Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.424
Filtrar
1.
Hum Vaccin Immunother ; 20(1): 2341454, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38695296

RESUMEN

Pertussis is a vaccine-preventable infectious disease; however, data on pertussis antibody levels in a nationwide population are still limited in China. We aimed to pool the seropositivity rates of IgG antibodies against pertussis toxin (PT-IgG) across the country. We systematically searched PubMed, Web of Science, Embase, and the China National Knowledge Infrastructure Database for studies published between January 1, 2010, and June 30, 2023. Studies reporting the seroprevalence of PT-IgG among a healthy Chinese population were included. Pooled estimates were obtained using random-effects meta-analyzes. The meta-analysis included 39 studies (47,778 participants) reporting anti-PT IgG seropositivity rates. The pooled rate for all ages was 7.06% (95% CI, 5.50%-9.07%). Subgroup analyzes showed rates ranging from 6.36% to 12.50% across different age groups. This meta-analysis indicated a low anti-PT IgG seropositivity rate in the Chinese population, particularly among school-aged children and young adults. This finding underscores the urgent need to refine immunization strategies.


Asunto(s)
Anticuerpos Antibacterianos , Inmunoglobulina G , Toxina del Pertussis , Tos Ferina , Humanos , Estudios Seroepidemiológicos , Toxina del Pertussis/inmunología , Inmunoglobulina G/sangre , Tos Ferina/epidemiología , Tos Ferina/inmunología , Tos Ferina/prevención & control , China/epidemiología , Anticuerpos Antibacterianos/sangre , Niño , Adulto , Adulto Joven , Adolescente , Preescolar , Persona de Mediana Edad , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Pueblos del Este de Asia
2.
Front Immunol ; 15: 1387534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650936

RESUMEN

For several years, we have been committed to exploring the potential of Bordetella pertussis-derived outer membrane vesicles (OMVBp) as a promising third-generation vaccine against the reemerging pertussis disease. The results of our preclinical trials not only confirm its protective capacity against B. pertussis infection but also set the stage for forthcoming human clinical trials. This study delves into the examination of OMVBp as an adjuvant. To accomplish this objective, we implemented a two-dose murine schedule to evaluate the specific immune response induced by formulations containing OMVBp combined with 3 heterologous immunogens: Tetanus toxoid (T), Diphtheria toxoid (D), and the SARS-CoV-2 Spike protein (S). The specific levels of IgG, IgG1, and IgG2a triggered by the different tested formulations were evaluated using ELISA in dose-response assays for OMVBp and the immunogens at varying levels. These assays demonstrated that OMVBp exhibits adjuvant properties even at the low concentration employed (1.5 µg of protein per dose). As this effect was notably enhanced at medium (3 µg) and high concentrations (6 µg), we chose the medium concentration to determine the minimum immunogen dose at which the OMV adjuvant properties are significantly evident. These assays demonstrated that OMVBp exhibits adjuvant properties even at the lowest concentration tested for each immunogen. In the presence of OMVBp, specific IgG levels detected for the lowest amount of antigen tested increased by 2.5 to 10 fold compared to those found in animals immunized with formulations containing adjuvant-free antigens (p<0.0001). When assessing the adjuvant properties of OMVBp compared to the widely recognized adjuvant alum, we detected similar levels of specific IgG against D, T and S for both adjuvants. Experiments with OMVs derived from E. coli (OMVE.coli) reaffirmed that the adjuvant properties of OMVs extend across different bacterial species. Nonetheless, it's crucial to highlight that OMVBp notably skewed the immune response towards a Th1 profile (p<0.05). These collective findings emphasize the dual role of OMVBp as both an adjuvant and modulator of the immune response, positioning it favorably for incorporation into combined vaccine formulations.


Asunto(s)
Adyuvantes Inmunológicos , Bordetella pertussis , Inmunoglobulina G , Células TH1 , Tos Ferina , Bordetella pertussis/inmunología , Animales , Adyuvantes Inmunológicos/administración & dosificación , Ratones , Células TH1/inmunología , Tos Ferina/inmunología , Tos Ferina/prevención & control , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Humanos , COVID-19/inmunología , COVID-19/prevención & control , Toxoide Tetánico/inmunología
3.
mSphere ; 9(4): e0052723, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38497618

RESUMEN

Pertussis (whooping cough) is a reemergent, highly contagious respiratory infection of public health concern. Infants prior to initiation of their primary vaccination series are the most vulnerable to severe infection, and even death. Vaccination during pregnancy is an efficacious means of reducing infection in infants. This approach relies on boosting maternal immunity and passive transfer of antibodies to the infant via placenta and breast milk. Similarly, maternal vaccination post-partum can enhance maternal-infant immunity. To support the analysis of pertussis immunity in the context of maternal-infant immunization, we developed a high throughput multiplex assay for simultaneous quantification of serum IgG antibodies against pertussis vaccine antigens: pertussis toxin (PT), filamentous hemagglutinin (FHA), pertactin (PRN), and fimbriae (FIM2/3), and against tetanus (TT) and diphtheria toxoids (DT), using the Meso Scale Discovery (MSD) platform. The assay was qualified, and specificity, sensitivity, accuracy, precision, linearity, and robustness were demonstrated. The assay was subsequently adapted for quantification of IgG and IgA in breast milk. Applied to a serological survey of pregnant women living in the United States and sub-Saharan Africa, this method revealed differences in magnitude and breadth of antibody profile, consistent with history of vaccination. A longitudinal analysis of Tdap responses in women vaccinated post-partum demonstrated a rapid increase in serum IgG that remained elevated for up to 24 months. Likewise, high levels of vaccine-specific IgA and IgG antibodies were present in breast milk, although they exhibited faster decay. This multiplex MSD assay is a reliable and practical tool for quantification of pertussis, tetanus, and diphtheria antibodies in serum and breast milk in serosurveys or vaccine studies. IMPORTANCE: Pertussis (whooping cough) has reemerged in recent years. Vaccination during pregnancy is an effective approach to prevent illness during the first months of life. We developed a multiplex assay for quantification of pertussis, tetanus, and diphtheria serum antibodies using the Meso Scale Discovery (MSD) platform; the method was qualified, and specificity, precision, accuracy, linearity, and limits of quantification were defined. It was also adapted for quantification of antibodies in breast milk. We successfully determined serostatus in women from different regions and with different vaccination histories, as well as responses to Tdap in blood and breast milk post-partum. This is the first description of a multiplex assay for the quantification of pertussis, tetanus, and diphtheria antibodies in breast milk.


Asunto(s)
Anticuerpos Antibacterianos , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular , Inmunoglobulina G , Leche Humana , Tos Ferina , Humanos , Femenino , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Leche Humana/inmunología , Tos Ferina/prevención & control , Tos Ferina/inmunología , Inmunoglobulina G/sangre , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/inmunología , Embarazo , Adulto , Difteria/prevención & control , Difteria/inmunología , Tétanos/prevención & control , Tétanos/inmunología , Adulto Joven , Vacunación , Inmunidad Materno-Adquirida/inmunología
4.
J Mol Biol ; 435(24): 168344, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37926426

RESUMEN

Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.


Asunto(s)
Anticuerpos Antibacterianos , Bordetella pertussis , Vacuna contra la Tos Ferina , Tos Ferina , Humanos , Lactante , Anticuerpos Antibacterianos/inmunología , Bordetella pertussis/inmunología , Inmunidad , Inmunización , Vacuna contra la Tos Ferina/inmunología , Tos Ferina/inmunología , Desarrollo de Vacunas
6.
Epidemiol Infect ; 150: e39, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35229710

RESUMEN

Diphtheria is a potentially devastating disease whose epidemiology remains poorly described in many settings, including Madagascar. Diphtheria vaccination is delivered in combination with pertussis and tetanus antigens and coverage of this vaccine is often used as a core measure of health system functioning. However, coverage is challenging to estimate due to the difficulty in translating numbers of doses delivered into numbers of children effectively immunised. Serology provides an alternative lens onto immunisation, but is complicated by challenges in discriminating between natural and vaccine-derived seropositivity. Here, we leverage known features of the serological profile of diphtheria to bound expectations for vaccine coverage for diphtheria, and further refine these using serology for pertussis. We measured diphtheria antibody titres in 185 children aged 6-11 months and 362 children aged 8-15 years and analysed them with pertussis antibody titres previously measured for each individual. Levels of diphtheria seronegativity varied among age groups (18.9% of children aged 6-11 months old and 11.3% of children aged 8-15 years old were seronegative) and also among the districts. We also find surprisingly elevated levels of individuals seropositive to diphtheria but not pertussis in the 6-11 month old age group suggesting that vaccination coverage or efficacy of the pertussis component of the DTP vaccine remains low or that natural infection of diphtheria may be playing a significant role in seropositivity in Madagascar.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Vacuna contra Difteria, Tétanos y Tos Ferina/uso terapéutico , Difteria/prevención & control , Programas de Inmunización , Inmunoglobulina G/inmunología , Tos Ferina/prevención & control , Adolescente , Bordetella pertussis/inmunología , Niño , Corynebacterium diphtheriae/inmunología , Difteria/epidemiología , Difteria/inmunología , Femenino , Humanos , Lactante , Madagascar/epidemiología , Masculino , Estudios Seroepidemiológicos , Cobertura de Vacunación , Tos Ferina/epidemiología , Tos Ferina/inmunología
7.
Front Immunol ; 13: 838504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211125

RESUMEN

Over two decades ago acellular pertussis vaccines (aP) replaced whole cell pertussis vaccines (wP) in several countries. Since then, a resurgence in pertussis has been observed, which is hypothesized to be linked, in part, to waning immunity. To better understand why waning immunity occurs, we developed a long-term outbred CD1 mouse model to conduct the longest murine pertussis vaccine studies to date, spanning out to 532 days post primary immunization. Vaccine-induced memory results from follicular responses and germinal center formation; therefore, cell populations and cytokines involved with memory were measured alongside protection from challenge. Both aP and wP immunization elicit protection from intranasal challenge by decreasing bacterial burden in both the upper and lower airways, and by generation of pertussis specific antibody responses in mice. Responses to wP vaccination were characterized by a significant increase in T follicular helper cells in the draining lymph nodes and CXCL13 levels in sera compared to aP mice. In addition, a population of B. pertussis+ memory B cells was found to be unique to wP vaccinated mice. This population peaked post-boost, and was measurable out to day 365 post-vaccination. Anti-B. pertussis and anti-pertussis toxoid antibody secreting cells increased one day after boost and remained high at day 532. The data suggest that follicular responses, and in particular CXCL13 levels in sera, could be monitored in pre-clinical and clinical studies for the development of the next-generation pertussis vaccines.


Asunto(s)
Bordetella pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología , Células T Auxiliares Foliculares/inmunología , Tos Ferina/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Quimiocina CXCL13/sangre , Inmunización Secundaria , Memoria Inmunológica , Ratones , Factores de Tiempo , Vacunación , Tos Ferina/prevención & control
8.
Front Immunol ; 12: 730434, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603306

RESUMEN

Outer membrane vesicles (OMV) derived from Bordetella pertussis-the etiologic agent of the resurgent disease called pertussis-are safe and effective in preventing bacterial colonization in the lungs of immunized mice. Vaccine formulations containing those OMV are capable of inducing a mixed Th1/Th2/Th17 profile, but even more interestingly, they may induce a tissue-resident memory immune response. This immune response is recommended for the new generation of pertussis-vaccines that must be developed to overcome the weaknesses of current commercial acellular vaccines (second-generation of pertussis vaccine). The third-generation of pertussis vaccine should also deal with infections caused by bacteria that currently circulate in the population and are phenotypically and genotypically different [in particular those deficient in the expression of pertactin antigen, PRN(-)] from those that circulated in the past. Here we evaluated the protective capacity of OMV derived from bacteria grown in biofilm, since it was observed that, by difference with older culture collection vaccine strains, circulating clinical B. pertussis isolates possess higher capacity for this lifestyle. Therefore, we performed studies with a clinical isolate with good biofilm-forming capacity. Biofilm lifestyle was confirmed by both scanning electron microscopy and proteomics. While scanning electron microscopy revealed typical biofilm structures in these cultures, BipA, fimbria, and other adhesins described as typical of the biofilm lifestyle were overexpressed in the biofilm culture in comparison with planktonic culture. OMV derived from biofilm (OMVbiof) or planktonic lifestyle (OMVplank) were used to formulate vaccines to compare their immunogenicity and protective capacities against infection with PRN(+) or PRN(-) B. pertussis clinical isolates. Using the mouse protection model, we detected that OMVbiof-vaccine was more immunogenic than OMVplank-vaccine in terms of both specific antibody titers and quality, since OMVbiof-vaccine induced antibodies with higher avidity. Moreover, when OMV were administered at suboptimal quantity for protection, OMVbiof-vaccine exhibited a significantly adequate and higher protective capacity against PRN(+) or PRN(-) than OMVplank-vaccine. Our findings indicate that the vaccine based on B. pertussis biofilm-derived OMV induces high protection also against pertactin-deficient strains, with a robust immune response.


Asunto(s)
Membrana Externa Bacteriana/metabolismo , Biopelículas , Bordetella pertussis/metabolismo , Vesículas Extracelulares/metabolismo , Vacuna contra la Tos Ferina/administración & dosificación , Tos Ferina/prevención & control , Animales , Membrana Externa Bacteriana/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biopelículas/crecimiento & desarrollo , Bordetella pertussis/genética , Bordetella pertussis/crecimiento & desarrollo , Bordetella pertussis/inmunología , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Femenino , Inmunización , Inmunogenicidad Vacunal , Ratones Endogámicos BALB C , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/metabolismo , Desarrollo de Vacunas , Factores de Virulencia de Bordetella/genética , Factores de Virulencia de Bordetella/metabolismo , Tos Ferina/inmunología , Tos Ferina/metabolismo , Tos Ferina/microbiología
9.
EBioMedicine ; 72: 103612, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34649076

RESUMEN

BACKGROUND: Tetanus, diphtheria, acellular pertussis, inactivated polio (Tdap-IPV) vaccines administered during pregnancy protect young infants from Bordetella pertussis (B. pertussis) infection. Whilst the impact of maternal Tdap-IPV vaccination on infants' humoral response to subsequent pertussis immunisation has been investigated, little is known about any impact on innate responses. METHODS: We investigated the immune response to B. pertussis in mothers and infants from Tdap-IPV-vaccinated and unvaccinated pregnancies, utilising a whole blood assay and flow cytometric phenotyping of neonatal natural killer (NK) cells, monocytes and dendritic cells. Blood was collected from mother and umbilical cord at birth, and from infants at seven weeks (one week pre-primary pertussis immunisation) and five months of age (one month post-primary pertussis immunisation). 21 mothers and 67 infants were studied. FINDINGS: Vaccinated women had elevated pro-inflammatory cytokine responses to B. pertussis. At birth, babies of vaccinated women had elevated IL-2 and IL-12 responses, elevated classical monocyte proportions, and reduced monocyte and NK cell cytokine responses. The elevated IL-2 response persisted to seven weeks-of-age, when lower IL-10 and IL-13 responses were also seen. One-month post-primary pertussis vaccination, infants from vaccinated pregnancies still had lower IL-10 responses to B. pertussis, as well as lower IL-4. INTERPRETATION: This study suggests that pertussis vaccination during pregnancy impacts infant cellular immune responses, potentially contributing to the modification of antibody responses already reported following primary immunisation against B. pertussis. FUNDING: National Institute for Health Research Imperial Biomedical Research Centre and IMmunising PRegnant women and INfants neTwork (funded by the GCRF Networks in Vaccines R&D).


Asunto(s)
Bordetella pertussis/inmunología , Inmunidad Innata/inmunología , Vacunas/inmunología , Tos Ferina/inmunología , Anticuerpos Antibacterianos/inmunología , Células Cultivadas , Células Dendríticas/inmunología , Femenino , Humanos , Inmunidad Humoral/inmunología , Lactante , Recién Nacido , Interleucinas/inmunología , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/inmunología , Monocitos/inmunología , Embarazo , Vacunación/métodos
10.
BMC Immunol ; 22(1): 68, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641798

RESUMEN

BACKGROUND: The necessity of the tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine in adolescence and adults has been emphasized since the resurgence of small-scale pertussis in Korea and worldwide due to the waning effect of the vaccine and variant pathogenic stains in the late 1990s. GreenCross Pharma (GC Pharma), a Korean company, developed the Tdap vaccine GC3111 in 2010. Recently, they enhanced the vaccine, GC3111, produced previously in 2010 to reinforce the antibody response against filamentous hemagglutinin (FHA). In this study, immunogenicity and efficacy of the enhanced Tdap vaccine compared and evaluated with two Tdap vaccines, GC3111 vaccine produced in 2010 previously and commercially available Tdap vaccine in a murine model. METHODS: Two tests groups and positive control group of Balb/c mice were primed with two doses of the diphtheria-tetanus-acellular pertussis (DTaP) vaccine followed by a single booster Tdap vaccine at 9 week using the commercially available Tdap vaccine or 2 Tdap vaccines from GC Pharma (GC3111, enhanced GC3111). Humoral response was assessed 1 week before and 2 and 4 weeks after Tdap booster vaccination. The enhanced GC3111 generated similar humoral response compare to the commercial vaccine for filamentous hemagglutinin (FHA). The interferon gamma (IFN-γ) (Th1), interleukin 5 (IL-5) (Th2) and interleukin 17 (IL-17) (Th17) cytokines were assessed 4 weeks after booster vaccination by stimulation with three simulators: heat inactivated Bordetella pertussis (hBp), vaccine antigens, and hBp mixed with antigens (hBp + antigen). A bacterial challenge test was performed 4 weeks after booster vaccination. RESULTS: Regarding cell-mediated immunity, cytokine secretion differed among the three simulators. However, no difference was found between two test groups and positive control group. All the vaccinated groups indicated a Th1 or Th1/Th2 response. On Day 5 post-bacterial challenge, B. pertussis colonies were absent in the lungs in two test groups and positive control group. CONCLUSIONS: Our results confirmed the immunogenicity of GC Pharma's Tdap vaccine; enhanced GC3111 was equivalent to the presently used commercial vaccine in terms of humoral response as well as cell-mediated cytokine expression.


Asunto(s)
Bordetella pertussis/fisiología , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Células TH1/inmunología , Tos Ferina/inmunología , Adhesinas Bacterianas/inmunología , Adolescente , Adulto , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunidad Humoral , Inmunización Secundaria , Inmunogenicidad Vacunal , Interferón gamma/metabolismo , Corea (Geográfico) , Ratones , Ratones Endogámicos BALB C , Factores de Virulencia de Bordetella/inmunología
11.
Infect Immun ; 89(12): e0034621, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34516235

RESUMEN

Pertussis is a respiratory disease caused by the Gram-negative pathogen, Bordetella pertussis. The transition from a whole-cell pertussis vaccine (wP and DTP) to an acellular pertussis vaccine (aP, DTaP, and Tdap) correlates with an increase in pertussis cases, despite widespread vaccine implementation and coverage, and it is now appreciated that the protection provided by aP rapidly wanes. To recapitulate the localized immunity observed from natural infection, mucosal vaccination with aP was explored using the coughing rat model of pertussis. Overall, our goal was to evaluate the route of vaccination in the coughing rat model of pertussis. Immunity induced by both oral gavage and intranasal vaccination of aP in B. pertussis challenged rats over a 9-day infection was compared to intramuscular wP (IM-wP)- and IM-aP-immunized rats that were used as positive controls. Our data demonstrate that mucosal immunization of aP resulted in the production of anti-B. pertussis IgG antibody titers similar to IM-wP- and IM-aP-vaccinated controls postchallenge. IN-aP also induced anti-B. pertussis IgA antibodies in the nasal cavity. Immunization with IM-wP, IM-aP, IN-aP, and OG-aP immunization protected against B. pertussis-induced cough, whereas OG-aP immunization did not protect against respiratory distress. Mucosal immunization by both intranasal and oral gavage administration protected against acute inflammation and decreased bacterial burden in the lung compared to mock-vaccinated challenge rats. The data presented in this study suggest that mucosal vaccination with aP can induce a mucosal immune response and provide protection against B. pertussis challenge. This study highlights the potential benefits and uses of the coughing rat model of pertussis; however, further questions regarding waning immunity still require additional investigation.


Asunto(s)
Bordetella pertussis/inmunología , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/inmunología , Inmunidad Mucosa , Tos Ferina/prevención & control , Animales , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/administración & dosificación , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno/inmunología , Inmunización , Ratas , Ratas Sprague-Dawley , Tos Ferina/inmunología
12.
Toxins (Basel) ; 13(9)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34564636

RESUMEN

Whooping cough is a severe, highly contagious disease of the human respiratory tract, caused by Bordetellapertussis. The pathogenicity requires several virulence factors, including pertussis toxin (PTX), a key component of current available vaccines. Current vaccines do not induce mucosal immunity. Tissue-resident memory T cells (Trm) are among the first lines of defense against invading pathogens and are involved in long-term protection. However, the factors involved in Trm establishment remain unknown. Comparing two B.pertussis strains expressing PTX (WT) or not (ΔPTX), we show that the toxin is required to generate both lung CD4+ and CD8+ Trm. Co-administering purified PTX with ΔPTX is sufficient to generate these Trm subsets. Importantly, adoptive transfer of lung CD4+ or CD8+ Trm conferred protection against B. pertussis in naïve mice. Taken together, our data demonstrate for the first time a critical role for PTX in the induction of mucosal long-term protection against B. pertussis.


Asunto(s)
Bordetella pertussis/inmunología , Inmunidad Mucosa , Pulmón/inmunología , Células T de Memoria/inmunología , Toxina del Pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología , Tos Ferina/prevención & control , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Tos Ferina/inmunología
13.
PLoS Pathog ; 17(9): e1009920, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34547035

RESUMEN

RTX leukotoxins are a diverse family of prokaryotic virulence factors that are secreted by the type 1 secretion system (T1SS) and target leukocytes to subvert host defenses. T1SS substrates all contain a C-terminal RTX domain that mediates recruitment to the T1SS and drives secretion via a Brownian ratchet mechanism. Neutralizing antibodies against the Bordetella pertussis adenylate cyclase toxin, an RTX leukotoxin essential for B. pertussis colonization, have been shown to target the RTX domain and prevent binding to the αMß2 integrin receptor. Knowledge of the mechanisms by which antibodies bind and neutralize RTX leukotoxins is required to inform structure-based design of bacterial vaccines, however, no structural data are available for antibody binding to any T1SS substrate. Here, we determine the crystal structure of an engineered RTX domain fragment containing the αMß2-binding site bound to two neutralizing antibodies. Notably, the receptor-blocking antibodies bind to the linker regions of RTX blocks I-III, suggesting they are key neutralization-sensitive sites within the RTX domain and are likely involved in binding the αMß2 receptor. As the engineered RTX fragment contained these key epitopes, we assessed its immunogenicity in mice and showed that it elicits similar neutralizing antibody titers to the full RTX domain. The results from these studies will support the development of bacterial vaccines targeting RTX leukotoxins, as well as next-generation B. pertussis vaccines.


Asunto(s)
Toxina de Adenilato Ciclasa/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/química , Vacuna contra la Tos Ferina , Factores de Virulencia de Bordetella/química , Toxina de Adenilato Ciclasa/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/química , Antígenos de Protozoos/inmunología , Bordetella pertussis , Ratones , Dominios Proteicos/inmunología , Factores de Virulencia de Bordetella/inmunología , Tos Ferina/inmunología , Tos Ferina/prevención & control
14.
Toxins (Basel) ; 13(8)2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34437379

RESUMEN

Pertussis toxin (PT) is considered the main virulence factor causing whooping cough or pertussis. The protein is widely studied and its composition was revealed and sequenced already during the 1980s. The human immune system creates a good response against PT when measured in quantity. However, the serum anti-PT antibodies wane rapidly, and only a small amount of these antibodies are found a few years after vaccination/infection. Therefore, multiple approaches to study the functionality (quality) of these antibodies, e.g., avidity, neutralizing capacity, and epitope specificity, have been investigated. In addition, the long-term B cell memory (Bmem) to PT is crucial for good protection throughout life. In this review, we summarize the findings from functional PT antibody and Bmem studies. These results are discussed in line with the quantity of serum anti-PT antibodies. PT neutralizing antibodies and anti-PT antibodies with proper avidity are crucial for good protection against the disease, and certain epitopes have been identified to have multiple functions in the protection. Although PT-specific Bmem responses are detectable at least five years after vaccination, long-term surveillance is lacking. Variation of the natural boosting of circulating Bordetella pertussis in communities is an important confounding factor in these memory studies.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Antígenos Bacterianos/inmunología , Bordetella pertussis/inmunología , Toxina del Pertussis/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Tos Ferina/prevención & control , Animales , Epítopos/inmunología , Humanos , Vacunación , Tos Ferina/inmunología
15.
Front Immunol ; 12: 701285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211481

RESUMEN

Background: Current vaccination strategies against pertussis are sub-optimal. Optimal protection against Bordetella pertussis, the causative agent of pertussis, likely requires mucosal immunity. Current pertussis vaccines consist of inactivated whole B. pertussis cells or purified antigens thereof, combined with diphtheria and tetanus toxoids. Although they are highly protective against severe pertussis disease, they fail to elicit mucosal immunity. Compared to natural infection, immune responses following immunization are short-lived and fail to prevent bacterial colonization of the upper respiratory tract. To overcome these shortcomings, efforts have been made for decades, and continue to be made, toward the development of mucosal vaccines against pertussis. Objectives: In this review we systematically analyzed published literature on protection conferred by mucosal immunization against pertussis. Immune responses mounted by these vaccines are summarized. Method: The PubMed Library database was searched for published studies on mucosal pertussis vaccines. Eligibility criteria included mucosal administration and the evaluation of at least one outcome related to efficacy, immunogenicity and safety. Results: While over 349 publications were identified by the search, only 63 studies met the eligibility criteria. All eligible studies are included here. Initial attempts of mucosal whole-cell vaccine administration in humans provided promising results, but were not followed up. More recently, diverse vaccination strategies have been tested, including non-replicating and replicating vaccine candidates given by three different mucosal routes: orally, nasally or rectally. Several adjuvants and particulate formulations were tested to enhance the efficacy of non-replicating vaccines administered mucosally. Most novel vaccine candidates were only tested in animal models, mainly mice. Only one novel mucosal vaccine candidate was tested in baboons and in human trials. Conclusion: Three vaccination strategies drew our attention, as they provided protective and durable immunity in the respiratory tract, including the upper respiratory tract: acellular vaccines adjuvanted with lipopeptide LP1569 and c-di-GMP, outer membrane vesicles and the live attenuated BPZE1 vaccine. Among all experimental vaccines, BPZE1 is the only one that has advanced into clinical development.


Asunto(s)
Inmunidad Mucosa/inmunología , Vacuna contra la Tos Ferina/inmunología , Tos Ferina/inmunología , Tos Ferina/prevención & control , Humanos
16.
Front Immunol ; 12: 666953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177905

RESUMEN

Antigen-specific serum immunoglobulin (Ag-specific Ig) levels are broadly used as correlates of protection. However, in several disease and vaccination models these fail to predict immunity. In these models, in-depth knowledge of cellular processes associated with protective versus poor responses may bring added value. We applied high-throughput multicolor flow cytometry to track over-time changes in circulating immune cells in 10 individuals following pertussis booster vaccination (Tdap, Boostrix®, GlaxoSmithKline). Next, we applied correlation network analysis to extensively investigate how changes in individual cell populations correlate with each other and with Ag-specific Ig levels. We further determined the most informative cell subsets and analysis time points for future studies. Expansion and maturation of total IgG1 plasma cells, which peaked at day 7 post-vaccination, was the most prominent cellular change. Although these cells preceded the increase in Ag-specific serum Ig levels, they did not correlate with the increase of Ig levels. In contrast, strong correlation was observed between Ag-specific IgGs and maximum expansion of total IgG1 and IgA1 memory B cells at days 7 to 28. Changes in circulating T cells were limited, implying the need for a more sensitive approach. Early changes in innate immune cells, i.e. expansion of neutrophils, and expansion and maturation of monocytes up to day 5, most likely reflected their responses to local damage and adjuvant. Here we show that simultaneous monitoring of multiple circulating immune subsets in blood by flow cytometry is feasible. B cells seem to be the best candidates for vaccine monitoring.


Asunto(s)
Linfocitos B/inmunología , Bordetella pertussis/fisiología , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Tos Ferina/inmunología , Adulto , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Femenino , Citometría de Flujo , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunización Secundaria , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Vacunación
17.
Infect Immun ; 89(10): e0012621, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097504

RESUMEN

Whooping cough (pertussis) is a severe pulmonary infectious disease caused by the bacteria Bordetella pertussis. Pertussis infects an estimated 24 million people annually, resulting in >150,000 deaths. The NIH placed pertussis on the list of emerging pathogens in 2015. Antibiotics are ineffective unless administered before the onset of the disease characteristic cough. Therefore, there is an urgent need for novel pertussis therapeutics. We have shown that sphingosine-1-phosphate receptor (S1PR) agonists reduce pertussis inflammation without increasing bacterial burden. Transcriptomic studies were performed to identify this mechanism and allow for the development of pertussis therapeutics that specifically target problematic inflammation without sacrificing bacterial control. These data suggested a role for triggering receptor expressed on myeloid cells-1 (TREM-1). TREM-1 cell surface receptor functions as an amplifier of inflammatory responses. Expression of TREM-1 is increased in response to bacterial infection of mucosal surfaces. In mice, B. pertussis infection results in Toll-like receptor 9 (TLR9)-dependent increased expression of TREM-1 and its associated cytokines. Interestingly, S1PR agonists dampen pulmonary inflammation and TREM-1 expression. Mice challenged intranasally with B. pertussis and treated with ligand-dependent (LP17) and ligand-independent (GF9) TREM-1 inhibitors showed no differences in bacterial burden and significantly reduced tumor necrosis factor-α (TNF-α) and C-C motif chemokine ligand 2 (CCL-2) expression compared to controls. Mice receiving TREM-1 inhibitors showed reduced pulmonary inflammation compared to controls, indicating that TREM-1 promotes inflammatory pathology, but not bacterial control, during pertussis infection. This implicates TREM-1 as a potential therapeutic target for the treatment of pertussis.


Asunto(s)
Bordetella pertussis/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Animales , Modelos Animales de Enfermedad , Inflamación/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Células Mieloides/microbiología , Factor de Necrosis Tumoral alfa/metabolismo , Tos Ferina/inmunología , Tos Ferina/metabolismo , Tos Ferina/microbiología
18.
APMIS ; 129(9): 556-565, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34120372

RESUMEN

The reported incidence of pertussis in European countries varies considerably. We aimed to study specific Bordetella pertussis seroprevalence in Europe by measuring serum IgG antibody levels to pertussis toxin (anti-PT IgG). Fourteen national laboratories participated in this study including Belgium, Denmark, Finland, Greece, Hungary, Italy, Lithuania, Malta, Norway, Poland, Portugal, Romania, Spain, and Sweden. Each country collected approximately 250 samples (N = 7903) from the age groups 20-29 years (N = 3976) and 30-39 years (N = 3927) during 2010-2013. Samples were anonymous residual sera from diagnostic laboratories and were analyzed at the national laboratories by a Swedish reference method, a commercial ELISA kit, or were sent to Sweden for analysis. The median anti-PT IgG concentrations ranged from 4 to 13.6 IU/mL. The proportion of samples with anti-PT IgG ≥100 IU/mL, indicating a recent infection ranged from 0.2% (Hungary) to 5.7% (Portugal). The highest proportion of sera with anti-PT IgG levels between 50 and <100 IU/mL, indicating an infection within the last few years, was found in Portugal (12.3%) and Italy (13.9%). This study shows that the circulation of B. pertussis is quite extensive in adults, aged 20-39 years, despite well-established vaccination programs in Europe.


Asunto(s)
Tos Ferina/epidemiología , Adulto , Anticuerpos Antibacterianos/sangre , Bordetella pertussis/inmunología , Europa (Continente)/epidemiología , Femenino , Humanos , Inmunoglobulina G/sangre , Incidencia , Masculino , Estudios Seroepidemiológicos , Cobertura de Vacunación/estadística & datos numéricos , Tos Ferina/inmunología , Tos Ferina/prevención & control , Adulto Joven
19.
Nat Commun ; 12(1): 2871, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001895

RESUMEN

Reported incidence of pertussis in the European Union (EU) and the European Economic Area (EEA) varies and may not reflect the real situation, while vaccine-induced protection against diphtheria and tetanus seems sufficient. We aimed to determine the seroprevalence of DTP antibodies in EU/EEA countries within the age groups of 40-49 and 50-59 years. Eighteen countries collected around 500 samples between 2015 and 2018 (N = 10,302) which were analysed for IgG-DTP specific antibodies. The proportion of sera with pertussis toxin antibody levels ≥100 IU/mL, indicative of recent exposure to pertussis was comparable for 13/18 countries, ranging between 2.7-5.8%. For diphtheria the proportion of sera lacking the protective level (<0.1 IU/mL) varied between 22.8-82.0%. For tetanus the protection was sufficient. Here, we report that the seroprevalence of pertussis in these age groups indicates circulation of B. pertussis across EU/EEA while the lack of vaccine-induced seroprotection against diphtheria is of concern and deserves further attention.


Asunto(s)
Difteria/epidemiología , Tétanos/epidemiología , Tos Ferina/epidemiología , Adulto , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Bordetella pertussis/efectos de los fármacos , Bordetella pertussis/inmunología , Bordetella pertussis/fisiología , Difteria/inmunología , Difteria/prevención & control , Vacuna contra Difteria, Tétanos y Tos Ferina/administración & dosificación , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Europa (Continente)/epidemiología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Persona de Mediana Edad , Estudios Seroepidemiológicos , Tétanos/inmunología , Tétanos/prevención & control , Tos Ferina/inmunología , Tos Ferina/prevención & control
20.
EBioMedicine ; 65: 103254, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33711798

RESUMEN

BACKGROUND: The Bacillus Calmette-Guérin (BCG), the only vaccine against tuberculosis (TB) currently in use, has shown beneficial effects against unrelated infections and to enhance immune responses to vaccines. However, there is little evidence regarding the influence of BCG vaccination on pertussis. METHODS: Here, we studied the ability of BCG to improve the immune responses to diphtheria, tetanus, and acellular (DTaP) or whole-cell pertussis (DTwP) vaccination in a mouse model. We included MTBVAC, an experimental live-attenuated vaccine derived from Mycobacterium tuberculosis, in our studies to explore if it presents similar heterologous immunity as BCG. Furthermore, we explored the potential effect of routine BCG vaccination on pertussis incidence worldwide. FINDINGS: We found that both BCG and MTBVAC when administered before DTaP, triggered Th1 immune responses against diphtheria, tetanus, and pertussis in mice. Immunization with DTaP alone failed to trigger a Th1 response, as measured by the production of IFN-γ. Humoral responses against DTaP antigens were also enhanced by previous immunization with BCG or MTBVAC. Furthermore, exploration of human epidemiological data showed that pertussis incidence was 10-fold lower in countries that use DTaP and BCG compared to countries that use only DTaP. INTERPRETATION: BCG vaccination may have a beneficial impact on the protection against pertussis conferred by DTaP. Further randomized controlled trials are needed to properly define the impact of BCG on pertussis incidence in a controlled setting. This could be a major finding that would support changes in immunization policies. FUNDING: This work was supported by the Ministry of "Economía y Competitividad"; European Commission H2020 program, "Gobierno de Aragón"; CIBERES; "Fundação Butantan"; Instituto de Salud Carlos III and "Fondo FEDER".


Asunto(s)
Vacuna BCG/administración & dosificación , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/administración & dosificación , Inmunidad Humoral , Tos Ferina/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Difteria/inmunología , Difteria/prevención & control , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Incidencia , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos BALB C , Tétanos/inmunología , Tétanos/prevención & control , Células TH1/citología , Células TH1/inmunología , Células TH1/metabolismo , Vacunación , Tos Ferina/epidemiología , Tos Ferina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...