Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.991
Filtrar
1.
Sci Rep ; 14(1): 10586, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719951

RESUMEN

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Asunto(s)
Carotenoides , Regulación de la Expresión Génica de las Plantas , Lycium , Nicotiana , Proteínas de Plantas , Tolerancia a la Sal , Carotenoides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tolerancia a la Sal/genética , Lycium/genética , Lycium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Fotosíntesis/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Ácido Abscísico/metabolismo
2.
Nat Commun ; 15(1): 3978, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729926

RESUMEN

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Canales de Cloruro , Aparato de Golgi , Estrés Salino , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Aparato de Golgi/metabolismo , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Regulación de la Expresión Génica de las Plantas , Transporte de Proteínas/efectos de los fármacos , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Plantas Modificadas Genéticamente
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731831

RESUMEN

Small secreted peptides (SSPs) play important roles in regulating plants' growth and development in response to external stimulus, but the genes and functions of SSPs in many species are still unknown. Therefore, it is particularly significant to characterize and annotate SSP genes in plant genomes. As a widely used stock of pears, Pyrus betulifolia has strong resistance to biotic and abiotic stresses. In this study, we analyzed the SSPs genes in the genome of P. betulifolia according to their characteristics and homology. A total of 1195 SSP genes were identified, and most of them are signaling molecules. Among these, we identified a new SSP, subtilase peptide 3 (SUBPEP3), which derived from the PA region of preSUBPEP3, increasing the expression level under salt stress. Both adding synthetic peptide SUBPEP3 to the culture medium of pears and the overexpression of SUBPEP3 in tobacco can improve the salt tolerance of plants. In summary, we annotated the SSP genes in the P. betulifolia genome and identified a small secreted peptide SUBPEP3 that regulates the salt tolerance of P. betulifolia, which provides an important theoretical basis for further revealing the function of SSPs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Pyrus , Tolerancia a la Sal , Pyrus/genética , Pyrus/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Nicotiana/genética , Nicotiana/metabolismo , Secuencia de Aminoácidos , Péptidos/metabolismo , Péptidos/genética , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética
4.
BMC Plant Biol ; 24(1): 372, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714917

RESUMEN

BACKGROUND: High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS: Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION: These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.


Asunto(s)
Arabidopsis , Manihot , Proteínas de Plantas , Plantas Modificadas Genéticamente , Potasio , Estrés Salino , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Manihot/genética , Manihot/metabolismo , Manihot/fisiología , Plantas Modificadas Genéticamente/genética , Potasio/metabolismo , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Tolerancia a la Sal/genética , Sodio/metabolismo
5.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743266

RESUMEN

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Asunto(s)
Arabidopsis , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Secuencia de Aminoácidos , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Salino/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo
6.
Sci Rep ; 14(1): 10981, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745099

RESUMEN

Melia azedarach demonstrates strong salt tolerance and thrives in harsh saline soil conditions, but the underlying mechanisms are poorly understood. In this study, we analyzed gene expression under low, medium, and high salinity conditions to gain a deeper understanding of adaptation mechanisms of M. azedarach under salt stress. The GO (gene ontology) analysis unveiled a prominent trend: as salt stress intensified, a greater number of differentially expressed genes (DEGs) became enriched in categories related to metabolic processes, catalytic activities, and membrane components. Through the analysis of the category GO:0009651 (response to salt stress), we identified four key candidate genes (CBL7, SAPK10, EDL3, and AKT1) that play a pivotal role in salt stress responses. Furthermore, the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that DEGs were significantly enriched in the plant hormone signaling pathways and starch and sucrose metabolism under both medium and high salt exposure in comparison to low salt conditions. Notably, genes involved in JAZ and MYC2 in the jasmonic acid (JA) metabolic pathway were markedly upregulated in response to high salt stress. This study offers valuable insights into the molecular mechanisms underlying M. azedarach salt tolerance and identifies potential candidate genes for enhancing salt tolerance in M. azedarach.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estrés Salino , Tolerancia a la Sal , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Salino/genética , Transcriptoma , Salinidad , Ontología de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
J Agric Food Chem ; 72(19): 10814-10827, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710027

RESUMEN

Foxtail millet is an important cereal crop that is relatively sensitive to salt stress, with its yield significantly affected by such stress. Alternative splicing (AS) widely affects plant growth, development, and adaptability to stressful environments. Through RNA-seq analysis of foxtail millet under different salt treatment periods, 2078 AS events were identified, and analyses were conducted on differential gene (DEG), differential alternative splicing gene (DASG), and overlapping gene. To investigate the regulatory mechanism of AS in response to salt stress in foxtail millet, the foxtail millet AS genes SiCYP19, with two AS variants (SiCYP19-a and SiCYP19-b), were identified and cloned. Yeast overexpression experiments indicated that SiCYP19 may be linked to the response to salt stress. Subsequently, we conducted overexpression experiments of both alternative splicing variants in foxtail millet roots to validate them experimentally. The results showed that, under salt stress, both SiCYP19-a and SiCYP19-b jointly regulated the salt tolerance of foxtail millet. Specifically, overexpression of SiCYP19-b significantly increased the proline content and reduced the accumulation of reactive oxygen species (ROS) in foxtail millet, compared to that in SiCYP19-a. This shows that SiCYP19-b plays an important role in increasing the content of proline and promoting the clearance of ROS, thus improving the salt tolerance of foxtail millet.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tolerancia a la Sal , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/efectos de los fármacos , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696020

RESUMEN

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Asunto(s)
Clorofila , Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Estrés Salino , Tolerancia a la Sal , Plantones , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/fisiología , Cucumis sativus/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Tolerancia a la Sal/genética , Estrés Salino/genética , Clorofila/metabolismo , Fotosíntesis/genética , Fotosíntesis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Antioxidantes/metabolismo , Malondialdehído/metabolismo , Plantas Modificadas Genéticamente , Silenciador del Gen
9.
Plant Cell Rep ; 43(6): 140, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740586

RESUMEN

KEY MESSAGE: The utilization of transcriptome analysis, functional validation, VIGS, and DAB techniques have provided evidence that GhiPLATZ17 and GhiPLATZ22 play a pivotal role in improving the salt tolerance of upland cotton. PLATZ (Plant AT-rich sequences and zinc-binding proteins) are known to be key regulators in plant growth, development, and response to salt stress. In this study, we comprehensively analyzed the PLATZ family in ten cotton species in response to salinity stress. Gossypium herbaceum boasts 25 distinct PLATZ genes, paralleled by 24 in G. raimondii, 25 in G. arboreum, 46 in G. hirsutum, 48 in G. barbadense, 43 in G. tomentosum, 67 in G. mustelinum, 60 in G. darwinii, 46 in G. ekmanianum, and a total of 53 PLATZ genes attributed to G. stephensii. The PLATZ gene family shed light on the hybridization and allopolyploidy events that occurred during the evolutionary history of allotetraploid cotton. Ka/Ks analysis suggested that the PLATZ gene family underwent intense purifying selection during cotton evolution. Analysis of synteny and gene collinearity revealed a complex pattern of segmental and dispersed duplication events to expand PLATZ genes in cotton. Cis-acting elements and gene expressions revealed that GhiPLATZ exhibited salt stress resistance. Transcriptome analysis, functional validation, virus-induced gene silencing (VIGS), and diaminobenzidine staining (DAB) demonstrated that GhiPLATZ17 and GhiPLATZ22 enhance salt tolerance in upland cotton. The study can potentially advance our understanding of identifying salt-resistant genes in cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Proteínas de Plantas , Tolerancia a la Sal , Factores de Transcripción , Gossypium/genética , Gossypium/fisiología , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente , Filogenia , Sintenía/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica
10.
Plant Cell Rep ; 43(5): 115, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613634

RESUMEN

KEY MESSAGE: The mechanism of conferring salt tolerance by AtTPS9 involves enhanced deposition of suberin lamellae in the Arabidopsis root endodermis, resulting in reduction of Na+ transported to the leaves. Members of the class I trehalose-6-phosphate synthase (TPS) enzymes are known to play an important role in plant growth and development in Arabidopsis. However, class II TPSs and their functions in salinity stress tolerance are not well studied. We characterized the function of a class II TPS gene, AtTPS9, to understand its role in salt stress response and root development in Arabidopsis. The attps9 mutant exhibited significant reduction of soluble sugar levels in the leaves and formation of suberin lamellae (SL) in the endodermis of roots compared to the wild type (WT). The reduction in SL deposition (hydrophobic barriers) leads to increased apoplastic xylem loading, resulting in enhanced Na+ content in the plants, which explains salt sensitivity of the mutant plants. Conversely, AtTPS9 overexpression lines exhibited increased SL deposition in the root endodermis along with increased salt tolerance, showing that regulation of SL deposition is one of the mechanisms of action of AtTPS9 in conferring salt tolerance to Arabidopsis plants. Our data showed that besides salt tolerance, AtTPS9 also regulates seed germination and root development. qRT-PCR analyses showed significant downregulation of selected SNF1-RELATED PROTEIN KINASE2 genes (SnRK2s) and ABA-responsive genes in the mutant, suggesting that AtTPS9 may regulate the ABA-signaling intermediates as part of the mechanism conferring salinity tolerance.


Asunto(s)
Arabidopsis , Tolerancia a la Sal , Tolerancia a la Sal/genética , Arabidopsis/genética , Estrés Salino/genética , Glucosiltransferasas
11.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605293

RESUMEN

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Asunto(s)
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolismo , Tolerancia a la Sal/genética , Transcriptoma , Lignina/metabolismo , Flavonoides/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Transporte Iónico , Carbono/metabolismo , Suelo , Factores de Transcripción/genética
12.
Physiol Plant ; 176(2): e14296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650503

RESUMEN

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Asunto(s)
Betaína , Colina-Deshidrogenasa , Tolerancia a la Sal , Betaína/metabolismo , Tolerancia a la Sal/genética , Colina-Deshidrogenasa/metabolismo , Colina-Deshidrogenasa/genética , Colina/metabolismo , Chlorophyceae/genética , Chlorophyceae/fisiología , Chlorophyceae/enzimología , Chlorophyceae/metabolismo , Microalgas/genética , Microalgas/enzimología , Microalgas/metabolismo , Simulación del Acoplamiento Molecular , Cloruro de Sodio/farmacología
13.
Plant Physiol Biochem ; 210: 108623, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626656

RESUMEN

Folates are essential to the maintenance of normal life activities in almost all organisms. Proton-coupled folate transporter (PCFT), belonging to the major facilitator superfamily, is one of the three major folate transporter types widely studied in mammals. However, information about plant PCFTs is limited. Here, a genome-wide identification of maize PCFTs was performed, and two PCFTs, ZmMFS_1-62 and ZmMFS_1-73, were functionally investigated. Both proteins contained the typical 12 transmembrane helixes with N- and C-termini located in the cytoplasm, and were localized in the plasma membrane. Molecular docking analysis indicated their binding activity with folates via hydrogen bonding. Interference with ZmMFS_1-62 and ZmMFS_1-73 in maize seedlings through virus-induced gene silencing disrupted folate homeostasis, mainly in the roots, and reduced tolerance to drought and salt stresses. Moreover, a molecular chaperone protein, ZmHSP20, was found to interact with ZmMFS_1-62 and ZmMFS_1-73, and interference with ZmHSP20 in maize seedlings also led to folate disruption and increased sensitivity to drought and salt stresses. Overall, this is the first report of functional identification of maize PCFTs, which play essential roles in salt and drought stress tolerance, thereby linking folate metabolism with abiotic stress responses in maize.


Asunto(s)
Sequías , Proteínas de Plantas , Transportador de Folato Acoplado a Protón , Zea mays , Zea mays/metabolismo , Zea mays/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transportador de Folato Acoplado a Protón/metabolismo , Transportador de Folato Acoplado a Protón/genética , Ácido Fólico/metabolismo , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas , Resistencia a la Sequía
14.
Plant Physiol Biochem ; 210: 108599, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583313

RESUMEN

Plant WRKY transcription factors (TFs) play important roles in abiotic stress responses. However, how WRKY facilitate physiological changes to confer salt tolerance still needs to be studied. Here, we identified a WRKY TF from birch (Betula platyphylla Suk), BpWRKY32, which is significantly (P < 0.05) induced by salt stress. BpWRKY32 binds to W-box motif and is located in the nucleus. Under salt stress conditions, fresh weights (FW) of OE lines (BpWRKY32 overexpression lines) are increased by 66.36% than that of WT, while FW of knockout of BpWRKY32 (bpwrky32) lines are reduced by 39.49% compared with WT. BpWRKY32 regulates the expression of BpRHC1, BpNRT1, and BpMYB61 to reduce stomatal, and width-length ratio of the stomatal aperture in OE lines are reduced by 46.23% and 64.72% compared with in WT and bpwrky32 lines. BpWRKY32 induces P5CS expression, but inhibits P5CDH expression, leading to the proline content in OE lines are increased by 33.41% and 97.58% compared with WT and bpwrky32 lines. Additionally, BpWRKY32 regulates genes encoding SOD and POD family members, which correspondingly increases the activities of SOD and POD. These results suggested that BpWRKY32 regulates target genes to reduce the water loss rate, enhance the osmotic potential, and reduce the ROS accumulation, leading to improved salt tolerance.


Asunto(s)
Betula , Proteínas de Plantas , Estomas de Plantas , Tolerancia a la Sal , Factores de Transcripción , Betula/genética , Betula/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Plantas Modificadas Genéticamente , Prolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Mol Biol Rep ; 51(1): 598, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683409

RESUMEN

Salinity stress is a critical challenge in crop production and requires innovative strategies to enhance the salt tolerance of plants. Insights from mangrove species, which are renowned for their adaptability to high-salinity environments, provides valuable genetic targets and resources for improving crops. A significant hurdle in salinity stress is the excessive uptake of sodium ions (Na+) by plant roots, causing disruptions in cellular balance, nutrient deficiencies, and hampered growth. Specific ion transporters and channels play crucial roles in maintaining a low Na+/K+ ratio in root cells which is pivotal for salt tolerance. The family of high-affinity potassium transporters, recently characterized in Avicennia officinalis, contributes to K+ homeostasis in transgenic Arabidopsis plants even under high-salt conditions. The salt overly sensitive pathway and genes related to vacuolar-type H+-ATPases hold promise for expelling cytosolic Na+ and sequestering Na+ in transgenic plants, respectively. Aquaporins contribute to mangroves' adaptation to saline environments by regulating water uptake, transpiration, and osmotic balance. Antioxidant enzymes mitigate oxidative damage, whereas genes regulating osmolytes, such as glycine betaine and proline, provide osmoprotection. Mangroves exhibit increased expression of stress-responsive transcription factors such as MYB, NAC, and CBFs under high salinity. Moreover, genes involved in various metabolic pathways, including jasmonate synthesis, triterpenoid production, and protein stability under salt stress, have been identified. This review highlights the potential of mangrove genes to enhance salt tolerance of crops. Further research is imperative to fully comprehend and apply these genes to crop breeding to improve salinity resilience.


Asunto(s)
Avicennia , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Tolerancia a la Sal/genética , Avicennia/genética , Avicennia/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Salinidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sodio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo
16.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38612440

RESUMEN

Salinity is one of the most serious threats to sustainable agriculture. The Salt Overly Sensitive (SOS) signaling pathway plays an important role in salinity tolerance in plants, and the SOS2 gene plays a critical role in this pathway. Mulberry not only has important economic value but also is an important ecological tree species; however, the roles of the SOS2 gene associated with salt stress have not been reported in mulberry. To gain insight into the response of mulberry to salt stress, SOS2 (designated MulSOS2) was cloned from mulberry (Morus atropurpurea Roxb), and sequence analysis of the amino acids of MulSOS2 showed that it shares some conserved domains with its homologs from other plant species. Our data showed that the MulSOS2 gene was expressed at different levels in different tissues of mulberry, and its expression was induced substantially not only by NaCl but also by ABA. In addition, MulSOS2 was exogenously expressed in Arabidopsis, and the results showed that under salt stress, transgenic MulSOS2 plants accumulated more proline and less malondialdehyde than the wild-type plants and exhibited increased tolerance to salt stress. Moreover, the MulSOS2 gene was transiently overexpressed in mulberry leaves and stably overexpressed in the hairy roots, and similar results were obtained for resistance to salt stress in transgenic mulberry plants. Taken together, the results of this study are helpful to further explore the function of the MulSOS2 gene, which provides a valuable gene for the genetic breeding of salt tolerance in mulberry.


Asunto(s)
Arabidopsis , Morus , Tolerancia a la Sal/genética , Morus/genética , Fitomejoramiento , Estrés Salino , Agricultura , Plantas Modificadas Genéticamente
17.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612463

RESUMEN

Vitis vinifera L. possesses high economic value, but its growth and yield are seriously affected by salt stress. Though melatonin (MT) has been widely reported to enhance tolerance towards abiotic stresses in plants, the regulatory role melatonin plays in resisting salt tolerance in grapevines has scarcely been studied. Here, we observed the phenotypes under the treatment of different melatonin concentrations, and then transcriptome and metabolome analyses were performed. A total of 457 metabolites were detected in CK- and MT-treated cell cultures at 1 WAT (week after treatment) and 4 WATs. Exogenous melatonin treatment significantly increased the endogenous melatonin content while down-regulating the flavonoid content. To be specific, the melatonin content was obviously up-regulated, while the contents of more than a dozen flavonoids were down-regulated. Auxin response genes and melatonin synthesis-related genes were regulated by the exogenous melatonin treatment. WGCNA (weighted gene coexpression network analysis) identified key salt-responsive genes; they were directly or indirectly involved in melatonin synthesis and auxin response. The synergistic effect of salt and melatonin treatment was investigated by transcriptome analysis, providing additional evidence for the stress-alleviating properties of melatonin through auxin-related pathways. The present study explored the impact of exogenous melatonin on grapevines' ability to adapt to salt stress and provided novel insights into enhancing their tolerance to salt stress.


Asunto(s)
Melatonina , Vitis , Tolerancia a la Sal/genética , Melatonina/farmacología , Vitis/genética , Metaboloma , Perfilación de la Expresión Génica , Flavonoides , Ácidos Indolacéticos
18.
BMC Plant Biol ; 24(1): 312, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649800

RESUMEN

BACKGROUND: DNA methylation is an important epigenetic mode of genomic DNA modification and plays a vital role in maintaining epigenetic content and regulating gene expression. Cytosine-5 DNA methyltransferase (C5-MTase) are the key enzymes in the process of DNA methylation. However, there is no systematic analysis of the C5-MTase in cotton so far, and the function of DNMT2 genes has not been studied. METHODS: In this study, the whole genome of cotton C5-MTase coding genes was identified and analyzed using a bioinformatics method based on information from the cotton genome, and the function of GhDMT6 was further validated by VIGS experiments and subcellular localization analysis. RESULTS: 33 C5-MTases were identified from three cotton genomes, and were divided into four subfamilies by systematic evolutionary analysis. After the protein domain alignment of C5-MTases in cotton, 6 highly conserved motifs were found in the C-terminus of 33 proteins involved in methylation modification, which indicated that C5-MTases had a basic catalytic methylation function. These proteins were divided into four classes based on the N-terminal difference, of which DNMT2 lacks the N-terminal regulatory domain. The expression of C5-MTases in different parts of cotton was different under different stress treatments, which indicated the functional diversity of cotton C5-MTase gene family. Among the C5-MTases, the GhDMT6 had a obvious up-regulated expression. After silencing GhDMT6 with VIGS, the phenotype of cotton seedlings under different stress treatments showed a significant difference. Compared with cotton seedlings that did not silence GhDMT6, cotton seedlings silencing GhDMT6 showed significant stress resistance. CONCLUSION: The results show that C5-MTases plays an important role in cotton stress response, which is beneficial to further explore the function of DNMT2 subfamily genes.


Asunto(s)
Sequías , Gossypium , Gossypium/genética , Gossypium/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Tolerancia a la Sal/genética , Familia de Multigenes , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Filogenia , Genoma de Planta , Genes de Plantas
19.
Nat Commun ; 15(1): 3520, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664402

RESUMEN

The root-associated microbiota plays an important role in the response to environmental stress. However, the underlying mechanisms controlling the interaction between salt-stressed plants and microbiota are poorly understood. Here, by focusing on a salt-tolerant plant wild soybean (Glycine soja), we demonstrate that highly conserved microbes dominated by Pseudomonas are enriched in the root and rhizosphere microbiota of salt-stressed plant. Two corresponding Pseudomonas isolates are confirmed to enhance the salt tolerance of wild soybean. Shotgun metagenomic and metatranscriptomic sequencing reveal that motility-associated genes, mainly chemotaxis and flagellar assembly, are significantly enriched and expressed in salt-treated samples. We further find that roots of salt stressed plants secreted purines, especially xanthine, which induce motility of the Pseudomonas isolates. Moreover, exogenous application for xanthine to non-stressed plants results in Pseudomonas enrichment, reproducing the microbiota shift in salt-stressed root. Finally, Pseudomonas mutant analysis shows that the motility related gene cheW is required for chemotaxis toward xanthine and for enhancing plant salt tolerance. Our study proposes that wild soybean recruits beneficial Pseudomonas species by exudating key metabolites (i.e., purine) against salt stress.


Asunto(s)
Glycine max , Raíces de Plantas , Pseudomonas , Rizosfera , Pseudomonas/genética , Pseudomonas/metabolismo , Glycine max/microbiología , Glycine max/metabolismo , Glycine max/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Microbiota/efectos de los fármacos , Purinas/metabolismo , Purinas/farmacología , Estrés Salino/genética , Quimiotaxis/genética , Tolerancia a la Sal/genética , Microbiología del Suelo , Xantina/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
20.
Physiol Plant ; 176(2): e14301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629128

RESUMEN

Salt stress is one of the major factors that limits rice production. Therefore, identification of salt-tolerant alleles from wild rice is important for rice breeding. In this study, we constructed a set of chromosome segment substitution lines (CSSLs) using wild rice as the donor parent and cultivated rice Nipponbare (Nip) as the recurrent parent. Salt tolerance germinability (STG) was evaluated, and its association with genotypes was determined using this CSSL population. We identified 17 QTLs related to STG. By integrating the transcriptome and genome data, four candidate genes were identified, including the previously reported AGO2 and WRKY53. Compared with Nip, wild rice AGO2 has a structure variation in its promoter region and the expression levels were upregulated under salt treatments; wild rice WRKY53 also has natural variation in its promoter region, and the expression levels were downregulated under salt treatments. Wild rice AGO2 and WRKY53 alleles have combined effects for improving salt tolerance at the germination stage. One CSSL line, CSSL118 that harbors these two alleles was selected. Compared with the background parent Nip, CSSL118 showed comprehensive salt tolerance and higher yield, with improved transcript levels of reactive oxygen species scavenging genes. Our results provided promising genes and germplasm resources for future rice salt tolerance breeding.


Asunto(s)
Genes de Plantas , Oryza , Fitomejoramiento , Tolerancia a la Sal , Oryza/anatomía & histología , Oryza/genética , Oryza/crecimiento & desarrollo , Tolerancia a la Sal/genética , Cromosomas de las Plantas/genética , Alelos , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo/genética , Genotipo , Transcriptoma , Genoma de Planta/genética , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas , Germinación , Brotes de la Planta , Raíces de Plantas , Técnicas de Genotipaje , Polimorfismo Genético , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...