Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Nanotheranostics ; 8(3): 312-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577319

RESUMEN

Cancer chemotherapy remains a serious challenge, and new approaches to therapy are urgently needed to build novel treatment regimens. The methanol extract of the stem of Tinospora Cordifolia was used to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) that display anticancer activities against colorectal cancer. Biogenic ZnO-NPs synthesized from methanol extract of Tinospora Cordifolia stem (ZnO-NPs TM) were tested against HCT-116 cell lines to assess anticancer activity. UV-Vis, FTIR, XRD, SEM, and TEM analysis characterized the biogenic ZnO-NPs. To see how well biogenic ZnO-NPs fight cancer, cytotoxicity, AO/EtBr staining, Annexin V/PI staining, mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) analysis, and caspase cascade activity analysis were performed to assess the anticancer efficacy of biogenic ZnO-NPs. The IC50 values of biogenic ZnO-NPs treated cells (HCT-116 and Caco-2) were 31.419 ± 0.682µg/ml and 36.675 ± 0.916µg/ml, respectively. qRT-PCR analysis showed that cells treated with biogenic ZnO-NPs Bax and P53 mRNA levels increased significantly (p ≤ 0.001). It showed to have impaired MMP and increased ROS generation. In a corollary, our in vivo study showed that biogenic ZnO-NPs have an anti-tumour effect. Biogenic ZnO-NPs TM showed both in vitro and in vivo anticancer effects that could be employed as anticancer drugs.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Tinospora , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Especies Reactivas de Oxígeno/metabolismo , Tinospora/metabolismo , Células CACO-2 , Metanol/farmacología , Apoptosis , Estrés Oxidativo , Neoplasias Colorrectales/tratamiento farmacológico
2.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675617

RESUMEN

Nanoemulsions are gaining interest in a variety of products as a means of integrating easily degradable bioactive compounds, preserving them from oxidation, and increasing their bioavailability. However, preparing stable emulsion compositions with the desired characteristics is a difficult task. The aim of this study was to encapsulate the Tinospora cordifolia aqueous extract (TCAE) into a water in oil (W/O) nanoemulsion and identify its critical process and formulation variables, like oil (27-29.4 mL), the surfactant concentration (0.6-3 mL), and sonication amplitude (40% to 100%), using response surface methodology (RSM). The responses of this formulation were studied with an analysis of the particle size (PS), free fatty acids (FFAs), and encapsulation efficiency (EE). In between, we have studied a fishbone diagram that was used to measure risk and preliminary research. The optimized condition for the formation of a stable nanoemulsion using quality by design was surfactant (2.43 mL), oil concentration (27.61 mL), and sonication amplitude (88.6%), providing a PS of 171.62 nm, FFA content of 0.86 meq/kg oil and viscosity of 0.597 Pa.s for the blank sample compared to the enriched TCAE nanoemulsion with a PS of 243.60 nm, FFA content of 0.27 meq/kg oil and viscosity of 0.22 Pa.s. The EE increases with increasing concentrations of TCAE, from 56.88% to 85.45%. The RSM response demonstrated that both composition variables had a considerable impact on the properties of the W/O nanoemulsion. Furthermore, after the storage time, the enriched TCAE nanoemulsion showed better stability over the blank nanoemulsion, specially the FFAs, and the blank increased from 0.142 to 1.22 meq/kg oil, while TCAE showed 0.266 to 0.82 meq/kg.


Asunto(s)
Emulsiones , Tamaño de la Partícula , Extractos Vegetales , Tinospora , Agua , Emulsiones/química , Extractos Vegetales/química , Tinospora/química , Agua/química , Sonicación , Nanopartículas/química , Aceites/química , Tensoactivos/química
3.
J Ethnopharmacol ; 330: 118242, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38679398

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dengue is one of the most prevalent mosquito-borne viral infections. Moreover, due to the absence of appropriate curative and preventive measures against it, the mortality rate is increasing alarmingly. However, remarkable docking and clinical advances have been achieved with plant-based natural and conventional therapeutics. Tinospora cordifolia is one of the highly explored panaceas at the local level for its effective anti-dengue formulations. AIM OF THE STUDY: The present article aims for critical assessment of the data available on the anti-dengue therapeutic use of T. cordifolia. Efforts have also been made on the clinical and in-silico anti-dengue efficacy of this plant. The phytochemistry and the antiviral machinery of the plant are also emphasized. MATERIALS AND METHODS: The present article is the outcome of the literature survey on the anti-dengue effect of T. cordifolia. A literature survey was conducted from 2011 to 2024 using different databases with appropriate keywords. RESULTS: The present study confirms the anti-dengue potential of T. cordifolia. The plant can suppress the initiation of 'cytokine storm', vascular leakage and inhibition of various structural and NS proteins to exert its anti-dengue potential. Berberine and magnoflorine phytocompounds were highly explored for their anti-dengue potential. CONCLUSIONS: The present study concluded that T. cordifolia serves as an effective therapeutic agent for treating dengue. Further in-silico and clinical studies are needed so that stable, safe and efficacious anti-dengue drug can be developed. Besides, a precise antiviral mechanism of T. cordifolia against DENV infection is still needed.


Asunto(s)
Antivirales , Dengue , Fitoquímicos , Extractos Vegetales , Tinospora , Tinospora/química , Dengue/tratamiento farmacológico , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Animales , Virus del Dengue/efectos de los fármacos
4.
J Nat Prod ; 87(4): 774-782, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38358957

RESUMEN

Clerodane diterpenes are a class of secondary metabolites that can be classified into four types according to the configuration of the H3-19/H-10-H3-17/H3-20 fragment, i.e., trans-cis (TC), trans-trans (TT), cis-cis (CC), and cis-trans (CT). Tinotufolins A-C and E (1a-3a and 5a), isolated from the leaves of Tinospora crispa, were previously elucidated as CT-type clerodanes; however, our established 13C NMR-based empirical rules and density functional theory calculations suggested that these clerodanes belong to the CC type. Therefore, tinotufolins A-F (1-6) were reisolated from the leaves of T. crispa, along with an undescribed compound 7 and known compounds 8-11, and their structures were established by extensive spectroscopic analyses. The structures of tinotufolins A-C and E were revised to CC-type 1-3 and 5, and undescribed compound 7 was established as a CC-type clerodane. The present study demonstrates that empirical rules and calculations can efficiently identify and revise erroneous structures in clerodane diterpenes.


Asunto(s)
Diterpenos de Tipo Clerodano , Hojas de la Planta , Tinospora , Hojas de la Planta/química , Tinospora/química , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/aislamiento & purificación , Estructura Molecular , Teoría Funcional de la Densidad
5.
Sci Rep ; 14(1): 2799, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307917

RESUMEN

Tinospora cordifolia (Willd.) Hook.f. & Thomson, also known as Giloy, is among the most important medicinal plants that have numerous therapeutic applications in human health due to the production of a diverse array of secondary metabolites. To gain genomic insights into the medicinal properties of T. cordifolia, the genome sequencing was carried out using 10× Genomics linked read and Nanopore long-read technologies. The draft genome assembly of T. cordifolia was comprised of 1.01 Gbp, which is the genome sequenced from the plant family Menispermaceae. We also performed the genome size estimation for T. cordifolia, which was found to be 1.13 Gbp. The deep sequencing of transcriptome from the leaf tissue was also performed. The genome and transcriptome assemblies were used to construct the gene set, resulting in 17,245 coding gene sequences. Further, the phylogenetic position of T. cordifolia was also positioned as basal eudicot by constructing a genome-wide phylogenetic tree using multiple species. Further, a comprehensive comparative evolutionary analysis of gene families contraction/expansion and multiple signatures of adaptive evolution was performed. The genes involved in benzyl iso-quinoline alkaloid, terpenoid, lignin and flavonoid biosynthesis pathways were found with signatures of adaptive evolution. These evolutionary adaptations in genes provide genomic insights into the presence of diverse medicinal properties of this plant. The genes involved in the common symbiosis signalling pathway associated with endosymbiosis (Arbuscular Mycorrhiza) were found to be adaptively evolved. The genes involved in adventitious root formation, peroxisome biogenesis, biosynthesis of phytohormones, and tolerance against abiotic and biotic stresses were also found to be adaptively evolved in T. cordifolia.


Asunto(s)
Alcaloides , Plantas Medicinales , Tinospora , Humanos , Plantas Medicinales/genética , Tinospora/genética , Tinospora/metabolismo , Filogenia , Extractos Vegetales/metabolismo , Alcaloides/metabolismo
6.
J Pharm Pharmacol ; 76(3): 183-200, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38280221

RESUMEN

OBJECTIVES: Despite significant advancements in modern medicine, effective hepatoprotective medication with minimal side effects is still lacking. In this context. Tinospora cordifolia, an Indian Ayurvedic liana, has attracted much attention. KEY FINDINGS: Traditionally, T. cordifolia has been found to be effective in the treatment of jaundice; according to the literature, T. cordifolia is a hepatoprotective agent, and the CCl4 model is the most frequently used to evaluate its potential. Its hepatoprotective effects might be attributed to alkaloids (berberine, palmatine, and jatrorrhizine) and sinapic acid. Berberine decreases inflammation by inhibiting the proinflammatory cascade triggered by TNF-α and reduces nitrosative stress by inhibiting iNOS. T. cordifolia also exhibits anticancer, anti-inflammatory, antimicrobial, antioxidant, and other activities; it is safe at concentrations up to 2000 mg/kg. Its biological action can be attributed to polyphenols, alkaloids, steroids, terpenoids, and glycosides. T. cordifolia has also been found to be an active ingredient in several polyherbal formulations used to treat chemical-mediated hepatotoxicity. CONCLUSION: T. cordifolia's hepatoprotective effects are mediated by the inhibition of lipid peroxidation, the management of oxidative stress, and other factors. T. cordifolia can be used to manage liver disorders and as a hepatoprotective supplement in the food industry. The bioprospecting of its alkaloids can lead to the development of novel formulations against hepatic ailments.


Asunto(s)
Berberina , Tinospora , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Suplementos Dietéticos
7.
J Ethnopharmacol ; 323: 117700, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38176666

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (TC) a potential medicinal herb, has been ethnobotanically used as an eco-friendly supplement to manage various diseases, including cerebral fever. Earlier studies have shown that TC exhibits diverse beneficial effects, including hepatoprotective and neuroprotective effects. However, the effects of TC remain unexplored in animal models of encephalopathy including hepatic encephalopathy (HE). AIM OF THE STUDY: To evaluate the effects of TC stem extract against thioacetamide (TAA)-induced behavioural and molecular alterations in HE rats. METHODS AND MATERIALS: The extract was preliminarily screened through phytochemical and HR-LC/MS analysis. Animals were pre-treated with TC extract at doses 30 and 100 mg/kg, orally. Following 7 days of TC pre-treatment, HE was induced by administering TAA (300 mg/kg, i. p. thrice). Behavioural assessments were performed after 56 h of TAA first dose. The animals were then sacrificed to assess biochemical parameters in serum, liver and brain. Liver tissue was used for immunoblotting and histological studies to evaluate inflammatory and fibrotic signalling. Moreover, brain tissue was used to evaluate brain edema, activation of glial cells (GFAP, IBA-1) and NF-κB/NLRP3 downstream signalling via immunoblotting and immunohistochemical analysis in cortex and hippocampus. RESULTS: The pre-treatment with TC extract effective mitigated TAA-induced behavioural alterations, lowered serum LFT (AST, ALT, ALP, bilirubin) and oxidative stress markers in liver and brain. TC treatment significantly modulated hyperammonemia, cerebral edema and preserved the integrity of BBB proteins in HE animals. TC treatment attenuated TAA-induced histological changes, tissue inflammation (pNF-κB (p65), TNF-α, NLRP3) and fibrosis (collagen, α-SMA) in liver. In addition, immunoblotting analysis revealed TC pre-treatment inhibited fibrotic proteins such as vimentin, TGF-ß1 and pSmad2/3 in the liver. Our study further showed that TC treatment downregulated the expression of MAPK/NF-κB inflammatory signalling, as well as GFAP and IBA-1 (glial cell markers) in cortex and hippocampus of TAA-intoxicated rats. Additionally, TC-treated animals exhibited reduced expression of caspase3/9 and BAX induced by TAA. CONCLUSION: This study revealed promising insights on the protective effects of TC against HE. The findings clearly demonstrated that the significant inhibition of MAPK/NF-κB signalling and glial cell activation could be responsible for the observed beneficial effects of TC in TAA-induced HE rats.


Asunto(s)
Encefalopatía Hepática , Hiperamonemia , Tinospora , Ratas , Animales , Encefalopatía Hepática/inducido químicamente , Encefalopatía Hepática/tratamiento farmacológico , Encefalopatía Hepática/prevención & control , Tioacetamida/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Hiperamonemia/metabolismo , Hiperamonemia/patología , Hígado , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química
8.
J Biomol Struct Dyn ; 42(2): 598-614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36995189

RESUMEN

The hepatitis A virus (HAV), which causes hepatitis A, is a contagious liver ailment. The infections are not specifically treated by any medications. Therefore, the development of less harmful, more effective and cost-effective antiviral agents are necessary. The present work highlighted the in-silico activity of phytocompounds from tinospora cordifolia against HAV. The binding interaction of HAV with the phytocompounds was analyzed through molecular docking. Molecular docking revealed that chasmanthin, malabarolide, menispermacide, tinosporaside, and tinosporinone compounds bind with HAV more efficiently than other compounds. Further evaluation using 100 ns molecular dynamics simulation, MM/GBSA and free energy landscape indicated that all phytocompounds studied here were found to be most promising drug candidate against hepatitis A virus. Our computational study will encourage promoting in further investigation for in vitro and in vivo clinical trials.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Virus de la Hepatitis A , Tinospora , Simulación del Acoplamiento Molecular , Temperatura , Simulación de Dinámica Molecular , Fitoquímicos/farmacología
9.
J Ethnopharmacol ; 321: 117559, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38072294

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (T. cordifolia) (Willd.) Miers, a member of the Menispermaceae, family documented in the ancient textbooks of the Ayurveda System of Medicine, has been used in the management of sciatica pain and diabetic neuropathy. AIM: The study has been designed to evaluate the antinociceptive potential of various extracts of T. cordifolia stem in Paclitaxel (PT)-generated neuropathic pain model in albino rats and explore its possible mechanism employing molecular docking studies. METHODS: Stems of T. cordifolia were shade dried, grinded in fine powder, and extracted separately with different solvents viz. ethanol, water & hydro-alcoholic and characterized using LCMS/MS. The antinociceptive property of T. cordifolia stem (200 and 400 mg/kg) was examined in albino rats using a PT-induced neuropathic pain model. Further, the effect of these extracts was also observed using different behavioral assays viz. cold allodynia, mechanical hyperalgesia (pin-prick test), locomotor activity test, walking track test, and Sciatic Functional Index (SFI) in rats. Tissue lysate of the sciatic nerve was used to determine various biochemical markers such as GSH, SOD, TBARS, tissue protein, and nitrite. Further to explore the possible mechanism of action, the most abundant and therapeutically active compounds available in aqueous extract were analyzed for binding affinity towards soluble epoxide hydrolase (sEH) enzyme (PDB ID: 3wk4) employing molecular docking studies. RESULTS: The results of the LCMS/MS study of different extracts of T. cordifolia indicated presence of alkaloids, glycosides, terpenoids, sterols and sugars such as amritoside A, tinocordin, magnoflorine, N-methylcoclaurine, coridine, 20ß-hydroxyecdysone and menaquinone-7 palmatin, cordifolioside A and tinosporine etc. Among all the three extracts, the hydroalcoholic extract (400 mg/kg) showed the highest response followed by aqueous and ethanolic extracts as evident in in vivo behavioral and biochemical evaluations. Furthermore, docking studies also exposed that these compounds viz. N-methylcoclaurine tinosporin, palmatine, tinocordin, 20ß-hydroxyecdysone, and coridine exhibited well to excellent affinity towards target sEH protein. CONCLUSION: T. cordifolia stem could alleviate neuropathic pain via soluble epoxide hydrolase inhibitory activity.


Asunto(s)
Neuralgia , Tinospora , Ratas , Animales , Paclitaxel , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Tinospora/química , Epóxido Hidrolasas , Simulación del Acoplamiento Molecular , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico
10.
J AOAC Int ; 107(1): 129-139, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37738282

RESUMEN

BACKGROUND: The sympatric occurrence of the species that often resulted in different gatherings of plant material, ambiguous history on traditional use, and taxonomic flux due to similarities within the Tinospora (Menispermaceae) taxa are some of the reasons that triggered the necessity to develop robust analytical methods for efficient QC, especially to recognize dry and powder forms. OBJECTIVE: To develop novel HPTLC-based fingerprinting of two closely resembling Tinospora species followed by HPTLC-MS analysis and identification of compounds differentiating Tinospora crispa (TCP) and Tinospora cordifolia (TCR) and a rapid and quantitative assessment by HPLC with a photodiode array detector (HPLC-PDA) with MS/MS characterization of specific TCP and TCR analytical markers. METHODS: An HPTLC-based method was developed using chloroform-toluene-methanol-formic acid (7 + 4 + 2 + 0.2, by volume). The TCP compounds could be distinguished and isolated using successive column chromatography with complete characterization. Further these used in the reverse phase (RP)-HPLC-PDA coupled with LC-ESI (electrospray ionization)-MS/MS to quantify and confirmation in TCP and TCR. RESULTS: The fingerprinting showed distinct bands in TCP stems, confirmed as clerodane- furanoditerpenoids with indirect profiling by the HPTLC-MS technique. Systematic isolation confirmed these compounds as borapetosides B and E. Thus, the RP-HPLC-PDA method was developed for these borapetosides B and E, with tinosporide to differentiate these two species. The quantitation method was well validated with good linearity (r2 >0.99) with sensitive LOD (0.49-3.71 mcg/mL) and LOQ (1.48-11.23 mcg/mL) with recoveries of 92.34-96.19%. CONCLUSION: A novel, validated HPLC-PDA method showed good resolution and reliability (up to 1% adulteration) in quantification for targeted major analytical markers from TCP to differentiate TCR. Thus, HPTLC and HPLC-PDA-based techniques are helpful with MS/MS-based characterization to identify and quantify these analytical markers from TCP (borapetoside B and E) and TCR (tinosporide) in dry and powder form. HIGHLIGHTS: This article reports on the systemic use of HPTLC-MS for separating and identifying analytical markers in Tinospora species, distinguishing TCR and TCP with quantitative HPLC-PDA and MS/MS assessment.


Asunto(s)
Espectrometría de Masas en Tándem , Tinospora , Tinospora/química , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Polvos , Extractos Vegetales/química , Receptores de Antígenos de Linfocitos T
11.
Phytochemistry ; 218: 113932, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056516

RESUMEN

Twenty-six clerodane diterpenoids have been isolated from T. sagittata, a plant species of traditional Chinese medicine Radix Tinosporae, also named as "Jin Guo Lan". Among them, there are eight previously undescribed clerodane diterpenoids (tinotanoids A-H: 1-8), and 18 known diterpenoids (9-26). The absolute configurations of compounds 1, 2, 5, 8, 13, 17 and 20 were determined by single-crystal X-ray diffraction. Compound 1 is the first example of rotameric clerodane diterpenoid with a γ-lactone ring which is constructed between C-11 and C-17; meanwhile, compounds 3 and 4 are two pairs of inseparable epimers. Compounds 2, 12 and 17 demonstrated excellent inhibitory activity on NO production against LPS-stimulated BV-2 cells with IC50 values of 9.56 ± 0.69, 9.11 ± 0.53 and 11.12 ± 0.70 µM, respectively. These activities were significantly higher than that of the positive control minocycline (IC50 = 23.57 ± 0.92 µM). Moreover, compounds 2, 12 and 17 dramatically reduced the LPS-induced upregulation of iNOS and COX-2 expression. Compounds 2 and 12 significantly inhibited the levels of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 that were increased by LPS stimulation.


Asunto(s)
Diterpenos de Tipo Clerodano , Menispermaceae , Tinospora , Diterpenos de Tipo Clerodano/farmacología , Diterpenos de Tipo Clerodano/química , Tinospora/química , Lipopolisacáridos/farmacología , Raíces de Plantas/química , Estructura Molecular
12.
J Ethnopharmacol ; 319(Pt 3): 117296, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37820996

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora crispa (L.) Hook. f. & Thomson stem (TCS) has long been used as folk medicine for the treatment of diabetes mellitus. Previous study revealed that TCS possesses multi-ingredients and multi-targets characteristic potential as insulin sensitizer activity. However, its mechanisms of action and molecular targets are still obscure. AIM OF THE STUDY: In the present study, we investigated the effects of TCS against insulin resistance in muscle cells through integrating in vitro experiment and identifying its active biomarker using metabolomics and in molecular docking validation. MATERIALS AND METHODS: We used centrifugal partition chromatography (CPC) to isolate 33 fractions from methanolic extract of TCS, and then used UHPLC-Orbitrap-HRMS to identify the detectable metabolites in each fraction. We assessed the insulin sensitization activity of each fraction using enzyme-linked immunosorbent assay (ELISA), and then used confocal immunocytochemistry microscopy to measure the translocation of glucose transporter 4 (GLUT4) to the cell membrane. The identified active metabolites were further simulated for its molecular docking interaction using Autodock Tools. RESULTS: The polar fractions of TCS significantly increased insulin sensitivity, as measured by the inhibition of phosphorylated insulin receptor substrate-1 (pIRS1) at serine-312 residue (ser312) also the increasing number of translocated GLUT4 and glycogen content. We identified 58 metabolites of TCS, including glycosides, flavonoids, alkaloids, coumarins, and nucleotides groups. The metabolomics and molecular docking simulations showed the presence of minor metabolites consisting of tinoscorside D, higenamine, and tinoscorside A as the active compounds. CONCLUSIONS: Our findings suggest that TCS is a promising new treatment for insulin resistance and the identification of the active metabolites in TCS could lead to the development of new drugs therapies for diabetes that target these pathways.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Tinospora , Humanos , Insulina/metabolismo , Simulación del Acoplamiento Molecular , Tinospora/química , Músculo Esquelético , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico
13.
Eur J Med Res ; 28(1): 556, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049897

RESUMEN

BACKGROUND: SARS-CoV-2 infections caused mild-to-moderate illness. However, a sizable portion of infected people experience a rapid progression of hyper-inflammatory and hypoxic respiratory illness that necessitates an effective and safer remedy to combat COVID-19. METHODS: A total of 150 COVID-19-positive patients with no to mild symptoms, between the age groups 19-65 years were enrolled in this randomized, open-labeled three-armed clinical trial. Among them, 136 patients completed the study with RT-PCR negative reports. The patients received herbal drugs orally (Group A (Adhatoda vasica; AV; 500 mg; n = 50); Group B (Tinospora cordifolia; TC; 500 mg; n = 43), and Group C (AV + TC; 250 mg each; n = 43)) for 14 days. Clinical symptoms, vital parameters, and viral clearance were taken as primary outcomes, and biochemical, hematological parameters, cytokines, and biomarkers were evaluated at three time points as secondary outcomes. RESULTS: We found that the mean viral clearance time was 13.92 days (95% confidence interval [CI] 12.85-14.99) in Group A, 13.44 days (95% confidence interval [CI] 12.14-14.74) in Group B, and 11.86 days (95% confidence interval [CI] 10.62-13.11) days in Group C. Over a period of 14 days, the mean temperature in Groups A, and B significantly decreased linearly. In Group A, during the trial period, eosinophils, and PT/INR increased significantly, while monocytes, SGOT, globulin, serum ferritin, and HIF-1α, a marker of hypoxia reduced significantly. On the other hand, in Group B hsCRP decreased at mid-treatment. Eosinophil levels increased in Group C during the treatment, while MCP-3 levels were significantly reduced. CONCLUSIONS: All the patients of the three-armed interventions recovered from COVID-19 and none of them reported any adverse effects from the drugs. Group C patients (AV + TC) resulted in a quicker viral clearance as compared to the other two groups. We provide the first clinical report of AV herbal extract acting as a modifier of HIF-1α in COVID-19 patients along with a reduction in levels of ferritin, VEGF, and PT/INR as the markers of hypoxia, inflammation, and thrombosis highlighting the potential use in progression stages, whereas the TC group showed immunomodulatory effects. Trial registration Clinical Trials Database -India (ICMR-NIMS), CTRI/2020/09/028043. Registered 24th September 2020, https://www.ctri.nic.in/Clinicaltrials/pdf_generate.php?trialid=47443&EncHid=&modid=&compid=%27,%2747443det%27.


Asunto(s)
COVID-19 , Género Justicia , Tinospora , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , SARS-CoV-2 , Biomarcadores , Ferritinas , Hipoxia , Resultado del Tratamiento
14.
Funct Integr Genomics ; 23(4): 330, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37935874

RESUMEN

Indian natural climbing shrub Tinospora cordifolia, often known as "Guduchi" and "Amrita," is a highly esteemed medicinal plant in the Indian system of medicine (ISM). It is a member of the Menispermaceae family which consists of a rich source of protein, micronutrients, and rich source of bioactive components which are used in treating various systemic diseases. The current study was designed to know the biological characterization of the plant genome and biosynthesis of plant metabolites essential for its medicinal applications. Tinospora cordifolia's complete genome was sequenced using Illumina HiSeq2500 sequencing technology. The draft genome was assembled through a de novo method. An integrative genome annotation approach was used to perform functional gene prediction. The pathway analysis was carried out using the KEGG database. The total genome size obtained after genome assembly was 894 Mb with an N50 of 9148 bp. The integrative annotation approach resulted in 35,111 protein-coding genes. In addition, genes responsible for the synthesis of syringin, a secondary metabolite found in plants, were identified. In comparison to the standard drug (dopamine, rasagiline, and selegiline), syringin's molecular docking exhibited a greater binding affinity from the range of - 4.3 to - 6.6 kcal/mol for all the targets of Parkinson's disease and for Alzheimer's targets; it has shown the maximum potency from the range of - 6.5 to - 7.4 kcal/mol with respect to the standard drug (donepezil, galantamine, and rivastigmine). This study provides the genomic information of Tinospora cordifolia which is helpful in understanding genomic insights and metabolic pathways connected to the corresponding plant genome and predicts the possible useful effect for the molecular characterization of therapeutic drugs.


Asunto(s)
Plantas Medicinales , Tinospora , Plantas Medicinales/genética , Tinospora/genética , Simulación del Acoplamiento Molecular , Glucósidos
15.
Molecules ; 28(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894552

RESUMEN

Natural products with curative properties are gaining immense popularity in scientific and food research, possessing no side effects in contrast to other drugs. Guduchi, or Tinospora cordifolia, belongs to the menispermaceae family of universal drugs used to treat various diseases in traditional Indian literature. It has received attention in recent decades because of its utilization in folklore medicine for treating several disorders. Lately, the findings of active phytoconstituents present in herbal plants and their pharmacological function in disease treatment and control have stimulated interest in plants around the world. Guduchi is ethnobotanically used for jaundice, diabetes, urinary problems, stomachaches, prolonged diarrhea, skin ailments, and dysentery. The treatment with Guduchi extracts was accredited to phytochemical constituents, which include glycosides, alkaloids, steroids, and diterpenoid lactones. This review places emphasis on providing in-depth information on the budding applications of herbal medicine in the advancement of functional foods and nutraceuticals to natural product researchers.


Asunto(s)
Plantas Medicinales , Tinospora , Tinospora/química , Extractos Vegetales/química , Plantas Medicinales/química , Suplementos Dietéticos
16.
Phytomedicine ; 119: 154976, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37573808

RESUMEN

BACKGROUND: Tinospora cordifolia Miers. (TC) (Giloya/Guduchi) is a native Indian herb, reported for its wide array of medicinal activities including immunomodulatory activity. However, the exact pharmacological mechanism of TC as an immunomodulatory agent remains unclear. Central to this, to the best of our knowledge, no study has explored the immunoadjuvant potential of TC in response to the Japanese encephalitis (JE) vaccines. PURPOSE: The study aims to explore the immunoadjuvant potential of TC ethanolic extract in response to the JE vaccine and illustrates its potential mechanism of immunomodulation using an integrated approach of network pharmacology and in-vivo experimental study. STUDY DESIGN AND METHODS: Initially, the extract was prepared and the components of TC were identified through high-resolution liquid chromatography mass spectrometry (HR-LC/MS). The compounds were then screened for network pharmacology analysis. Next, the drug and disease targets were identified and the network was constructed using Cytoscape 3.7.2 to obtain different signalling pathways of TC in JEV. We then evaluated the immunoadjuvant potential of TC ethanolic extract in mice immunized with inactivated JE vaccine (SA-14-14-2 strain). BALB/c mice were supplemented with TC extract (30 and 100 mg/kg, i.g.), daily for 56 days, marked with immunization on 28th day of the study, by JE vaccine. Blood was collected for flow cytometry and haematological analysis (total and differential cell counts). The surface expression of immune-cell markers (CD3+, CD4+, CD19+, CD11c+, CD40+) were evaluated on day 0 (pre-immunization), day 14 and 28 post-immunization. Additionally, inflammatory cytokines (IFN-γ+/IL-17A+) were evaluated post-14 and 28 days of immunization. RESULTS: The HR-LC/MS analysis identified the presence of glycosides, terpenoids, steroids and alkaloids in the TC extract. Through network analysis, 09 components and 166 targets were obtained, including pathways that involve toll-like receptor signalling, pattern-recognition receptor signalling, cytokine receptor and cytokine mediated signalling, etc. The in-vivo results showed that preconditioning with TC ethanolic extract significantly elevated the haematological variables (leucocyte count) as well as the surface expression of CD markers (B and T cell subsets) on day 0 (pre-immunization), day 14 and 28 post-immunization. Furthermore, preconditioning of TC demonstrated a dose-dependant augmentation of immune cells (CD3+, CD4+, CD19+, CD11c+) and inflammatory cytokines (IFN-γ+/IL-17A+) on day 14 and 28 post-immunization when compared to vaccine alone group. CONCLUSION: Results showed that preconditioning with TC extract before immunization might play a potential role in enhancing the cell-mediated as well as humoral immunity. Altogether, the combinatorial approach of network pharmacology and in-vivo animal experimentation demonstrated the immunoadjuvant potential of TC in response to JEV vaccine.


Asunto(s)
Vacunas contra la Encefalitis Japonesa , Tinospora , Ratones , Animales , Tinospora/química , Interleucina-17 , Farmacología en Red , Extractos Vegetales/farmacología , Extractos Vegetales/química , Citocinas/metabolismo , Adyuvantes Inmunológicos/farmacología , Inmunidad
17.
ACS Chem Neurosci ; 14(17): 3077-3087, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37579290

RESUMEN

Oxidative stress and mitochondrial dysfunction are leading mechanisms that play a crucial role in the progression of Parkinson's disease (PD). Tinospora cordifolia shows a wide range of biological activities including immunomodulatory, antimicrobial, antioxidant, and anti-inflammatory properties. This study explored the neuroprotective activities of T. cordifolia ethanolic extract (TCE) against Rotenone (ROT)-intoxicated Parkinsonian mice. Four experimental groups of mice were formed: control, ROT (2 mg/kg body wt, subcutaneously), TCE (200 mg/kg body wt, oral) + ROT, and TCE only. Mice were pretreated with TCE for a week and then simultaneously injected with ROT for 35 days. Following ROT-intoxication, motor activities, antioxidative potential, and mitochondrial dysfunction were analyzed. Decrease in the activity of the mitochondrial electron transport chain (mETC) complex, loss of mitochondrial membrane potential (Ψm), increase in Bax/Bcl-2 (B-cell lymphoma 2) ratio, and caspase-3 expression are observed in the ROT-intoxicated mice group. Our results further showed ROT-induced reactive oxygen species (ROS)-mediated alpha-synuclein (α-syn) accumulation and mitochondrial dysfunction. However, pre- and cotreatment with TCE along with ROT-intoxication significantly reduced α-syn aggregation and improved mitochondrial functioning in cells by altering mitochondrial potential and increasing mETC activity. TCE also decreases the Bax/Bcl-2 ratio and also the expression of caspase-3, thus reducing apoptosis of the cell. Altogether, TCE is effective in protecting neurons from rotenone-induced cytotoxicity in the Parkinsonian mouse model by modulating oxidative stress, ultimately reducing mitochondrial dysfunction and cell death.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Tinospora , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Rotenona/farmacología , Fármacos Neuroprotectores/farmacología , Tinospora/metabolismo , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Mitocondrias/metabolismo
18.
Reprod Sci ; 30(12): 3480-3494, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37640890

RESUMEN

Human fertility regulation is a major way to control overpopulation. In this perspective, this study emphasized the in vitro effect of hydro-methanol extract of Tinospora cordifolia (TCHME) stem for spermicidal and reproductive hypo-functions using human and rat samples. Control, 0.5-, 1-, and 2-mg TCHME-charged groups were considered to assess the relevant parameters. Levels of spermiological parameters like sperm motility, viability, the integrity of plasma and acrosomal membrane, and nuclear chromatin decondensation were significantly reduced (p < 0.05) in the dose- and duration-dependent TCHME-charged groups compared to the control. The inhibitory concentration 50 (IC50) of TCHME on motile human and rat sperms were 0.8 and 0.4 mg/ml, respectively. Testicular androgenic key enzymes and antioxidant enzymes (human sperm pellet, testes, and epididymis of rat)' activities were significantly diminished (p < 0.05), while antioxidant enzymes' activities were significantly elevated (p < 0.05) in renal and insignificantly (p > 0.05) elevated in hepatic tissues of rat in TCHME-charged groups compared to the control. Significant elevation (p < 0.05) of thiobarbituric acid reactive substances (TBARS)' level in human sperm pellet, testes, and epididymis of rats and significant diminution (p < 0.05) in TBARS levels of liver and kidney were observed in TCHME-charged groups. It focused that TCHME is more potent for stress imposition on reproductive tissues and sperm compared to the other tested tissues. Non-significant alterations (p > 0.05) in glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities in the said organs of rat indicated its non-toxic effect. It highlighted that TCHME possesses spermicidal and reproductive tissue-specific effects which strengthen the possibilities of male contraceptive development from it.


Asunto(s)
Metanol , Tinospora , Humanos , Ratas , Masculino , Animales , Antioxidantes/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico , Extractos Vegetales/farmacología , Motilidad Espermática , Semillas , Espermatozoides
19.
Bioorg Chem ; 140: 106812, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37651894

RESUMEN

A total of 17 structurally diverse clerodane diterpenoids, including ten undescribed clerodane diterpenoids (tinopanoids K-T, 1-10) and seven known compounds (11-17), were isolated from the vines and leaves of Tinospora crispa. Compound 3 has not only bear the dominant substituents of γ-hydroxy-α, ß-unsaturated-γ-lactone with anti-inflammatory activity, but also a ternary epoxy structure at C-3/C-4. The planar structures and relative configurations of the clerodane diterpenoids were elucidated by spectroscopic data interpretation. The absolute configurations of compounds 1, 4, 8 and 13 were determined by single-crystal X-ray crystallographic, while that of compound 3 was determined using computed ECD data and single crystal X-ray diffraction of related p-bromobenzoate ester (3a). Subsequently, all compounds were evaluated for their inhibitory effect on nitric oxide (NO) production of LPS-activated BV-2 cells, and compounds 3 and 8 exhibited better NO inhibitory potency, with IC50 values of 5.6 and 13.8 µM than the positive control minocycline (Mino, IC50 = 22.9 µM). The corresponding results of western blot analysis and qRT-PCR revealed that compound 3 can significantly inhibit the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions, mRNA levels of pro-inflammatory cytokins of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and interleukin 1ß (IL-1ß). The underlying mechanism by which compound 3 exerted anti-neuroinflammatory effects was investigated by western blot and immunofluorescence assay, which suggested compound 3 inhibited LPS induced neuroinflammation via the suppression of toll-like receptor 4 (TLR4) dependent Signal Transducer and Activator of Transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) signaling pathways, and the activation of Heme Oxygenase-1 (HO-1) mediated signals.


Asunto(s)
Diterpenos de Tipo Clerodano , Tinospora , Diterpenos de Tipo Clerodano/farmacología , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Western Blotting
20.
Environ Pollut ; 335: 122229, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479165

RESUMEN

Aquatic pollution refers to any water that has been used and discarded in different water bodies by industrial and commercial activities which contains a wide range of toxic substances and required treatment so that water can be safely reused for various purposes. In present paper, polymer polyvinylpyrrolidone (PVP) and plant Tinospora Cordifolia (T. Cordifolia) encapsulated dual doped cobalt-copper titanium dioxide nanoparticles (Co-Cu TNPs) has been synthesized via microwave-assisted method for the degradation aquatic pollutant dyes: Methyl Orange (MO) & Methylene Blue (MB). Using the encapsulated dual doped Co-Cu TNPs, free radical assays (2,2-diphenyl-1-picrylhydrazyl: DPPH; Hydrogen peroxide: HP & Nitric oxide: NO) were also performed. Several physicochemical properties of encapsulated TNPs were examined using a variety of characterization techniques that helps in photocatalytic and antioxidant activity. The encapsulated TNPs exhibit tetragonal crystal lattice having average particles size between 25 and 38 nm with spherical shape morphology. The bandgap of encapsulated dual doped Co-Cu TNPs was found in the range of 3.25-3.29 eV. The binding of encapsulated dual doped Co-Cu TNPs were also calculated by using XPS which confirms the presence of dopants. The photocatalytic activity was performed with using control experiment and using encapsulated dual doped Co-Cu TNPs against MO and MB dyes. The results revealed that the degradation was observed up to 100% for the both MO and MB dyes. Also, antioxidant activity of encapsulated dual doped Co-Cu TNPs was observed against the DPPH, HO and NO assays.


Asunto(s)
Nanopartículas , Tinospora , Cobre/química , Povidona , Antioxidantes , Nanopartículas/química , Radicales Libres , Agua/química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...