Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
1.
Mol Med Rep ; 29(4)2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38391118

RESUMEN

Prothymosin α (ProT), a highly acidic nuclear protein with multiple cellular functions, has shown potential neuroprotective properties attributed to its anti­necrotic and anti­apoptotic activities. The present study aimed to investigate the beneficial effect of ProT on neuroplasticity after ischemia­reperfusion injury and elucidate its underlying mechanism of action. Primary cortical neurons were either treated with ProT or overexpressing ProT by gene transfection and exposed to oxygen­glucose deprivation for 2 h in vitro. Immunofluorescence staining for ProT and MAP­2 was performed to quantify ProT protein expression and assess neuronal arborization. Mice treated with vehicle or ProT (100 µg/kg) and ProT overexpression in transgenic mice received middle cerebral artery occlusion for 50 min to evaluate the effect of ProT on neuroplasticity­associated protein following ischemia­reperfusion injury. The results demonstrated that in cultured neurons ProT significantly increased neurite lengths and the number of branches, accompanied by an upregulation mRNA level of brain­derived neurotrophic factor. Furthermore, ProT administration improved the protein expressions of synaptosomal­associated protein, 25 kDa and postsynaptic density protein 95 after ischemic­reperfusion injury in vivo. These findings suggested that ProT can potentially induce neuroplasticity effects following ischemia­reperfusion injury.


Asunto(s)
Daño por Reperfusión , Timosina , Timosina/análogos & derivados , Ratones , Animales , Ratones Transgénicos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Regulación hacia Arriba , Timosina/genética , Timosina/farmacología , Timosina/metabolismo , Daño por Reperfusión/tratamiento farmacológico
2.
Exp Cell Res ; 434(1): 113871, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049080

RESUMEN

Disrupted intestinal barrier homeostasis is fundamental to inflammatory bowel disease. Thymosin ß4 (Tß4) improves inflammation and has beneficial effects in dry-eye diseases, but its effects on the intestinal mucus barrier remain unknown. Therefore, this study evaluated the underlying regulatory mechanisms and effects of Tß4 by examining Tß4 expression in a mouse model with dextran sodium sulfate (DSS)-induced colitis and colonic barrier damage. Additionally, we intraperitoneally injected C57BL/6 mice with Tß4 to assess barrier function, microtubule-associated protein 1 light chain 3 (LC3II) protein expression, and autophagy. Finally, normal human colon tissue and colon carcinoma cells (Caco2) were cultured to verify Tß4-induced barrier function and autophagy changes. Mucin2 levels decreased, microbial infiltration increased, and Tß4 expression increased in the colitis mouse model versus the control mice, indicating mucus barrier damage. Moreover, Tß4-treated C57BL/6 mice had damaged intestinal mucus barriers and decreased LC3II levels. Tß4 also inhibited colonic mucin2 production, disrupted tight junctions, and downregulated autophagy; these results were confirmed in Caco2 cells and normal human colon tissue. In summary, Tß4 may be implicated in colitis by compromising the integrity of the intestinal mucus barrier and inhibiting autophagy. Thus, Tß4 could be a new diagnostic marker for intestinal barrier defects.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Timosina , Animales , Femenino , Humanos , Ratones , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Colitis/metabolismo , Colitis/patología , Colon/metabolismo , Colon/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones Endogámicos C57BL , Sirolimus/administración & dosificación , Timosina/genética , Timosina/metabolismo , Regulación hacia Arriba
3.
Mol Biol (Mosk) ; 57(6): 1006-1016, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-38062956

RESUMEN

The aim of this work was to study the effects of thymosin-1 alpha (Tα1) on the anti-inflammatory response of RAW 264.7 macrophages cultured in the presence of lipopolysaccharide (LPS) from the walls of gram-negative bacteria. As well, we evaluated production of pro-inflammatory cytokines and the activity of the NF-κB and SAPK/JNK signaling pathways. In addition, the level of expression of a number of genes that regulate cell apoptosis, as well as the activity of receptors involved in the pro-inflammatory response, was determined. First, the addition of Tα1 normalized the level of cytokine production to varying degrees, with a particularly noticeable effect on IL-1ß and IL-6. Second, the addition of Tα1 normalized the activity of the NF-κB and SAPK/JNK signaling cascades and the expression of the Tlr4 gene. Third, Tα1 significantly reduced p53 and the activity of the P53 gene, which is a marker of cell apoptosis. Fourth, it was shown that the increase in Ar-1 gene expression under the influence of LPS was significantly reduced using Tα1. Thus, it was found that the presence of Tα1 in the RAW 264.7 cell culture medium significantly reduced the level of the pro-inflammatory response of cells.


Asunto(s)
FN-kappa B , Timosina , Animales , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Células RAW 264.7 , Endotoxinas , Lipopolisacáridos/farmacología , Timosina/genética , Timosina/farmacología , Citocinas/metabolismo
4.
Genet Res (Camb) ; 2023: 5517445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026448

RESUMEN

Glioma is a highly aggressive form of brain cancer characterized by limited treatment options and poor patient prognosis. In this study, we aimed to elucidate the oncogenic role of thymosin beta-10 (TMSB10) in glioma through comprehensive analyses of patient data from the TCGA and GTEx databases. Our investigation encompassed several key aspects, including the analysis of patients' clinical characteristics, survival analysis, in vitro and in vivo functional experiments, and the exploration of correlations between TMSB10 expression and immune cell infiltration. Our findings revealed a significant upregulation of TMSB10 expression in glioma tissues compared to normal brain tissues, with higher expression levels observed in tumors of advanced histological grades. Moreover, we observed positive correlations between TMSB10 expression and patient age, while no significant association with gender was detected. Additionally, TMSB10 exhibited marked elevation in gliomas with wild-type IDH and noncodeletion of 1p/19q. Survival analysis indicated that high TMSB10 expression was significantly associated with worse overall survival, disease-specific survival, and progression-free survival in glioma patients. Functionally, knockdown of TMSB10 in glioma cells resulted in reduced cellular growth rates and impaired tumor growth in xenograft models. Furthermore, our study revealed intriguing correlations between TMSB10 expression and immune cell infiltration within the tumor microenvironment. Specifically, TMSB10 showed negative associations with plasmacytoid dendritic cells (pDC) and γδ T cells (Tgd), while displaying positive correlations with neutrophils and macrophages. These findings collectively provide valuable insights into the oncogenic properties of TMSB10 in glioma, suggesting its potential as a therapeutic target and a biomarker for patient stratification.


Asunto(s)
Neoplasias Encefálicas , Glioma , Timosina , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Relevancia Clínica , Glioma/genética , Glioma/patología , Pronóstico , Análisis de Supervivencia , Timosina/genética , Timosina/metabolismo , Microambiente Tumoral
5.
Int Immunopharmacol ; 124(Pt B): 110983, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37769533

RESUMEN

BACKGROUND: The Coronavirus disease-19 (COVID-19) pandemic has posed a serious threat to global health. Thymosin α1 (Tα1) was considered to be applied in COVID-19 therapy. However, the data remains limited. METHODS: Participants with or without Tα1 treatment were recruited. Single cell RNA-sequencing (scRNA-seq) and T cell receptor-sequencing (TCR-seq) of the peripheral blood mononuclear cell (PBMC) samples were done to analyze immune features. The differential expression analysis and functional enrichment analysis were performed to explore the mechanism of Tα1 therapy. RESULTS: 33 symptomatic SARS-CoV-2-infected individuals (COV) and 11 healthy controls (HC) were enrolled in this study. The proportion of CD3+ KLRD1+ NKT, TBX21+ CD8+ NKT was observed to increase in COVID-19 patients with Tα1 treatment (COVT) than those without Tα1 (COV) (p = 0.024; p = 0.010). These two clusters were also significantly higher in Health controls with Tα1 treatment (HCT) than those without Tα1 (HC) (p = 0.016; p = 0.031). Besides, a series of genes and pathways related to immune responses were significantly higher enriched in Tα1 groups TBX21+ CD8+ NKT, such as KLRB1, PRF1, natural killer cell-mediated cytotoxicity pathway, chemokine signaling pathway, JAK-STAT signaling pathway. The increased TRBV9-TRBJ1-1 pair existed in both HCs and COVID-19 patients after Tα1 treatment. 1389 common complementarity determining region 3 nucleotides (CDR 3 nt) were found in COV and HC, while 0 CDR 3 nt was common in COVT and HCT. CONCLUSIONS: Tα1 increased CD3+ KLRD1+ NKT, TBX21+ CD8+ NKT cell proportion and stimulated the diversity of TCR clones in COVT and HCT. And Tα1 could regulate the expression of genes associated with NKT activation or cytotoxicity to promote NKT cells. These data support the use of Tα1 in COVID-19 patients.


Asunto(s)
COVID-19 , Timosina , Humanos , Timalfasina/uso terapéutico , Timosina/genética , Timosina/metabolismo , Leucocitos Mononucleares/metabolismo , SARS-CoV-2/metabolismo , Receptores de Antígenos de Linfocitos T/genética
6.
Front Immunol ; 14: 1170539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275863

RESUMEN

Introduction: The biological function and prognosis roles of thymosin ß(TMSB) 10 are still unclear in pan-cancer. Methods: We retrieved The Cancer Genome Atlas and Genotype-tissue expression datasets to obtain the difference of TMSB10 expression between pan-cancer and normal tissues, and analyzed the biological function and prognosis role of TMSB10 in pan-cancer by using cBioPortal Webtool. Results: The expression of TMSB10 in tumor tissues was significantly higher than normal tissues, and showed the potential ability to predict the prognosis of patients in Pan-cancer. It was found that TMSB10 was significantly correlated with tumor microenvironment, immune cell infiltration and immune regulatory factor expression. TMSB10 is involved in the regulation of cellular signal transduction pathways in a variety of tumors, thereby mediating the occurrence of tumor cell invasion and metastasis. Finally, TMSB10 can not only effectively predict the anti-PD-L1 treatment response of cancer patients, but also be used as an important indicator to evaluate the sensitivity of chemotherapy. In vitro, low expression of TMSB10 inhibited clonogenic formation ability, invasion, and migration in glioma cells. Furthermore, TMSB10 may involve glioma immune regulation progression by promoting PD-L1 expression levels via activating STAT3 signaling pathway. Conclusions: Our results show that TMSB10 is abnormally expressed in tumor tissues, which may be related to the infiltration of immune cells in the tumor microenvironment. Clinically, TMSB10 is not only an effective prognostic factor for predicting the clinical treatment outcome of cancer patients, but also a promising biomarker for predicting the effect of tumor immune checkpoint inhibitors (ICIs) and chemotherapy in some cancers.


Asunto(s)
Glioma , Timosina , Humanos , Pronóstico , Inmunoterapia , Timosina/genética , Inhibidores de Puntos de Control Inmunológico , Microambiente Tumoral/genética
7.
Int Immunopharmacol ; 116: 109741, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36709593

RESUMEN

Our dream of defeating the processes of organ damage and aging remains a challenge scientists pursued for hundreds of years. Although the goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. Since initial approaches utilizing only progenitor cells appear limited, we propose interconnecting our collective knowledge regarding aging and embryonic development may lead to the discovery of molecules which provide alternatives to effectively reverse cellular damage. In this review, we introduce and summarize our results regarding Thymosin beta-4 (TB4) to support our hypothesis using the heart as model system. Accordingly, we investigated the developmental expression of TB4 in mouse embryos and determined the impact of the molecule in adult animals by systemically injecting the peptide following acute cardiac infarction or with no injury. Our results proved, TB4 is expressed in the developing heart and promotes cardiac cell migration and survival. In adults, the peptide enhances myocyte survival and improves cardiac function after coronary artery ligation. Moreover, intravenous injections of TB4 alter the morphology of the adult epicardium, and the changes resemble the characteristics of the embryo. Reactivation of the embryonic program became equally reflected by the increased number of cardiac vessels and by the alteration of the gene expression profile typical of the embryonic state. Moreover, we discovered TB4 is capable of epicardial progenitor activation, and revealed the effect is independent of hypoxic injury. By observing the above results, we believe, further discoveries and consequential postnatal administration of developmentally relevant candidate molecules such as TB4 may likely result in reversing aging processes and accelerate organ regeneration in the human body.


Asunto(s)
Infarto del Miocardio , Timosina , Ratones , Humanos , Animales , Infarto del Miocardio/terapia , Infarto del Miocardio/genética , Timosina/genética , Timosina/uso terapéutico , Timosina/metabolismo , Pericardio , Péptidos , Envejecimiento
8.
Int Immunopharmacol ; 116: 109785, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36720193

RESUMEN

The PI3K/AKT and p53 pathways are key regulators of cancer cell survival and death, respectively. Contrary to their generally accepted roles, several lines of evidence, including ours in medulloblastoma, the most common childhood brain cancer, highlight non-canonical functions for both proteins and show a complex context-dependent dynamic behavior in determining cell fate. Interestingly, p53-mediated cell survival and AKT-mediated cell death can dominate in certain conditions, and these interchangeable physiological functions may potentially be manipulated for better clinical outcomes. This review article presents studies in which p53 and AKT behave contrary to their well-established functions. We discuss the factors and circumstances that may be involved in mediating these changes and the implications of these unique roles of p53 and AKT in devising therapeutic strategies. Lastly, based on our recent finding of Thymosin beta 4-mediated chemosensitivity via an AKT-p53 interaction in medulloblastoma cells, we also discuss the possible implications of Thymosin beta-4 in enhancing drug sensitivity in this deadly childhood disease.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Timosina , Humanos , Niño , Proteínas Proto-Oncogénicas c-akt/metabolismo , Meduloblastoma/tratamiento farmacológico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Timosina/genética , Timosina/metabolismo , Neoplasias Cerebelosas/tratamiento farmacológico
9.
Hepatobiliary Pancreat Dis Int ; 22(4): 373-382, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36041971

RESUMEN

BACKGROUND: It has been demonstrated that thymosin ß4 (Tß4) could inflect the severity of acute-on-chronic hepatitis B liver failure (ACHBLF), but the relationship between its methylation status and the prognosis of liver failure is not clear. This study aimed to determine Tß4 promoter methylation status in patients with ACHBLF and to evaluate its prognostic value. METHODS: The study recruited 115 patients with ACHBLF, 80 with acute-on-chronic hepatitis B pre-liver failure (pre-ACHBLF), and 86 with chronic hepatitis B (CHB). In addition, there were 36 healthy controls (HCs) from the Department of Hepatology, Qilu Hospital of Shandong University. The 115 patients with ACHBLF were divided into three subgroups: 33 with early stage ACHBLF (E-ACHBLF), 42 with mid-stage ACHBLF (M-ACHBLF), and 40 with advanced stage ACHBLF (A-ACHBLF). Tß4 promoter methylation status in peripheral blood mononuclear cells (PBMCs) was measured by methylation-specific polymerase chain reaction, and mRNA was detected by quantitative real-time polymerase chain reaction. RESULTS: Methylation frequency of Tß4 was significantly higher in patients with ACHBLF than in those with pre-ACHBLF, CHB or HCs. However, expression of Tß4 mRNA showed the opposite trend. In patients with ACHBLF, Tß4 promoter methylation status correlated negatively with mRNA levels. The 3-month mortality of ACHBLF in the methylated group was significantly higher than that in the unmethylated group. Also, Tß4 promoter methylation frequency was lower in survivors than in non-survivors. When used to predict the 1-, 2-, and 3-month incidence of ACHBLF, Tß4 methylation status was better than the model for end-stage liver disease (MELD) score. The predictive value of Tß4 methylation was higher than that of MELD score for the mortality of patients with E-ACHBLF and M-ACHBLF, but not for A-ACHBLF. CONCLUSIONS: Tß4 methylation might be an important early marker for predicting disease incidence and prognosis in patients with ACHBLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Enfermedad Hepática en Estado Terminal , Hepatitis B Crónica , Hepatitis B , Timosina , Humanos , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/diagnóstico , Hepatitis B Crónica/genética , Leucocitos Mononucleares/metabolismo , Índice de Severidad de la Enfermedad , Hepatitis B/metabolismo , Insuficiencia Hepática Crónica Agudizada/diagnóstico , Insuficiencia Hepática Crónica Agudizada/genética , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , ARN Mensajero/genética , Timosina/genética , Timosina/metabolismo
10.
Cardiovasc Res ; 119(3): 802-812, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36125329

RESUMEN

AIMS: The adult mammalian heart is a post-mitotic organ. Even in response to necrotic injuries, where regeneration would be essential to reinstate cardiac structure and function, only a minor percentage of cardiomyocytes undergo cytokinesis. The gene programme that promotes cell division within this population of cardiomyocytes is not fully understood. In this study, we aimed to determine the gene expression profile of proliferating adult cardiomyocytes in the mammalian heart after myocardial ischaemia, to identify factors to can promote cardiac regeneration. METHODS AND RESULTS: Here, we demonstrate increased 5-ethynyl-2'deoxyuridine incorporation in cardiomyocytes 3 days post-myocardial infarction in mice. By applying multi-colour lineage tracing, we show that this is paralleled by clonal expansion of cardiomyocytes in the borderzone of the infarcted tissue. Bioinformatic analysis of single-cell RNA sequencing data from cardiomyocytes at 3 days post ischaemic injury revealed a distinct transcriptional profile in cardiomyocytes expressing cell cycle markers. Combinatorial overexpression of the enriched genes within this population in neonatal rat cardiomyocytes and mice at postnatal day 12 (P12) unveiled key genes that promoted increased cardiomyocyte proliferation. Therapeutic delivery of these gene cocktails into the myocardial wall after ischaemic injury demonstrated that a combination of thymosin beta 4 (TMSB4) and prothymosin alpha (PTMA) provide a permissive environment for cardiomyocyte proliferation and thereby attenuated cardiac dysfunction. CONCLUSION: This study reveals the transcriptional profile of proliferating cardiomyocytes in the ischaemic heart and shows that overexpression of the two identified factors, TMSB4 and PTMA, can promote cardiac regeneration. This work indicates that in addition to activating cardiomyocyte proliferation, a supportive environment is a key for regeneration to occur.


Asunto(s)
Lesiones Cardíacas , Timosina , Ratones , Animales , Ratas , Proliferación Celular , Corazón/fisiología , Miocitos Cardíacos/metabolismo , Lesiones Cardíacas/metabolismo , Timosina/genética , Timosina/metabolismo , Regeneración , Mamíferos
11.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233010

RESUMEN

A generally accepted hypothesis for the initial activation of an immune or autoimmune response argues that alarmins are released from injured, dying and/or activated immune cells, and these products complex with receptors that activate signal transduction pathways and recruit immune cells to the site of injury where the recruited cells are stimulated to initiate immune and/or cellular repair responses. While there are multiple diverse families of alarmins such as interleukins (IL), heat-shock proteins (HSP), Toll-like receptors (TLR), plus individual molecular entities such as Galectin-3, Calreticulin, Thymosin, alpha-Defensin-1, RAGE, and Interferon-1, one phylogenetically conserved family are the Annexin proteins known to promote an extensive range of biomolecular and cellular products that can directly and indirectly regulate inflammation and immune activities. For the present report, we examined the temporal expression profiles of the 12 mammalian annexin genes (Anxa1-11 and Anxa13), applying our temporal genome-wide transcriptome analyses of ex vivo salivary and lacrimal glands from our C57BL/6.NOD-Aec1Aec2 mouse model of Sjögren's Syndrome (SS), a human autoimmune disease characterized primarily by severe dry mouth and dry eye symptoms. Results indicate that annexin genes Anax1-7 and -11 exhibited upregulated expressions and the initial timing for these upregulations occurred as early as 8 weeks of age and prior to any covert signs of a SS-like disease. While the profiles of the two glands were similar, they were not identical, suggesting the possibility that the SS-like disease may not be uniform in the two glands. Nevertheless, this early pre-clinical and concomitant upregulated expression of this specific set of alarmins within the immune-targeted organs represents a potential target for identifying the pre-clinical stage in human SS as well, a fact that would clearly impact future interventions and therapeutic strategies.


Asunto(s)
Anexinas , Aparato Lagrimal , Síndrome de Sjögren , Timosina , Alarminas/genética , Alarminas/metabolismo , Animales , Anexinas/genética , Anexinas/metabolismo , Calreticulina/metabolismo , Modelos Animales de Enfermedad , Galectina 3/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Interferones/metabolismo , Aparato Lagrimal/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , ARN/metabolismo , Timosina/genética , Transcriptoma , alfa-Defensinas/genética
12.
Ann Clin Lab Sci ; 52(2): 230-239, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35414502

RESUMEN

OBJECTIVE: Thymosin b10 (TMSB10), a member of the thymosin family, is mainly located in cells and participates in the assembly and occurrence of cytoskeleton. We aimed to investigate the regulatory mechanism of TMSB10 in ccRCC. METHODS: In this study, Xiantao Academic Tools were taken to perform the pan-cancer expression and immune infiltration analysis of TMSB10. Furthermore, it is found that there is a binding site for JUN in the promoter region of TMSB10 through the JASPAR database predictive analysis. The CHIP experiment is used to confirm that JUN regulates the expression of TMSB10 through transcription, and to further detect the mRNA expression level of TMSB10 and JUN in ccRCC cell lines by qRT-PCR. Proliferation and apoptosis function analysis was also carried out to determine the functional changes of ccRCC cell lines after the expression of TMSB10 was regulated by JUN transcription. RESULTS: The results show that TMSB10 is significantly up-regulated in a variety of cancers. Moreover, JUN regulates the high expression of TMSB10 through transcription and further promotes the proliferation of ccRCC cells and inhibits their apoptosis. CONCLUSIONS: In conclusion, this study shows that JUN transcription regulates the high expression of TMSB10 and promotes the progress of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Timosina , Apoptosis/genética , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Pronóstico , Timosina/genética , Timosina/metabolismo , Timosina/farmacología
13.
Circulation ; 145(7): 531-548, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35157519

RESUMEN

BACKGROUND: Rheumatic heart valve disease (RHVD) is a leading cause of cardiovascular death in low- and middle-income countries and affects predominantly women. The underlying mechanisms of chronic valvular damage remain unexplored and regulators of sex predisposition are unknown. METHODS: Proteomics analysis of human heart valves (nondiseased aortic valves, nondiseased mitral valves [NDMVs], valves from patients with rheumatic aortic valve disease, and valves from patients with rheumatic mitral valve disease; n=30) followed by system biology analysis identified ProTα (prothymosin alpha) as a protein associated with RHVD. Histology, multiparameter flow cytometry, and enzyme-linked immunosorbent assay confirmed the expression of ProTα. In vitro experiments using peripheral mononuclear cells and valvular interstitial cells were performed using multiparameter flow cytometry and quantitative polymerase chain reaction. In silico analysis of the RHVD and Streptococcuspyogenes proteomes were used to identify mimic epitopes. RESULTS: A comparison of NDMV and nondiseased aortic valve proteomes established the baseline differences between nondiseased aortic and mitral valves. Thirteen unique proteins were enriched in NDMVs. Comparison of NDMVs versus valves from patients with rheumatic mitral valve disease and nondiseased aortic valves versus valves from patients with rheumatic aortic valve disease identified 213 proteins enriched in rheumatic valves. The expression of the 13 NDMV-enriched proteins was evaluated across the 213 proteins enriched in diseased valves, resulting in the discovery of ProTα common to valves from patients with rheumatic mitral valve disease and valves from patients with rheumatic aortic valve disease. ProTα plasma levels were significantly higher in patients with RHVD than in healthy individuals. Immunoreactive ProTα colocalized with CD8+ T cells in RHVD. Expression of ProTα and estrogen receptor alpha correlated strongly in circulating CD8+ T cells from patients with RHVD. Recombinant ProTα induced expression of the lytic proteins perforin and granzyme B by CD8+ T cells as well as higher estrogen receptor alpha expression. In addition, recombinant ProTα increased human leukocyte antigen class I levels in valvular interstitial cells. Treatment of CD8+ T cells with specific estrogen receptor alpha antagonist reduced the cytotoxic potential promoted by ProTα. In silico analysis of RHVD and Spyogenes proteomes revealed molecular mimicry between human type 1 collagen epitope and bacterial collagen-like protein, which induced CD8+ T-cell activation in vitro. CONCLUSIONS: ProTα-dependent CD8+ T-cell cytotoxicity was associated with estrogen receptor alpha activity, implicating ProTα as a potential regulator of sex predisposition in RHVD. ProTα facilitated recognition of type 1 collagen mimic epitopes by CD8+ T cells, suggesting mechanisms provoking autoimmunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Colágeno Tipo I/metabolismo , Receptor alfa de Estrógeno/metabolismo , Enfermedades de las Válvulas Cardíacas/etiología , Enfermedades de las Válvulas Cardíacas/metabolismo , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Secuencia de Aminoácidos , Colágeno Tipo I/química , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Epítopos de Linfocito T/inmunología , Enfermedades de las Válvulas Cardíacas/diagnóstico , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Proteoma , Proteómica/métodos , Cardiopatía Reumática/diagnóstico , Cardiopatía Reumática/etiología , Cardiopatía Reumática/metabolismo , Relación Estructura-Actividad , Timosina/química , Timosina/genética , Timosina/metabolismo
14.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008976

RESUMEN

Thymosin ß4 (Tß4) was extracted forty years agofrom calf thymus. Since then, it has been identified as a G-actin binding protein involved in blood clotting, tissue regeneration, angiogenesis, and anti-inflammatory processes. Tß4 has also been implicated in tumor metastasis and neurodegeneration. However, the precise roles and mechanism(s) of action of Tß4 in these processes remain largely unknown, with the binding of the G-actin protein being insufficient to explain these multi-actions. Here we identify for the first time the important role of Tß4 mechanism in ferroptosis, an iron-dependent form of cell death, which leads to neurodegeneration and somehow protects cancer cells against cell death. Specifically, we demonstrate four iron2+ and iron3+ binding regions along the peptide and show that the presence of Tß4 in cell growing medium inhibits erastin and glutamate-induced ferroptosis in the macrophage cell line. Moreover, Tß4 increases the expression of oxidative stress-related genes, namely BAX, hem oxygenase-1, heat shock protein 70 and thioredoxin reductase 1, which are downregulated during ferroptosis. We state the hypothesis that Tß4 is an endogenous iron chelator and take part in iron homeostasis in the ferroptosis process. We discuss the literature data of parallel involvement of Tß4 and ferroptosis in different human pathologies, mainly cancer and neurodegeneration. Our findings confronted with literature data show that controlled Tß4 release could command on/off switching of ferroptosis and may provide novel therapeutic opportunities in cancer and tissue degeneration pathologies.


Asunto(s)
Ferroptosis/efectos de los fármacos , Quelantes del Hierro/química , Quelantes del Hierro/farmacología , Timosina/química , Timosina/farmacología , Secuencia de Aminoácidos , Ferroptosis/genética , Expresión Génica , Humanos , Enlace de Hidrógeno , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad , Timosina/genética
15.
Stem Cell Res Ther ; 13(1): 13, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012642

RESUMEN

BACKGROUND: Prior studies show that signature phenotypes of diabetic human induced pluripotent stem cells derived endothelial cells (dia-hiPSC-ECs) are disrupted glycine homeostasis, increased senescence, impaired mitochondrial function and angiogenic potential as compared with healthy hiPSC-ECs. In the current study, we aimed to assess the role of thymosin ß-4 (Tb-4) on endothelial function using dia-hiPSC-ECs as disease model of endothelial dysfunction. METHODS AND RESULTS: Using dia-hiPSC-ECs as models of endothelial dysfunction, we determined the effect of Tb-4 on cell proliferation, senescence, cyto-protection, protein expression of intercellular adhesion molecule-1 (ICAM-1), secretion of endothelin-1 and MMP-1, mitochondrial membrane potential, and cyto-protection in vitro and angiogenic potential for treatment of ischemic limb disease in a mouse model of type 2 diabetes mellitus (T2DM) in vivo. We found that 600 ng/mL Tb4 significantly up-regulated AKT activity and Bcl-XL protein expression, enhanced dia-hiPSC-EC viability and proliferation, limited senescence, reduced endothelin-1 and MMP-1 secretion, and improved reparative potency of dia-hiPSC-ECs for treatment of ischemic limb disease in mice with T2DM. However, Tb4 had no effect on improving mitochondrial membrane potential and glycine homeostasis and reducing intercellular adhesion molecule-1 protein expression in dia-hiPSC-ECs. CONCLUSIONS: Tb-4 improves endothelial dysfunction through enhancing hiPSC-EC viability, reducing senescence and endothelin-1 production, and improves angiogenic potency in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Timosina , Animales , Diferenciación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Timosina/genética , Timosina/farmacología
16.
Haematologica ; 107(12): 2846-2858, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34348450

RESUMEN

Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin ß4 (encoded by Tmsb4x) is one of the two main G-actin-sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin ß4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. Megakaryocyte numbers in the bone marrow and spleen were unaltered, however, Tmsb4x KO megakaryocytes showed defective proplatelet formation in vitro and in vivo. Thymosin ß4-deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin ß4 for actin dynamics during platelet biogenesis, platelet activation downstream of glycoprotein VI and thrombus stability.


Asunto(s)
Plaquetas , Trombosis , Timosina , Animales , Ratones , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Plaquetas/metabolismo , Ratones Noqueados , Trombosis/genética , Trombosis/metabolismo , Timosina/genética
17.
Bioengineered ; 12(1): 7104-7118, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34546850

RESUMEN

As a common gynecologic disease, endometriosis (EM) poses a threat to the reproductive health of about 10% women globally. Recent studies have revealed that circular RNAs (circRNAs) are deeply implicated in EM pathogenesis. However, the functions of circPIP5K1A in EM have not been studied yet. Our study intended to uncover the molecular mechanism of circPIP5K1A in EM. In this work, gene and protein expressions were determined by RT-qPCR or Western blotting. CCK-8, wound healing, transwell, and flow cytometry assays were conducted to analyze cell viability, migration, invasion, cell cycle, and apoptosis. Additionally, bioinformatics analysis, dual-luciferase reporter assay, as well as RIP assay were performed to investigate the combination between miR-153-3p and circPIP5K1A or TMSB4X. Herein, we found remarkable high circPIP5K1A expression in EM tissues and cells. Silencing of circPIP5K1A suppressed proliferation, restrained cell cycle, increased cell apoptosis, and decreased migration and invasion in EM cells. In addition, miR-153-3p inhibition could abrogate the impacts of circPIP5K1A knockdown on EM progression in vitro. Also, we found that circPIP5K1A regulated TMSB4X level via interaction with miR-153-3p in EM cells. Besides, circPIP5K1A promoted EM progression via TMSB4X. Moreover, TMSB4X could activate the TGF-ß signaling in hEM15A cells. To sum up, our study elucidated that circPIP5K1A accelerated EM progression in vitro by activating the TGF-ß signaling pathway via the miR-153-3p/TMSB4X axis, providing a potential clinical target for EM treatment.


Asunto(s)
Endometriosis , MicroARNs/genética , ARN Circular/genética , Timosina/genética , Adulto , Progresión de la Enfermedad , Endometriosis/genética , Endometriosis/metabolismo , Endometriosis/patología , Femenino , Humanos , MicroARNs/metabolismo , Persona de Mediana Edad , ARN Circular/metabolismo , Transducción de Señal/genética , Timosina/metabolismo , Adulto Joven
18.
J Neuroinflammation ; 18(1): 146, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183019

RESUMEN

BACKGROUND: Thymosin ß4 (Tß4) is the most abundant member of the ß-thymosins and plays an important role in the control of actin polymerization in eukaryotic cells. While its effects in multiple organs and diseases are being widely investigated, the safety profile has been established in animals and humans, currently, little is known about its influence on Alzheimer's disease (AD) and the possible mechanisms. Thus, we aimed to evaluate the effects and mechanisms of Tß4 on glial polarization and cognitive performance in APP/PS1 transgenic mice. METHODS: Behavior tests were conducted to assess the learning and memory, anxiety and depression in APP/PS1 mice. Thioflavin S staining, Nissl staining, immunohistochemistry/immunofluorescence, ELISA, qRT-PCR, and immunoblotting were performed to explore Aß accumulation, phenotypic polarization of glial cells, neuronal loss and function, and TLR4/NF-κB axis in APP/PS1 mice. RESULTS: We demonstrated that Tß4 protein level elevated in all APP/PS1 mice. Over-expression of Tß4 alone alleviated AD-like phenotypes of APP/PS1 mice, showed less brain Aß accumulation and more Insulin-degrading enzyme (IDE), reversed phenotypic polarization of microglia and astrocyte to a healthy state, improved neuronal function and cognitive behavior performance, and accidentally displayed antidepressant-like effect. Besides, Tß4 could downregulate both TLR4/MyD88/NF-κB p65 and p52-dependent inflammatory pathways in the APP/PS1 mice. While combination drug of TLR4 antagonist TAK242 or NF-κB p65 inhibitor PDTC exerted no further effects. CONCLUSIONS: These results suggest that Tß4 may exert its function by regulating both classical and non-canonical NF-κB signaling and is restoring its function as a potential therapeutic target against AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Disfunción Cognitiva/metabolismo , FN-kappa B/metabolismo , Neuroglía/metabolismo , Timosina/genética , Timosina/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Memoria , Ratones , Ratones Transgénicos , Microglía/metabolismo , Neuronas/metabolismo , Fenotipo , Presenilina-1/genética , Transducción de Señal
19.
Mol Carcinog ; 60(9): 597-606, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34081824

RESUMEN

Gastric cancer (GC) is histologically classified into intestinal-type gastric cancer (IGC) and diffuse-type gastric cancer (DGC), and the latter is poorly differentiated and highly metastatic. In this study, using quantitative real-time polymerase chain reaction, we described a complete protocol for in vivo CRISPR-Cas9-based knockout screening of essential genes for DGC metastasis. We functionally screened 30 candidate genes using our mouse DGC models lacking Smad4, p53, and E-cadherin. Pooled knockout mouse DGC cells were transplanted into a spleen of syngeneic immunocompetent mice to study clonal advantages in context of a complex process of liver metastasis. Tmsb4x (thymosin beta-4 X-linked), Hmox1, Ifitm3, Ldhb, and Itgb7 were identified as strong candidate genes that promote metastasis. In particular, Tmsb4x enhanced DGC metastasis and stomach organoid-generated tumor growth in in vivo transplantation models. Tmsb4x promoted tumor clonogenicity and anoikis resistance. In situ hybridization analysis showed that Tmsb4x is highly expressed in E-cadherin-negative mouse DGC models compared with mouse IGC and intestinal cancer models. E-cadherin deficiency also increased Tmsb4x expression in stomach organoids via Wnt signaling activation. Collectively, these results demonstrate that Tmsb4x promotes DGC metastasis. In addition, this experimental system will aid in the identification of novel target genes responsible for DGC metastasis.


Asunto(s)
Biomarcadores de Tumor , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Reacción en Cadena en Tiempo Real de la Polimerasa , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Timosina/genética , Animales , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Ratones , Metástasis de la Neoplasia , Transducción de Señal
20.
J Gastroenterol Hepatol ; 36(11): 3102-3112, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34114679

RESUMEN

BACKGROUND AND AIM: The thymosin beta 10 (TMSB10) was originally identified from the thymus, which plays a key role in the development of many cancers. However, the underlying molecular mechanisms of TMSB10 involved in GC have not been understood. METHODS: We sought to determine the expression of TMSB10 in human GC tissues and illustrate whether it is correlated with the clinical pathologic characteristics and prognosis in GC patients. Its roles and potential mechanisms in regulating tumor growth, invasion, and angiogenesis were evaluated by TMSB10 knockdown/overexpression of GC cells in vitro and ex vivo. RESULTS: Marked overexpression of TMSB10 protein expression was observed in GC cells and tissues, which was associated with the advanced tumor stage and lymph nodes (LN) metastasis of GC patients. Furthermore, prognostic analysis showed that GC patients with high TMSB10 expression had a remarkably shorter survival and acted as an important factor for predicting poor overall survival in GC patients. Moreover, TMSB10 overexpression promoted, while TMSB10 knockdown the proliferation, EMT process, and angiogenesis of GC cells. CONCLUSION: The study highlights that TMSB10 may hold promise as potential prognosis prediction biomarker for the diagnosis of GC and a potential therapeutic target, which will facilitate the development of a novel therapeutic strategy against GC.


Asunto(s)
Neoplasias Gástricas , Timosina , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Invasividad Neoplásica , Neovascularización Patológica , Pronóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Timosina/biosíntesis , Timosina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...