Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Environ Toxicol Pharmacol ; 106: 104361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211665

RESUMEN

Thimerosal, a preservative commonly used in the pharmaceutical and cosmetic industry, has raised concerns regarding its potentially toxic effects as an organic mercury compound. Within this context, using an NMR-based metabolomics profile and chemometric analysis, zebrafish embryos were used as an in vivo model to study the effects of thimerosal in metabolic profiles after exposure to sublethal concentrations of the mercury compound. The thimerosal concentrations of 40 and 80 nM were employed, corresponding to 40% and 80% of the LC50, respectively, for zebrafish embryos. The most significant alterations in the metabolic profile included changes in carbohydrates, amino acids, nucleotides, trimethylamine-N-oxide, ethanolamine, betaine, and ethanol. Furthermore, thimerosal exposure affects various metabolic pathways, impairing the nervous system, disrupting protein metabolism, and potentially causing oxidative damage. Therefore, adopting a metabolomics approach in this investigation provided insights into the potentially implicated metabolic pathways contributing to the deleterious effects of thimerosal in biological systems.


Asunto(s)
Mercurio , Pez Cebra , Animales , Timerosal/toxicidad , Metabolómica , Aminoácidos
2.
Metallomics ; 15(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869791

RESUMEN

Thimerosal (THI) is widely used as an antimicrobial preservative, but can hydrolyze to ethylmercury, causing potentially neurotoxicity. In this work, a THP-1 cell line was used to investigate the biological behavior of THI. An on-line droplet microfluidic chip system combined with time-resolved inductively coupled plasma mass spectrometry was used to quantify Hg in single THP-1 cells. The cellular uptake and elimination behaviors of THI were studied, and the toxicity of THI in terms of redox balance was discussed. The results showed that a small number of cells (<5%) exhibited a high uptake content (>200 fg/cell) for THI, and most of the cells (68.8-85.8% for different exposure groups at 25 h) exhibited a relatively low uptake content (<20 fg/cell). After stopping exposure to THI, the cells showed an elimination process for Hg, which was rapid in the first several hours and gradually slowed down. When the elimination time was 25 h, 7.4-26.3% of the cells in different exposure groups still contained a detectable amount of Hg (>2 fg/cell), indicating Hg could not be eliminated completely, which may cause cumulative toxicity to macrophages. Moreover, it was found that exposure to THI even at 50 ng/mL can cause cellular oxidative stress behavior, leading to an increase in reactive oxygen species level and a decrease in glutathione level. This trend would continue for a period of time after stopping THI exposure. With the elimination of Hg, the redox balance of cells showed a tendency to stabilize and restore, but cannot be restored to normal status, indicating a long-term chronic toxicity of THI to THP-1 cells.


Asunto(s)
Mercurio , Timerosal , Timerosal/toxicidad , Microfluídica , Conservadores Farmacéuticos/toxicidad , Mercurio/metabolismo , Análisis de la Célula Individual , Macrófagos/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-36673825

RESUMEN

Although the molecular mechanisms underlying methylmercury toxicity are not entirely understood, the observed neurotoxicity in early-life is attributed to the covalent binding of methylmercury to sulfhydryl (thiol) groups of proteins and other molecules being able to affect protein post-translational modifications from numerous molecular pathways, such as glutamate signaling, heat-shock chaperones and the antioxidant glutaredoxin/glutathione system. However, for other organomercurials such as ethylmercury or thimerosal, there is not much information available. Therefore, this review critically discusses current knowledge about organomercurials neurotoxicity-both methylmercury and ethylmercury-following intrauterine and childhood exposure, as well as the prospects and future needs for research in this area. Contrasting with the amount of epidemiological evidence available for methylmercury, there are only a few in vivo studies reporting neurotoxic outcomes and mechanisms of toxicity for ethylmercury or thimerosal. There is also a lack of studies on mechanistic approaches to better investigate the pathways involved in the potential neurotoxicity caused by both organomercurials. More impactful follow-up studies, especially following intrauterine and childhood exposure to ethylmercury, are necessary. Childhood vaccination is critically important for controlling infectious diseases; however, the safety of mercury-containing thimerosal and, notably, its effectiveness as preservative in vaccines are still under debate regarding its potential dose-response effects to the central nervous system.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Síndromes de Neurotoxicidad , Vacunas , Humanos , Timerosal/toxicidad , Compuestos de Metilmercurio/toxicidad , Conservadores Farmacéuticos , Síndromes de Neurotoxicidad/etiología , Compuestos de Sulfhidrilo
4.
J Trace Elem Med Biol ; 77: 127129, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36630761

RESUMEN

BACKGROUND: Thimerosal (Merthiolate) is a well-known preservative used in pharmaceutical products, the safety of which was a matter of controversy for decades. Thimerosal is a mercury compound, and there is a debate as to whether Thimerosal exposure from vaccination can contribute to the incidence of mercury-driven disorders. To date, there is no consensus on Thimerosal safety in Vaccines. In 1977, a maximum safe dose of 200 µg/ml (0.5 mM) was recommended for Thimerosal by the WHO experts committee on biological standardization. Up-to-date guidelines, however, urge national control authorities to establish their own standards for the concentration of vaccine preservatives. We believe such safety limits must be studied at the cellular level first. The present study seeks a safe yet efficient dose of Thimerosal exposure for human and animal cells and control microorganism strains. METHODS: The safety of Thimerosal exposure on cells was analyzed through an MTT cell toxicity assay. The viability of four cell types, including HepG2, C2C12, Vero Cells, and Peripheral blood mononuclear cells (PBMCs), was examined in the presence of different Thimerosal concentrations and the maximum tolerable dose (MTD) and the half maximal inhibitory concentration (IC50) values for each cell line were determined. The antimicrobial effectiveness of Thimerosal was evaluated on four control strains, including Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Aspergillus brasiliensis, to obtain the minimum inhibitory concentration (MIC) of Thimerosal. The MIC test was performed in culture media and under optimal growth conditions of microorganisms in the presence of different Thimerosal concentrations. RESULTS: The viability of all examined cell lines was suppressed entirely in the presence of 4.6 µg/ml (12.5 µM) of Thimerosal. The MTD for HepG2, C2C12, PBMC, and Vero cells was 2, 1.6, 1, and 0.29 µg/ml (5.5, 4.3, 2.7 and 0.8 µM), respectively. The IC50 of Thimerosal exposure for HepG2, C2C12, PBMC, and Vero cells was 2.62, 3.17, 1.27, and 0.86 µg/ml (7.1, 8.5, 3.5 and 2.4 µM), respectively. As for antimicrobial effectiveness, the growth capability of Candida albicans and Staphylococcus aureus was suppressed entirely in the presence of 6.25 µg/ml (17 µM) Thimerosal. The complete growth inhibition of Pseudomonas aeruginosa in culture media was achieved in 100 µg/ml (250 µM) Thimerosal concentration. This value was 12.5 µg/ml (30 µM) for Aspergillus brasiliensis. CONCLUSION: According to our results Thimerosal should be present in culture media at 100 µg/ml (250 µM) concentration to achieve an effective antimicrobial activity. We showed that this amount of Thimerosal is toxic for human and animal cells in vitro since the viability of all examined cell lines was suppressed in the presence of less than 5 µg/ml (12.5 µM) of Thimerosal. Overall, our study revealed Thimerosal was 333-fold more cytotoxic to human and animal cells as compared to bacterial and fungal cells. Our results promote more study on Thimerosal toxicity and its antimicrobial effectiveness to obtain more safe concentrations in biopharmaceuticals.


Asunto(s)
Antiinfecciosos , Mercurio , Timerosal , Vacunas , Animales , Humanos , Antiinfecciosos/toxicidad , Chlorocebus aethiops , Leucocitos Mononucleares , Mercurio/toxicidad , Conservadores Farmacéuticos/toxicidad , Timerosal/toxicidad , Células Vero
5.
Braz. j. biol ; 83: 1-9, 2023. graf, ilus, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468874

RESUMEN

Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.


O timerosal é um composto organomercurial, utilizado na preparação de imunoglobulina intramuscular, antivenenos, tintas de tatuagem, antígenos de teste cutâneo, produtos nasais, gotas oftálmicas e vacinas como conservante. Na maioria das espécies animais e nos humanos, o rim é um dos principais locais de deposição de compostos de mercúrio e órgãos-alvo de toxicidade. Assim, a presente pesquisa teve como objetivo avaliar a nefrotoxicidade induzida pelo timerosal em ratos machos. Vinte e quatro ratos albinos machos adultos foram categorizados em quatro grupos. O primeiro grupo era um grupo de controle. Ratos do Grupo II, Grupo III e Grupo IV receberam 0,5µg / kg, 10µg / kg e 50µg / kg de timerosal uma vez ao dia, respectivamente. A administração de timerosal diminuiu significativamente as atividades de catalase (CAT), superóxido dismutase (SOD), peroxidase (POD), glutationa redutase (GR), glutationa (GSH) e conteúdo de proteína, enquanto aumentou as substâncias reativas ao ácido tiobarbitúrico (TBARS) e peróxido de hidrogênio (H2O2) níveis dependentes da dose. Os níveis de nitrogênio ureico no sangue (BUN), creatinina, urobilinogênio, proteínas urinárias, molécula de lesão renal-1 (KIM-1) e lipocalina associada à gelatinase de neutrófilos (NGAL) aumentaram substancialmente. Em contraste, a albumina urinária e a depuração da creatinina foram reduzidas de forma dependente da dose nos grupos tratados com timerosal. Os resultados demonstraram que o timerosal aumentou significativamente os indicadores de inflamação, incluindo fator nuclear kappaB (NF-κB), fator de necrose tumoral-α (TNF-α), interleucina-1β (IL-1β), níveis de interleucina-6 (IL-6) e atividades da ciclooxigenase-2 (COX-2), DNA e danos histopatológicos dependentes da dose. Portanto, os presentes achados verificaram que o timerosal exerceu nefrotoxicidade em ratos albinos machos.


Asunto(s)
Masculino , Animales , Ratas , Enfermedades Renales/inducido químicamente , Riñón/efectos de los fármacos , Timerosal/efectos adversos , Timerosal/toxicidad , Ratas Wistar
6.
Hum Exp Toxicol ; 41: 9603271221136206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36411272

RESUMEN

In this study, we aimed to evaluate possible toxic effects of thimerosal, aluminum and combination of thimerosal and aluminum in SH-SY5Y cells. Inhibitory concentrations were determined by MTT assay; reactive oxygen species (ROS) were determined by a fluorometric kit and antioxidant/oxidant parameters were measured by spectrophotometric kits. Nuclear factor erythroid 2-associated factor 2 (Nrf2), norepinephrine (NE), dopamine transporter (DAT) and dopamine beta ß-hydroxylase (DBH) levels were measured by sandwich ELISA kits while 8-hydroxy deoxyguanosine (8-OHdG) and dopamine levels were determined by competitive ELISA kits. Thimerosal (1.15 µM) and aluminum (362 µM) were applied to cells at inhibitory concentrations 20 (IC20s) for 24 h. ROS increased significantly in cells aluminum- and aluminum+thimerosal-treated cells. Glutathione levels decreased in aluminum group while total antioxidant capacity and protein oxidation levels increased significantly in aluminum and aluminum+thimerosal groups. Lipid peroxidation increased significantly in groups treated with aluminum and aluminum+thimerosal. Nrf2 levels and DNA damage were significantly higher in all groups while dopamine levels significantly increased in cells treated with thimerosal and aluminum+thimerosal, DAT levels were found to be higher in all experimental groups compared to the control. These findings showed that both thimerosal and aluminum can change oxidant/antioxidant status, cause DNA damage, alter dopamine and DAT levels. Changes seen in cells treated with combined exposure to aluminum and thimerosal are more pronounced. Special care should be taken while vaccinating sensitive populations and safer alternatives for aluminum and thimerosal should used.


Asunto(s)
Neuroblastoma , Timerosal , Humanos , Timerosal/toxicidad , Hidróxido de Aluminio , Aluminio/toxicidad , Factor 2 Relacionado con NF-E2 , Dopamina , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Neuroblastoma/metabolismo , Línea Celular , Oxidantes
7.
J Appl Toxicol ; 42(6): 981-994, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34874569

RESUMEN

Short-chained alkyl mercury compounds accumulate in particularly in the brain. Exposure to these compounds is associated with various neurotoxic effects. Gender-based differences are observed in neurodevelopmental disorders, and testosterone and estradiol may alter the toxic effect of the compounds. The present study aimed to investigate the toxic effects of methylmercury and thimerosal on SH-SY5Y cells in high testosterone/low estradiol and high estradiol/low testosterone containing cellular environment and estimate whether male and female brains react differently to the toxic effects of methylmercury and thimerosal. Study groups (n = 3) were designed as control: growth medium, thimerosal (T): 1.15-µM thimerosal, methylmercury (M): 2.93-µM methylmercury, high testosterone/low estradiol + thimerosal (TT): 1-µM testosterone + 0.75-µM estradiol + 1.15-µM thimerosal, high estradiol/low testosterone + thimerosal (ET): 0.1-µM testosterone + 7.5-µM estradiol + 1.15-µM thimerosal, high testosterone/low estradiol + methylmercury (TM): 1-µM testosterone + 0.75-µM estradiol + 2.93-µM methylmercury and high estradiol/low testosterone + methylmercury (EM): 0.1-µM testosterone + 7.5-µM estradiol + 2.93-µM methylmercury. While a significant decrease in glutathione levels was observed in M group, it was not seen in EM group. A significant increase in the protein carbonyl levels was detected in T group. A similar increase was observed in the TM and TT groups in which testosterone was dominant. It was determined that methylmercury, but not thimerosal, caused significant DNA damage and in TT group. The results showed that both thimerosal and methylmercury are toxic on SH-SY5Y cells and toxic effects of methylmercury are more severe than thimerosal. It has been determined that testosterone and estradiol alter the toxic effects of thimerosal and methylmercury.


Asunto(s)
Compuestos de Metilmercurio , Neuroblastoma , Línea Celular Tumoral , Estradiol , Femenino , Humanos , Masculino , Compuestos de Metilmercurio/toxicidad , Testosterona , Timerosal/toxicidad
8.
Braz J Biol ; 83: e242942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34468508

RESUMEN

Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.


Asunto(s)
Estrés Oxidativo , Timerosal , Animales , Peróxido de Hidrógeno/metabolismo , Riñón , Masculino , Ratas , Superóxido Dismutasa/metabolismo , Timerosal/metabolismo , Timerosal/toxicidad
9.
Neurotox Res ; 39(4): 1274-1284, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33939098

RESUMEN

Thimerosal (THIM) induces neurotoxic changes including neuronal death and releases apoptosis inducing factors from mitochondria to cytosol. THIM alters the expression level of factors involved in apoptosis. On the other hand, the anti-apoptotic effects of exercise have been reported. In this study, we aimed to discover the effect of three protocols of treadmill exercise on the expression level of mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), BCL-2-associated death (BAD), BCL-2-associated X (BAX), BCL-XL, and BCL-2 (a pro-survival BCL-2 protein) in the hippocampus of control and THIM-exposed rats. Male Wistar rats were used in this research. Real-time PCR was applied to assess genes expression. The results showed that THIM increased the expression of pro-apoptotic factors (BAD and BAX), decreased the expression of anti-apoptotic factors (BCL-2 and BCL-XL), and decreased the expression of factors involved in mitochondrial biogenesis (TFAM and PGC-1α). Treadmill exercise protocols reversed the effect of THIM on all genes. In addition, treadmill exercise protocols decreased the expression of BAD and BAX, increased the expression of BCL-2, and increased the expression of TFAM and PGC-1α in control rats. In conclusion, THIM induced a pro-apoptotic effect and disturbed mitochondrial biogenesis and stability, whereas treadmill exercise reversed these effects.


Asunto(s)
Prueba de Esfuerzo/métodos , Hipocampo/efectos de los fármacos , Condicionamiento Físico Animal/fisiología , Timerosal/toxicidad , Animales , Expresión Génica , Hipocampo/metabolismo , Masculino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/biosíntesis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Condicionamiento Físico Animal/métodos , Conservadores Farmacéuticos/toxicidad , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ratas , Ratas Wistar , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/genética , Proteína Letal Asociada a bcl/biosíntesis , Proteína Letal Asociada a bcl/genética , Proteína bcl-X/biosíntesis , Proteína bcl-X/genética
10.
Environ Res ; 188: 109734, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544722

RESUMEN

Aluminum and mercury are environmentally ubiquitous. Individually they are both neurotoxic elements with shared neuro-pathogenic pathways: oxidative stress, altered neurotransmission, and disruption of the neuroendocrine and immune systems. In the infant, Al and Hg differ in type of exposure, absorption, distribution (brain access), and metabolism. In environmentally associated exposure (breast milk and infant formulas) their co-occurrences fluctuate randomly, but in Thimerosal-containing vaccines (TCVs) they occur combined in a proprietary ratio; in these cases, low-doses of Thimerosal-ethylmercury (EtHg) and adjuvant-Al present the most widespread binary mixture in less developed countries. Although experimental studies at low doses of the binary Hg and Al mixture are rare, when studied individually they have been shown to affect neurological outcomes negatively. In invitro systems, comparative neurotoxicity between Al and Hg varies in relation to the measured parameters but seems less for Al than for Hg. While neurotoxicity of environmental Hg (mainly fish methyl-Hg, MeHg) is associated with neurobehavioral outcomes in children, environmental Al is not associated, except in certain clinical conditions. Therefore, the issues of their neurotoxic effects (singly or combined) are discussed. In the infant (up to six months) the organic-Hg and Al body burdens from a full TCV schedule are estimated to reach levels higher than that originating from breastfeeding or from high aluminum soy-based formulas. Despite worldwide exposure to both Al and Hg (inorganic Hg, MeHg, and Thimerosal/EtHg), our knowledge on this combined exposure is insufficient to predict their combined neurotoxic effects (and with other co-occurring neurotoxicants).


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Vacunas , Aluminio/toxicidad , Animales , Carga Corporal (Radioterapia) , Niño , Femenino , Humanos , Lactante , Mercurio/toxicidad , Leche Humana , Síndromes de Neurotoxicidad/epidemiología , Timerosal/toxicidad
11.
Int J Biol Macromol ; 154: 661-671, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32198046

RESUMEN

Thimerosal (TH), an organomercurial compound, is used as a preservative in vaccines and cosmetics. Its interaction with human hemoglobin (Hb) was investigated under physiological conditions using biophysical and biological assays, aiming to evaluate hazardous effects. TH interacts spontaneously with Hb (stoichiometry 2:1, ligand-protein), preferably by electrostatic forces, with a binding constant of 1.41 × 106 M-1. Spectroscopic data allows to proposing that TH induces structural changes in Hg, through ethylmercury transfer to human Hb-Cys93 residues, forming thiosalicylic acid, which, in turn, interacts with the positive side of the amino acid in the Hb-HgEt adduct chain. As a consequence, inhibition of Hb-O2 binding capacity up to 72% (human Hb), and 50% (human erythrocytes), was verified. Dose-dependent induction of TH forming advanced glycation end products (AGE) and protein aggregates (amyloids) was additionally observed. Finally, these results highlight the toxic potential of the use of TH in biological systems, with a consequent risk to human health.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Hemoglobinas/metabolismo , Oxígeno/metabolismo , Conservadores Farmacéuticos/toxicidad , Timerosal/toxicidad , Humanos
12.
Neurotoxicology ; 71: 6-15, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30503815

RESUMEN

In humans, mutation of glycine 93 to alanine of Cu++/Zn++ superoxide dismutase type-1 (SOD1-G93 A) has been associated to some familial cases of Amyotrophic Lateral Sclerosis (ALS). Several evidence proposed the involvement of environmental pollutants that like mercury could accelerate ALS symptoms. SH-SY5Y cells stably transfected with SOD1 and G93 A mutant of SOD1 constructs were exposed to non-toxic concentrations (0.01 µM) of ethylmercury thiosalicylate (thimerosal) for 24 h. Interestingly, we found that thimerosal, in SOD1-G93 A cells, but not in SOD1 cells, reduced cell survival. Furthermore, thimerosal-induced cell death occurred in a concentration dependent-manner and was prevented by the Sirtuin 1 (SIRT1) activator Resveratrol (RSV). Moreover, thimerosal decreased the protein expression of transcription factor Downstream Regulatory Element Antagonist Modulator (DREAM), but not DREAM gene. Interestingly, DREAM reduction was blocked by co-treatment with RSV, suggesting the participation of SIRT1 in determining this effect. Immunoprecipitation experiments in SOD1-G93 A cells exposed to thimerosal demonstrated that RSV increased DREAM deacetylation and reduced its polyubiquitination. In addition, RSV counteracted thimerosal-enhanced prodynorphin (PDYN) mRNA, a DREAM target gene. Furthermore, cortical neurons transiently transfected with SOD1-G93 A construct and exposed to thimerosal (0.5 µM/24 h) showed a reduction of DREAM and an up-regulation of the prodynorphin gene. Importantly, both the treatment with RSV or the transfection of siRNA against prodynorphin significantly reduced thimerosal-induced neurotoxicity, while DREAM knocking-down potentiated thimerosal-reduced cell survival. These results demonstrate the particular vulnerability of SOD1-G93 A neuronal cells to thimerosal and that RSV via SIRT1 counteracts the neurodetrimental effect of this toxicant by preventing DREAM reduction and prodynorphin up-regulation.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Resveratrol/administración & dosificación , Transducción de Señal , Superóxido Dismutasa/metabolismo , Timerosal/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Encefalinas/metabolismo , Humanos , Proteínas de Interacción con los Canales Kv/metabolismo , Precursores de Proteínas/metabolismo , Ratas Wistar , Proteínas Represoras/metabolismo , Sirtuina 1/metabolismo , Superóxido Dismutasa-1/metabolismo
13.
Biol Trace Elem Res ; 184(1): 7-15, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28967039

RESUMEN

Infant exposure to neurotoxic elements is a public health issue that needs monitoring with regard to breast milk composition. We studied six neurotoxic elements in breast milk samples at different stages of lactation in mothers from Porto Velho, Brazil. We used a flow-injection mercury system (FIMS) to determine total Hg concentrations and an inductively coupled plasma optical emission spectrometer (ICP-OES) to determine the concentrations of Al, As, Cd, Pb, and Mn in 106 donors of a human milk bank. Association rules analyses were applied to determine the pattern of binary and ternary mixtures of the measured exposants. The metal concentration was mostly below the limit of detection (LOD) for Cd (99%), Pb (84%), and Hg (72%), and it was above the LOD for As (53%), Mn (60%), and Al (82%), respectively. Median concentrations (dry weight) of Al, As, Hg, Mn, and Pb were 1.81 µg/g, 13.8 ng/g, 7.1 ng/g, 51.1 ng/g, and 0.43 µg/g, respectively. Al is singly the most frequent element to which infants are exposed. Occurring binary combination (> LOD) was 56% for Al-Mn, 41% for Al-As, 22% for Al-Hg, and 13% for Al-Pb. In 100% of neonates, exposure to Al-ethylmercury (EtHg) occurred through immunization with thimerosal-containing vaccines (TCV). Association rules analysis revealed that Al was present in all of the multilevel combinations and hierarchical levels and that it showed a strong link with other neurotoxic elements (especially with Mn, As, and Hg). (a) Nursing infants are exposed to combinations of neurotoxicants by different routes, dosages, and at different stages of development; (b) In breastfed infants, the binary exposures to Al and total Hg can occur through breast milk and additionally through TCV (EtHg and Al);


Asunto(s)
Lactancia Materna/efectos adversos , Exposición Materna/efectos adversos , Metales Pesados/toxicidad , Aluminio/toxicidad , Cadmio/toxicidad , Compuestos de Etilmercurio/toxicidad , Femenino , Humanos , Plomo/toxicidad , Manganeso/toxicidad , Leche Humana , Madres , Timerosal/toxicidad
14.
J Int Med Res ; 45(2): 407-438, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28415925

RESUMEN

The wide range of factors associated with the induction of autism is invariably linked with either inflammation or oxidative stress, and sometimes both. The use of acetaminophen in babies and young children may be much more strongly associated with autism than its use during pregnancy, perhaps because of well-known deficiencies in the metabolic breakdown of pharmaceuticals during early development. Thus, one explanation for the increased prevalence of autism is that increased exposure to acetaminophen, exacerbated by inflammation and oxidative stress, is neurotoxic in babies and small children. This view mandates extreme urgency in probing the long-term effects of acetaminophen use in babies and the possibility that many cases of infantile autism may actually be induced by acetaminophen exposure shortly after birth.


Asunto(s)
Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Trastorno Autístico/etiología , Trastorno Autístico/fisiopatología , Estrés Oxidativo , Aspartame/administración & dosificación , Aspartame/metabolismo , Aspartame/toxicidad , Trastorno Autístico/diagnóstico , Niño , Preescolar , Femenino , Ácido Fólico/efectos adversos , Humanos , Hiperbilirrubinemia/complicaciones , Hiperbilirrubinemia/fisiopatología , Lactante , Inflamación , Masculino , Metales Pesados/toxicidad , Organofosfatos/toxicidad , Embarazo , Factores de Riesgo , Timerosal/toxicidad , Vitamina B 12/efectos adversos
15.
Toxicology ; 370: 86-93, 2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27693314

RESUMEN

A presynaptic protein SNAP-25 belonging to SNARE complex which is instrumental in intracellular vesicular trafficking and exocytosis, has been implicated in hyperactivity and cognitive abilities in some neuropsychiatric disorders. The unclear etiology of the behavior disrupting neurodevelopmental disabilities in addition to genetic causes most likely involves environmental factors. The aim of this in vitro study was to test if various suspected developmental neurotoxins can alter SNAP-25 mRNA and protein expression in neurons. Real-time PCR and Western blotting analyses were used to assess SNAP-25 mRNA and protein levels in primary cultures of rat cerebellar granule cells (CGCs). The test substances: tetrabromobisphenol-A (TBBPA), thimerosal (TH), silver nanoparticles (NAg), valproic acid (VPA) and thalidomide (THAL), were administered to CGC cultures at subtoxic concentrations for 24h. The results demonstrated that SNAP-25 mRNA levels were increased by 49 and 66% by TBBPA and THAL, respectively, whereas VPA and NAg reduced these levels to 48 and 64% of the control, respectively. The SNAP-25 protein content in CGCs was increased by 79% by TBBPA, 25% by THAL and 21% by NAg; VPA and TH reduced these levels to 73 and 69% of the control, respectively. The variety of changes in SNAP-25 expression on mRNA and protein level suggests the diversity of the mechanism of action of the test substances. This initial study provided no data on concentration-effect relations and on functional changes in CGCs. However it is the first to demonstrate the effect of different compounds that are suspected of causing neurodevelopmental disabilities on SNAP-25 expression. These results suggest that this protein may be a common target for not only inherited but also environmental modifications linked to behavioral deficits in neurodevelopmental disabilities.


Asunto(s)
Nanopartículas del Metal/toxicidad , Bifenilos Polibrominados/toxicidad , Plata/toxicidad , Proteína 25 Asociada a Sinaptosomas/metabolismo , Talidomida/toxicidad , Timerosal/toxicidad , Ácido Valproico/toxicidad , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Exocitosis/efectos de los fármacos , Regulación de la Expresión Génica , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Proteína 25 Asociada a Sinaptosomas/genética , Pruebas de Toxicidad
16.
Toxicol Sci ; 154(2): 227-240, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27660204

RESUMEN

Ethylmercury thiosalicylate (thimerosal) is an organic mercury-based compound commonly used as an antimicrobial preservative that has been found to be neurotoxic. In contrast, histone deacetylases (HDACs) inhibition has been found to be neuroprotective against several environmental contaminants, such as polychlorinated biphenyls, di-2-ethylhexyl phthalate, and methylmercury. The aim of this study was to investigate the effect of HDAC inhibition on thimerosal-induced neurotoxicity in neuroblastoma cells and cortical neurons. Interestingly, we found that thimerosal, at 0.5 µM in SH-SY5Y cells and at 1 µM in neurons, caused cell death by activation of apoptosis, which was prevented by the HDAC class IIA inhibitor MC1568 but not the class I inhibitor MS275. Furthermore, thimerosal specifically increased HDAC4 protein expression but not that of HDACs 5, 6, 7, and 9. Western blot analysis revealed that MC1568 prevented thimerosal-induced HDAC4 increase. In addition, both HDAC4 knocking-down and MC1568 inhibited thimerosal-induced cell death in SH-SY5Y cells and cortical neurons. Importantly, intramuscular injection of 12 µg/kg thimerosal on postnatal days 7, 9, 11, and 15 increased HDAC4 levels in the prefrontal cortex (PFC), which decreased histone H4 acetylation in infant male rats, in parallel increased motor activity changes. In addition, coadministration of 40 mg/kg MC1568 (intraperitoneal injection) moderated the HDAC4 increase which reduced histone H4 deacetylation and caspase-3 cleavage in the PFC. Finally, open-field testing showed that thimerosal-induced motor activity changes are reduced by MC1568. These findings indicate that HDAC4 regulates thimerosal-induced cell death in neurons and that treatment with MC1568 prevents thimerosal-induced activation of caspase-3 in the rat PFC.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Corteza Prefrontal/efectos de los fármacos , Pirroles/farmacología , Proteínas Represoras/antagonistas & inhibidores , Timerosal/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Citoprotección , Relación Dosis-Respuesta a Droga , Histona Desacetilasas/genética , Humanos , Masculino , Actividad Motora/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Corteza Prefrontal/enzimología , Corteza Prefrontal/patología , Corteza Prefrontal/fisiopatología , Interferencia de ARN , Ratas Wistar , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Regulación hacia Arriba
17.
J Toxicol Environ Health A ; 79(12): 502-12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27294299

RESUMEN

Exposure to organomercurials has been associated with harmful effects on the central nervous system (CNS). However, the mechanisms underlying organomercurial-mediated neurotoxic effects need to be elucidated. Exposure to toxic elements may promote cellular modifications such as alterations in protein synthesis in an attempt to protect tissues and organs from damage. In this context, the use of a "proteomic profile" is an important tool to identify potential early biomarkers or targets indicative of neurotoxicity. The aim of this study was to investigate potential modifications in rat cerebral cell proteome following exposure to methylmercury (MeHg) or ethylmercury (EtHg). For MeHg exposure, animals were administered by gavage daily 140 µg/kg/d of Hg (as MeHg) for 60 d and sacrificed 24 h after the last treatment. For EtHg exposure, 800 µg/kg/d of Hg (as EtHg) was given intramuscularly (im) in a single dose and rats were sacrificed after 4 h. Control groups received saline either by gavage or im. After extraction of proteins from whole brain samples and separation by two-dimensional electrophoresis (2-DE), 26 differentially expressed proteins were identified from exposed animals by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF). Both MeHg and EtHg exposure induced an overexpression of calbindin, a protein that acts as a neuroprotective agent by (1) adjusting the concentration of Ca(2+) within cells and preventing neurodegenerative diseases and (2) decreasing expression of glutamine synthetase, a crucial protein involved in regulation of glutamate concentration in synaptic cleft. In contrast, expression of superoxide dismutase (SOD), a protein involved in antioxidant defense, was elevated in brain of MeHg-exposed animals. Taken together, our data provide new valuable information on the possible molecular mechanisms associated with MeHg- and EtHg-mediated toxicity in cerebral tissue. These observed protein alterations may be considered as biomarkers candidates for biological monitoring of organomercurial poisoning.


Asunto(s)
Encéfalo/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Proteoma/efectos de los fármacos , Timerosal/toxicidad , Animales , Contaminantes Ambientales/toxicidad , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Toxicology ; 347-349: 1-5, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26945727

RESUMEN

A latency period preceding neurotoxicity is a common characteristic in the dose-response relationship induced by organic mercury. Latency periods have typically been observed with genotoxicants in carcinogenesis, with cancer being manifested a long time after the initiating event. These observations indicate that even a very small dose may cause extensive adverse effects later in life, so the toxicity of the genotoxic compound is dose and time-dependent. In children, methylmercury exposure during pregnancy (in utero) has been associated with delays in reaching developmental milestones (e.g., age at first walking) and decreases in intelligence, increasing in severity with increasing exposure. Ethylmercury exposure from thimerosal in some vaccines has been associated, in some studies, with autism and other neurological disorders in children. In this paper, we have examined whether dose-response data from in vitro and in vivo organic mercury toxicity studies fit the Druckrey-Küpfmüller equation c·t(n)=constant (c=exposure concentration, t=latency period), first established for genotoxic carcinogens, and whether or not irreversible effects are enhanced by time of exposure (n≥1), or else toxic effects are dose-dependent while time has only minor influence on the adverse outcome (n<1). The mode of action underlying time-dependent toxicity is irreversible binding to critical receptors causing adverse and cumulative effects. The results indicate that the Druckrey-Küpfmüller equation describes well the dose-response characteristics of organic mercury induced neurotoxic effects. This amounts to a paradigm shift in chemical risk assessment of mercurial compounds and highlights that it is vital to perform toxicity testing geared to investigate time-dependent effects.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Compuestos de Metilmercurio/toxicidad , Síndromes de Neurotoxicidad , Animales , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Mercurio/administración & dosificación , Mercurio/metabolismo , Mercurio/toxicidad , Compuestos de Metilmercurio/administración & dosificación , Compuestos de Metilmercurio/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Embarazo , Timerosal/administración & dosificación , Timerosal/metabolismo , Timerosal/toxicidad , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas
19.
Arch Toxicol ; 90(3): 543-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25701957

RESUMEN

Humans are exposed to different mercurial compounds from various sources, most frequently from dental fillings, preservatives in vaccines, or consumption of fish. Among other toxic effects, these substances interact with the immune system. In high doses, mercurials are immunosuppressive. However, lower doses of some mercurials stimulate the immune system, inducing different forms of autoimmunity, autoantibodies, and glomerulonephritis in rodents. Furthermore, some studies suggest a connection between mercury exposure and the occurrence of autoantibodies against nuclear components and granulocyte cytoplasmic proteins in humans. Still, the underlying mechanisms need to be clarified. The present study investigates the formation of neutrophil extracellular traps (NETs) in response to thimerosal and its metabolites ethyl mercury (EtHg), thiosalicylic acid, and mercuric ions (Hg(2+)). Only EtHg and Hg(2+) triggered NETosis. It was independent of PKC, ERK1/2, p38, and zinc signals and not affected by the NADPH oxidase inhibitor DPI. Instead, EtHg and Hg(2+) triggered NADPH oxidase-independent production of ROS, which are likely to be involved in mercurial-induced NET formation. This finding might help understanding the autoimmune potential of mercurial compounds. Some diseases, to which a connection with mercurials has been shown, such as Wegener's granulomatosis and systemic lupus erythematosus, are characterized by high prevalence of autoantibodies against neutrophil-specific auto-antigens. Externalization in the form of NETs may be a source for exposure to these self-antigens. In genetically susceptible individuals, this could be one step in the series of events leading to autoimmunity.


Asunto(s)
Compuestos de Etilmercurio/toxicidad , Trampas Extracelulares/efectos de los fármacos , Mercurio/toxicidad , Neutrófilos/efectos de los fármacos , Células Cultivadas , Granulocitos/efectos de los fármacos , Humanos , Leucocitos/efectos de los fármacos , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología , Fosforilación/efectos de los fármacos , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salicilatos/toxicidad , Compuestos de Sulfhidrilo/toxicidad , Timerosal/toxicidad , Zinc/metabolismo
20.
J Trace Elem Med Biol ; 32: 200-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26302930

RESUMEN

Organic mercury (Hg) species exert their toxicity primarily in the central nervous system. The food relevant Hg species methylmercury (MeHg) has been frequently studied regarding its neurotoxic effects in vitro and in vivo. Neurotoxicity of thiomersal, which is used as a preservative in medical preparations, is to date less characterised. Due to dealkylation of organic Hg or oxidation of elemental Hg, inorganic Hg is present in the brain albeit these species are not able to readily cross the blood brain barrier. This study compared for the first time toxic effects of organic MeHg chloride (MeHgCl) and thiomersal as well as inorganic mercury chloride (HgCl2) in differentiated human neurons (LUHMES) and human astrocytes (CCF-STTG1). The three Hg species differ in their degree and mechanism of toxicity in those two types of brain cells. Generally, neurons are more susceptible to Hg species induced cytotoxicity as compared to astrocytes. This might be due to the massive cellular mercury uptake in the differentiated neurons. The organic compounds exerted stronger cytotoxic effects as compared to inorganic HgCl2. In contrast to HgCl2 exposure, organic Hg compounds seem to induce the apoptotic cascade in neurons following low-level exposure. No indicators for apoptosis were identified for both inorganic and organic mercury species in astrocytes. Our studies clearly demonstrate species-specific toxic mechanisms. A mixed exposure towards all Hg species in the brain can be assumed. Thus, prospectively coexposure studies as well as cocultures of neurons and astrocytes could provide additional information in the investigation of Hg induced neurotoxicity.


Asunto(s)
Astrocitos/citología , Diferenciación Celular/efectos de los fármacos , Cloruro de Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad , Neuronas/citología , Timerosal/toxicidad , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Disponibilidad Biológica , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Microscopía Fluorescente , Neuronas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...