Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(15): 2673-2691.e7, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37506700

RESUMEN

Cell cycle progression is linked to transcriptome dynamics and variations in the response of pluripotent cells to differentiation cues, mostly through unknown determinants. Here, we characterized the cell-cycle-associated transcriptome and proteome of mouse embryonic stem cells (mESCs) in naive ground state. We found that the thymine DNA glycosylase (TDG) is a cell-cycle-regulated co-factor of the tumor suppressor p53. Furthermore, TDG and p53 co-bind ESC-specific cis-regulatory elements and thereby control transcription of p53-dependent genes during self-renewal. We determined that the dynamic expression of TDG is required to promote the cell-cycle-associated transcriptional heterogeneity. Moreover, we demonstrated that transient depletion of TDG influences cell fate decisions during the early differentiation of mESCs. Our findings reveal an unanticipated role of TDG in promoting molecular heterogeneity during the cell cycle and highlight the central role of protein dynamics for the temporal control of cell fate during development.


Asunto(s)
Timina ADN Glicosilasa , Proteína p53 Supresora de Tumor , Animales , Ratones , Ciclo Celular/genética , Línea Celular , Regulación de la Expresión Génica , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
J Biol Chem ; 299(7): 104907, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307918

RESUMEN

Thymine DNA glycosylase (TDG) is an essential enzyme involved in numerous biological pathways, including DNA repair, DNA demethylation, and transcriptional activation. Despite these important functions, the mechanisms surrounding the actions and regulation of TDG are poorly understood. In this study, we demonstrate that TDG induces phase separation of DNA and nucleosome arrays under physiologically relevant conditions in vitro and show that the resulting chromatin droplets exhibited behaviors typical of phase-separated liquids, supporting a liquid-liquid phase separation model. We also provide evidence that TDG has the capacity to form phase-separated condensates in the cell nucleus. The ability of TDG to induce chromatin phase separation is dependent on its intrinsically disordered N- and C-terminal domains, which in isolation, promote the formation of chromatin-containing droplets having distinct physical properties, consistent with their unique mechanistic roles in the phase separation process. Interestingly, DNA methylation alters the phase behavior of the disordered domains of TDG and compromises formation of chromatin condensates by full-length TDG, indicating that DNA methylation regulates the assembly and coalescence of TDG-mediated condensates. Overall, our results shed new light on the formation and physical nature of TDG-mediated chromatin condensates, which have broad implications for the mechanism and regulation of TDG and its associated genomic processes.


Asunto(s)
Cromatina , Metilación de ADN , ADN , Timina ADN Glicosilasa , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN/química , ADN/metabolismo , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo
3.
Cell Cycle ; 22(12): 1478-1495, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37224078

RESUMEN

Epigenetics plays an important role in the malignant progression of tumors, in which DNA methylation can alter genetic performance without altering the DNA sequence. As a key regulator demethylation, thymine-DNA glycosylase (TDG) has been reported to participate in malignant progression of multiple tumors. In this study, we demonstrate that TDG is highly expressed in hepatocellular carcinoma (HCC) and its high expression is closely related to the poor prognosis of patients. Decreasing TDG expression can significantly inhibit the malignant biological behavior of HCC cells. ABL proto-oncogene 1(ABL1) was identified as a downstream gene regulated by TDG demethylation. In addition, TDG can affect the Hippo signaling pathway through ABL1 to regulate HCC cell proliferation, apoptosis, invasion and migration. Overall, our study demonstrated that TDG reduces DNA methylation of ABL1, increases ABL1 protein expression, and affects the Hippo signaling pathway to regulate the malignant progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Timina ADN Glicosilasa , Humanos , Carcinoma Hepatocelular/genética , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Pronóstico , Neoplasias Hepáticas/genética , Línea Celular , Metilación de ADN/genética
4.
J Biol Chem ; 299(4): 104590, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889585

RESUMEN

Thymine DNA glycosylase (TDG) is a multifaceted enzyme involved in several critical biological pathways, including transcriptional activation, DNA demethylation, and DNA repair. Recent studies have established regulatory relationships between TDG and RNA, but the molecular interactions underlying these relationships are poorly understood. Herein, we now demonstrate that TDG binds directly to RNA with nanomolar affinity. Using synthetic oligonucleotides of defined length and sequence, we show that TDG has a strong preference for binding G-rich sequences in single-stranded RNA but binds weakly to single-stranded DNA and duplex RNA. TDG also binds tightly to endogenous RNA sequences. Studies with truncated proteins indicate that TDG binds RNA primarily through its structured catalytic domain and that its disordered C-terminal domain plays a key role in regulating TDG's affinity and selectivity for RNA. Finally, we show that RNA competes with DNA for binding to TDG, resulting in the inhibition of TDG-mediated excision in the presence of RNA. Together, this work provides support for and insights into a mechanism wherein TDG-mediated processes (e.g., DNA demethylation) are regulated through the direct interactions of TDG with RNA.


Asunto(s)
Timina ADN Glicosilasa , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Reparación del ADN , ADN/metabolismo , ARN , Proteínas de Unión al ARN/metabolismo , Timina
5.
Chem Res Toxicol ; 36(2): 162-176, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36647573

RESUMEN

Recently, we constructed a hybrid thymine DNA glycosylase (hyTDG) by linking a 29-amino acid sequence from the human thymine DNA glycosylase with the catalytic domain of DNA mismatch glycosylase (MIG) from M. thermoautotrophicum, increasing the overall activity of the glycosylase. Previously, it was shown that a tyrosine to lysine (Y126K) mutation in the catalytic site of MIG could convert the glycosylase activity to a lyase activity. We made the corresponding mutation to our hyTDG to create a hyTDG-lyase (Y163K). Here, we report that the hybrid mutant has robust lyase activity, has activity over a broad temperature range, and is active under multiple buffer conditions. The hyTDG-lyase cleaves an abasic site similar to endonuclease III (Endo III). In the presence of ß-mercaptoethanol (ß-ME), the abasic site unsaturated aldehyde forms a ß-ME adduct. The hyTDG-lyase maintains its preference for cleaving opposite G, as with the hyTDG glycosylase, and the hyTDG-lyase and hyTDG glycosylase can function in tandem to cleave T:G mismatches. The hyTDG-lyase described here should be a valuable tool in studies examining DNA damage and repair. Future studies will utilize these enzymes to quantify T:G mispairs in cells, tissues, and genomic DNA using next-generation sequencing.


Asunto(s)
ADN Glicosilasas , Liasas , Timina ADN Glicosilasa , Humanos , Liasas/genética , Timina ADN Glicosilasa/genética , ADN/química , ADN Glicosilasas/metabolismo , Reparación del ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad por Sustrato
6.
DNA Repair (Amst) ; 119: 103408, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36179537

RESUMEN

5-Methylcytosine (mC) is an epigenetic mark that impacts transcription, development, diseases including cancer and aging. The demethylation process involves Tet-mediated stepwise oxidation of mC to hmC, fC, or caC, excision of fC or caC by thymine-DNA glycosylase (TDG), and subsequent base excision repair. Thymine-DNA glycosylase (TDG) belongs to uracil-DNA glycosylase (UDG) superfamily, which is a group of enzymes that are initially found to be responsible for excising the deaminated bases from DNA and generating apurinic/apyrimidinic (AP) sites. mC oxidative derivatives may also be generated from Fenton chemistry and γ-irradiation. In screening DNA glycosylase activity in UDG superfamily, we identified new activity on fC- and caC-containing DNA in family 2 MUG/TDG and family 6 HDG enzymes. Surprisingly, we found a glycosylase SMUG2 from bacterium Pedobacter heparinus (Phe), a subfamily of family 3 SMUG1 DNA glycosylase, displayed catalytic activity towards not only DNA containing uracil, but also fC and caC. Given the sequence and structural differences between the family 3 and other family enzymes, we investigated the catalytic mechanism using mutational, enzyme kinetics and molecular modeling approaches. Mutational analysis and kinetics measurements identified I62, N63 and F76 of motif 1, and H205 of motif 2 in Phe SMUG2 as important catalytic residues, of which H205 of motif 2 played a critical role in catalyzing the removal of fC and caC. A catalytic model underlying the roles of these residues was proposed. The structural and catalytic differences between Phe SMUG2 and human TDG were compared by molecular modeling and molecular dynamics simulations. This study expands our understanding of DNA glycosylase capacity in UDG superfamily and provides insights into the molecular mechanism of fC and caC excision in Phe SMUG2.


Asunto(s)
Timina ADN Glicosilasa , Uracil-ADN Glicosidasa , 5-Metilcitosina , Citosina , ADN/metabolismo , Reparación del ADN , Humanos , Estrés Oxidativo , Pedobacter , Timina , Timina ADN Glicosilasa/genética , Uracilo , Uracil-ADN Glicosidasa/metabolismo
7.
PLoS One ; 17(8): e0273509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36037209

RESUMEN

The DNA of all living organisms is persistently damaged by endogenous reactions including deamination and oxidation. Such damage, if not repaired correctly, can result in mutations that drive tumor development. In addition to chemical damage, recent studies have established that DNA bases can be enzymatically modified, generating many of the same modified bases. Irrespective of the mechanism of formation, modified bases can alter DNA-protein interactions and therefore modulate epigenetic control of gene transcription. The simultaneous presence of both chemically and enzymatically modified bases in DNA suggests a potential intersection, or collision, between DNA repair and epigenetic reprogramming. In this paper, we have prepared defined sequence oligonucleotides containing the complete set of oxidized and deaminated bases that could arise from 5-methylcytosine. We have probed these substrates with human glycosylases implicated in DNA repair and epigenetic reprogramming. New observations reported here include: SMUG1 excises 5-carboxyuracil (5caU) when paired with A or G. Both TDG and MBD4 cleave 5-formyluracil and 5caU when mispaired with G. Further, TDG not only removes 5-formylcytosine and 5-carboxycytosine when paired with G, but also when mispaired with A. Surprisingly, 5caU is one of the best substrates for human TDG, SMUG1 and MBD4, and a much better substrate than T. The data presented here introduces some unexpected findings that pose new questions on the interactions between endogenous DNA damage, repair, and epigenetic reprogramming pathways.


Asunto(s)
5-Metilcitosina , Timina ADN Glicosilasa , 5-Metilcitosina/metabolismo , ADN/genética , Daño del ADN , Reparación del ADN , Epigénesis Genética , Humanos , Timina ADN Glicosilasa/química , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo
8.
Biophys J ; 121(9): 1691-1703, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35367235

RESUMEN

T:G mismatches in DNA result in humans primarily from deamination of methylated CpG sites. They are repaired by redundant systems, such as thymine DNA glycosylase (TDG) and methyl-binding domain enzyme (MBD4), and maintenance of these sites has been implicated in epigenetic processes. The process by which these enzymes identify a canonical DNA base in the incorrect basepairing context remains a mystery. However, the conserved contacts of the repair enzymes with the DNA backbone suggests a role for protein-phosphate interaction in the recognition and repair processes. We have used 31P NMR to investigate the energetics of DNA backbone BI-BII interconversion, and for this work have focused on alterations to the activation barriers to interconversion and the effect of a mismatch compared with canonical DNA. We have found that alterations to the ΔG of interconversion for T:G basepairs are remarkably similar to U:G basepairs in the form of stepwise differences in ΔG of 1-2 kcal/mol greater than equivalent steps in unmodified DNA, suggesting a universality of this result for TDG substrates. Likewise, we see perturbations to the free energy (∼1 kcal/mol) and enthalpy (2-5 kcal/mol) of activation for the BI-BII interconversion localized to the phosphates flanking the mismatch. Overall our results strongly suggest that the perturbed backbone energetics in T:G basepairs play a significant role in the recognition process of DNA repair enzymes.


Asunto(s)
Timina ADN Glicosilasa , ADN/química , Reparación del ADN , Epigénesis Genética , Humanos , Cinética , Termodinámica , Timina ADN Glicosilasa/química , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo
9.
Int J Biol Sci ; 18(6): 2527-2539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35414793

RESUMEN

Background: Colorectal cancer (CRC) is one of the most common malignant tumors with high rates of recurrence and mortality. Thymine DNA glycosylase (TDG) is a key molecule in the base excision repair pathway. Recently, increasing attention has been paid to the role of TDG in tumor development. However, the specific functions of TDG in CRC remain unclear. Methods: The biological functions of TDG and DNA methyltransferase 3 alpha (DNMT3A) in CRC were evaluated using migration and invasion assays, respectively. A tumor metastasis assay was performed in nude mice to determine the in vivo role of TDG. The interaction between TDG and DNMT3A was determined via co-immunoprecipitation (Co-IP). Chromatin immunoprecipitation analysis (ChIP) was used to predict the DNA-binding site of DNMT3A. We also performed methylation-specific PCR (MSP) to detect changes in TIMP2 methylation. Results: TDG inhibited the migration and invasion of human colon cancer cells both in vitro and in vivo. TDG promoted the ubiquitination and degradation of DNMT3A by binding to it. Its interference with siDNMT3A also inhibits the migration and invasion of human colon cancer cells. Furthermore, the ChIP, MSP, and rescue experiments results confirmed that TDG accelerated the degradation of DNMT3A and significantly regulated the transcription and expression of TIMP2, thereby affecting the migration and invasion of human colon cancer cells. Conclusion: Our findings reveal that TDG inhibits the migration and invasion of human colon cancer cells through the DNMT3A-TIMP2 axis, which may be a potential therapeutic strategy for the development and treatment of CRC.


Asunto(s)
Neoplasias del Colon , Timina ADN Glicosilasa , Animales , Neoplasias del Colon/genética , ADN/metabolismo , Metilación de ADN/genética , ADN Metiltransferasa 3A , Humanos , Ratones , Ratones Desnudos , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
10.
Environ Res ; 211: 113078, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35248566

RESUMEN

Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) is an organophosphate ester-based flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) reliably disrupts cytosine methylation from cleavage (2 hpf) through early-gastrulation (6 hpf). Therefore, the objective of this study was to determine whether TDCIPP-induced effects on cytosine methylation persist beyond 6 hpf. First, we exposed embryos to vehicle or TDCIPP from 0.75 hpf to 6, 24, or 48 hpf, and then conducted bisulfite amplicon sequencing of a target locus (lmo7b) using genomic DNA derived from whole embryos. Within both vehicle- and TDCIPP-treated embryos, CpG methylation was similar at 6 hpf and CHG/CHH methylation were similar at 24 and 48 hpf (relative to 6 hpf). However, relative to 6 hpf within the same treatment, CpG methylation was lower within vehicle-treated embryos at 48 hpf and TDCIPP-treated embryos at 24 and 48 hpf - an effect that was driven by acceleration of CpG hypomethylation. Similar to our previous findings with DNA methyltransferase, we found that, even at high µM concentrations, TDCIPP had no effect on zebrafish and human thymine DNA glycosylase activity (a key enzyme that decreases CpG methylation), suggesting that TDCIPP-induced effects on CpG methylation are not driven by direct interaction with thymine DNA glycosylase. Finally, using 5-methylcytosine (5-mC)-specific whole-mount immunochemistry and automated imaging, we found that exposure to TDCIPP increased 5-mC abundance within the yolk of blastula-stage embryos, suggesting that TDCIPP may impact cytosine methylation of maternally loaded mRNAs during the maternal-to-zygotic transition. Overall, our findings suggest that TDCIPP disrupts the trajectory of cytosine methylation during zebrafish embryogenesis, effects which do not appear to be driven by direct interaction of TDCIPP with key enzymes that regulate cytosine methylation.


Asunto(s)
Retardadores de Llama , Timina ADN Glicosilasa , Animales , Citosina/toxicidad , Metilación de ADN , Retardadores de Llama/toxicidad , Organofosfatos/toxicidad , Compuestos Organofosforados , Fosfatos , Timina ADN Glicosilasa/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA