular, light violet, with the stigma placed below the anthers, both protruding above the corolla. Flowers are protandrous, with anthers releasing pollen from 0500 hours and stigma becoming receptive around 0900 hours. Controlled experimental crosses suggest that Tillandsia streptophylla is self incompatible and therefore, pollinator-dependent.


Asunto(s)
Polinización/fisiología , Tillandsia/fisiología , Cruzamiento , Flores/fisiología , México , Estaciones del Año
16.
Rev. biol. trop ; 57(3): 761-770, sep. 2009. ilus, tab
Artículo en Inglés | LILACS | ID: lil-637907

RESUMEN

Floral phenology and breeding system of Tillandsia streptophylla (Bromeliaceae) were studied in a low inundated forest in Yucatan, Mexico. During the flowering season, from March to August, terminal scapose 1-branched, paniculate inflorescences are produced with one flower per branch opening per day, over a period of 11-29 days. Flowers are tubular, light violet, with the stigma placed below the anthers, both protruding above the corolla. Flowers are protandrous, with anthers releasing pollen from 0500 hours and stigma becoming receptive around 0900 hours. Controlled experimental crosses suggest that Tillandsia streptophylla is self incompatible and therefore, pollinator-dependent. Rev. Biol. Trop. 57 (3): 761-770. Epub 2009 September 30.


Estudiamos la fenología floral y el sistema de cruzamiento de la bromelia Tillandsia streptophylla (Bromeliaceae) en una selva baja inundable en Yucatán, México. Durante la estación de floración (marzo a agosto), las plantas producen una inflorescencia terminal, escaposa, paniculada, 1-dividida, con una flor abriendo por rama por día para un período de floración de 11-29 días por inflorescencia. Las flores son tubulares, de corola violeta claro, con el estigma y anteras exertos, pero las anteras más largas que el estigma en antesis. Las flores son protandras, con las anteras liberando el polen desde las 0500 horas y la receptividad del estigma comenzando a las 0900 horas. Los cruces experimentales controlados sugieren que Tillansdia streptophylla es auto incompatible y por ende, dependiente de los polinizadores.


Asunto(s)
Polinización/fisiología , Tillandsia/fisiología , Cruzamiento , Flores/fisiología , México , Estaciones del Año
17.
Environ Res ; 109(1): 6-14, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18951124

RESUMEN

Bioaccumulation ability and response to air pollution sources were evaluated for Tillandsia capillaris Ruíz and Pav. f. capillaris, T. recurvata L., T. tricholepis Baker and the lichen Ramalina celastri (Spreng.) Krog. and Swinsc. Epiphyte samples collected from a non contaminated area in the province of Córdoba were transplanted to a control site and three areas categorised according to agricultural, urban and industrial (metallurgical and metal-mechanical) emission sources. Bioindicators were exposed for 3-, 6- and 9-month periods. A foliar damage index was established for Tillandsia and a pollution index for the lichen, and S, Fe, Mn and Zn concentrations were determined. An order of efficiency for the species and conditions studied is proposed taking into account heavy metal accumulation: T. recurvata >T. tricholepis >R. celastri >T. capillaris. All species studied showed Mn to be related to agricultural activity and Fe to industries and soil particles, and Zn was related to urban and industrial sources. As far as physiological response is concerned, T. tricholepis and T. capillaris were more sensitive to agricultural activities, whereas T. recurvata was sensitive to urban and industrial sources, and only partially to agricultural sources. No relationship was found for R. celastri.


Asunto(s)
Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Líquenes/química , Tillandsia/química , Argentina , Líquenes/fisiología , Metales Pesados/análisis , Estaciones del Año , Especificidad de la Especie , Tillandsia/fisiología
18.
Planta ; 227(1): 47-56, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17674031

RESUMEN

The atmospheric epiphyte Tillandsia ionantha is capable of surviving drought stress for 6 months or more without any exogenous water supply via an as of yet to be determined mechanism. When plants were soaked in water for 3 h, leaves absorbed a remarkably large amount of water (30-40% on the basis of fresh weight), exhibiting a bimodal absorption pattern. Radiolabeled water was taken up by the leaves by capillary action of the epidermal trichomes within 1 min (phase 1) and then transported intracellularly to leaf tissues over 3 h (phase 2). The removal of epidermal trichome wings from leaves as well as rinsing leaves with water significantly lowered the extracellular accumulation of water on leaf surfaces. The intracellular transport of water was inhibited by mercuric chloride, implicating the involvement of a water channel aquaporin in second-phase water absorption. Four cDNA clones (TiPIP1a, TiPIP1b, TiPIP1c, and TiPIP2a) homologous to PIP family aquaporins were isolated from the leaves, and RT-PCR showed that soaking plants in water stimulated the expression of TiPIP2a mRNA, suggesting the reinforcement in ability to rapidly absorb a large amount of water. The expression of TiPIP2a complementary RNA in Xenopus oocytes enhanced permeability, and treatment with inhibitors suggested that the water channel activity of TiPIP2a protein was regulated by phosphorylation. Thus, the high water uptake capability of T. ionantha leaves surviving drought is attributable to a bimodal trichome- and aquaporin-aided water uptake system based on rapid physical collection of water and subsequent, sustained chemical absorption.


Asunto(s)
Acuaporinas/fisiología , Desastres , Hojas de la Planta/fisiología , Tillandsia/fisiología , Agua/metabolismo , Secuencia de Aminoácidos , Animales , Acuaporinas/genética , Acuaporinas/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiología , Forma de la Célula/genética , Forma de la Célula/fisiología , Femenino , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Microinyecciones , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/metabolismo , Epidermis de la Planta/genética , Epidermis de la Planta/fisiología , Epidermis de la Planta/ultraestructura , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , ARN Complementario/administración & dosificación , ARN Complementario/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Tillandsia/genética , Tillandsia/ultraestructura , Xenopus
19.
Oecologia ; 151(4): 561-73, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17180662

RESUMEN

Plants that use fog as an important water-source frequently have a rosette growth habit. The performance of this morphology in relation to fog interception has not been studied. Some first-principles from physics predict that narrow leaves, together with other ancillary traits (large number and high flexibility of leaves, caudices, and/or epiphytism) which constitute the "narrow-leaf syndrome" should increase fog-interception efficiency. This was tested using aluminum models of rosettes that differed in leaf length, width and number and were exposed to artificial fog. The results were validated using seven species of Tillandsia and four species of xerophytic rosettes. The total amount of fog intercepted in rosette plants increased with total leaf area, while narrow leaves maximized interception efficiency (measured as interception per unit area). The number of leaves in the rosettes is physically constrained because wide-leafed plants can only have a few blades. At the limits of this constraint, net fog interception was independent of leaf form, but interception efficiency was maximized by large numbers of narrow leaves. Atmospheric Tillandsia species show the narrow-leaf syndrome. Their fog interception efficiencies were correlated to the ones predicted from aluminum-model data. In the larger xerophytic rosette species, the interception efficiency was greatest in plants showing the narrow-leaf syndrome. The adaptation to fog-harvesting in several narrow-leaved rosettes was tested for evolutionary convergence in 30 xerophytic rosette species using a comparative method. There was a significant evolutionary tendency towards the development of the narrow-leaf syndrome the closer the species grew to areas where fog is frequently available. This study establishes convergence in a very wide group of plants encompassing genera as contrasting as Tillandsia and Agave as a result of their dependence on fog.


Asunto(s)
Evolución Biológica , Hojas de la Planta/fisiología , Tillandsia/fisiología , Agua/fisiología , Tiempo (Meteorología) , Aluminio , Modelos Anatómicos , Hojas de la Planta/anatomía & histología , Tillandsia/anatomía & histología
20.
J Plant Physiol ; 163(6): 648-56, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16545998

RESUMEN

We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.


Asunto(s)
Dióxido de Carbono/fisiología , Hojas de la Planta/fisiología , Tillandsia/fisiología , Agua/fisiología , Ritmo Circadiano/fisiología , Microscopía Electrónica de Rastreo , Hojas de la Planta/ultraestructura , Tillandsia/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...