Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Appl Microbiol Biotechnol ; 107(23): 7197-7211, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37741939

RESUMEN

Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.


Asunto(s)
Toxinas Botulínicas Tipo A , Toxina Tetánica , Animales , Toxina Tetánica/genética , Toxina Tetánica/metabolismo , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Unión Proteica , Anticuerpos Neutralizantes , Vacunas de Subunidad/genética
2.
Anaerobe ; 82: 102764, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37479022

RESUMEN

OBJECTIVES: The mature botulinum neurotoxin (BoNT) is a long peptide chain consisting of a light chain (L) and a heavy chain (H) linked by a disulfide bond, where the heavy chain is divided into a translocation domain and an acceptor binding domain (Hc). In this study, we further explored the biology activity and characteristics of recombinant L-HN fragment (EL-HN) composed of the L and HN domains of BoNT/E in vivo and in vitro. METHODS: Neurotoxicity of L-HN fragments from botulinum neurotoxins was assessed in mice. Cleavage of dichain EL-HN in vitro and in neuro-2a cells was assessed and compared with that of single chain EL-HN. Interaction of HN domain and the receptor synaptic vesicle glycoprotein 2C (SV2C) was explored in vitro and in neuro-2a cells only expressing SV2C. RESULTS: We found that the 50% mouse lethal dose of the nicked dichain EL-HN fragment (EL-HN-DC) was 0.5 µg and its neurotoxicity was the highest among the L-HN's of the four serotypes of BoNT (A/B/E/F). The cleavage efficiency of EL-HN-DC toward synaptosome associated protein 25 (SNAP25) in vitro was 3-fold higher than that of the single chain at the cellular level, and showed 200-fold higher animal toxicity. The EL-HN-DC fragment might enter neuro-2a cells via binding to SV2C to efficiently cleave SNAP25. CONCLUSIONS: The EL-HN fragment showed good biological activities in vivo and in vitro, and could be used as a drug screening model and to further explore the molecular mechanism of its transmembrane transport.


Asunto(s)
Toxinas Botulínicas Tipo A , Ratones , Animales , Toxinas Botulínicas Tipo A/toxicidad , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Serogrupo , Biología
3.
Microbiol Spectr ; 10(6): e0116422, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36377961

RESUMEN

Foodborne botulism is a rare but life-threatening illness resulting from the action of a potent toxin mainly produced by Clostridium botulinum. It grows in an oxygen-deficient environment and is extremely viable in meat and soy products, making it one of the most virulent bacteria. How to track foodborne botulism events quickly and accurately has become a key issue. Here, we investigated two foodborne botulism events that occurred in Xinjiang in 2019 based on whole-genome sequencing and also successfully traced the relationship between clinical and food C. botulinum isolates using whole-genome core gene markers. All 59 isolates were classified as group I strains. Of the strains isolated in this study, 44 were found to be botulinum toxin A(B), and 15 isolates contained only the toxin B locus. Both the toxin A and B gene segments were located on the chromosome and organized in an ha cluster. Antibiotic resistance and virulence factors were also investigated. A set of 329 universal core gene markers were established using C. botulinum strains from a public database. These core gene markers were applied to the published C. botulinum genomes, and three outbreaks were identified. This work demonstrates that universal core gene markers can be used to trace foodborne botulism events, and we hope that our work will facilitate this effort in future. IMPORTANCE In this study, we analyzed 59 foodborne botulism (FB)-related strains isolated in Xinjiang Province, China. Our findings not only reveal the group classification, neurotoxin locus organization, antibiotic resistance and virulence factors of these strains but also establish a set of core gene markers for tracing foodborne botulism events, which was verified using published genomes. These findings indicate that these gene markers might be used as a potential tracing tool for FB events caused by C. botulinum group I strains, which have relatively stable genomic components.


Asunto(s)
Toxinas Botulínicas Tipo A , Botulismo , Clostridium botulinum , Humanos , Botulismo/epidemiología , Botulismo/microbiología , Clostridium botulinum/genética , Toxinas Botulínicas Tipo A/genética , Brotes de Enfermedades , Filogenia
4.
Toxins (Basel) ; 14(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35051041

RESUMEN

Botulinum neurotoxin (BoNT) is used for the treatment of a number of ailments. The activity of the toxin that is isolated from bacterial cultures is frequently tested in the mouse lethality assay. Apart from the ethical concerns inherent to this assay, species-specific differences in the affinity for different BoNT serotypes give rise to activity results that differ from the activity in humans. Thus, BoNT/B is more active in mice than in humans. The current study shows that the stimulus-dependent release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-Gluc) was inhibited by clostridial and recombinant BoNT/A to the same extent, whereas both clostridial and recombinant BoNT/B inhibited the release to a lesser extent and only at much higher concentrations, reflecting the low activity of BoNT/B in humans. By contrast, the genetically modified BoNT/B-MY, which has increased affinity for human synaptotagmin, and the BoNT/B protein receptor inhibited luciferase release effectively and with an EC50 comparable to recombinant BoNT/A. This was due to an enhanced uptake into the reporter cells of BoNT/B-MY in comparison to the recombinant wild-type toxin. Thus, the SIMA-hPOMC1-26-Gluc cell assay is a versatile tool to determine the activity of different BoNT serotypes providing human-relevant dose-response data.


Asunto(s)
Toxinas Bacterianas/toxicidad , Toxinas Botulínicas Tipo A/toxicidad , Mutación , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacología , Bioensayo , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/farmacología , Línea Celular , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/toxicidad
5.
mSphere ; 6(4): e0032821, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34346710

RESUMEN

Botulinum neurotoxins (BoNTs) are the most toxic substances known to humankind and are the causative agents of the neuroparalytic disease botulism. Despite the overall importance of BoNTs in public health and safety, as a bioterrorism concern, and in pharmaceutical development, little is known about the molecular mechanisms mediating BoNT stability and degradation in various environments. Previous studies using Clostridium botulinum strain ATCC 3502 revealed that high levels of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold. In the present study, the mechanisms of toxin reduction in arginine-enriched cultures of C. botulinum strain Hall A-hyper, which we have previously genetically manipulated using ClosTron technology, were explored. Cultures were grown in toxin production medium (TPM) and TPM enriched with arginine. Cultures were analyzed for growth (optical density at 600 nm [OD600]), changes in pH, and BoNT formation and stability. Our data indicate that arginine enrichment of C. botulinum strain Hall A-hyper cultures results in a pH shift that induces pH-dependent posttranslational control mechanisms. We further show that independent of arginine, maintenance of an acidic culture pH during growth of C. botulinum strain Hall A-hyper plays a central role in toxin stability and that an extracellular metalloprotease produced by the culture results in BoNT degradation at pH levels between ⁓6.5 and 8.0. IMPORTANCE Botulinum neurotoxin (BoNT) is a public health and bioterrorism concern as well as an important and widely used pharmaceutical, yet the regulation of its synthesis by BoNT-producing clostridia is not well understood. This paper highlights the role of environmentally controlled posttranslational regulatory mechanisms influencing processing and stability of biologically active BoNTs produced by C. botulinum. The results of this work will help enhance public health and safety measures and our ability to evaluate safety risks of novel BoNTs and improve production and quality of BoNTs for pharmaceutical use.


Asunto(s)
Toxinas Botulínicas Tipo A/biosíntesis , Toxinas Botulínicas Tipo A/genética , Clostridium botulinum/genética , Clostridium botulinum/metabolismo , Regulación de la Expresión Génica , Procesamiento Proteico-Postraduccional/genética , Animales , Arginina/metabolismo , Arginina/farmacología , Clostridium botulinum/efectos de los fármacos , Medios de Cultivo/química , Femenino , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos ICR
6.
Toxins (Basel) ; 12(12)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352834

RESUMEN

Botulinum neurotoxin (BoNT) serotype A inhibits neurotransmitter release by cleaving SNAP-25 and represents an established pharmaceutical for treating medical conditions caused by hyperactivity of cholinergic nerves. Oversecretion from non-neuronal cells is often also the cause of diseases. Notably, excessive release of inflammatory messengers is thought to contribute to diseases such as chronic obstructive pulmonary disease, asthma, diabetes etc. The expansion of its application to these medical conditions is prevented because the major non-neuronal SNAP-25 isoform responsible for exocytosis, SNAP-23, is, in humans, virtually resistant to BoNT/A. Based on previous structural data and mutagenesis studies of SNAP-23 we optimized substrate binding pockets of the enzymatic domain for interaction with SNAP-23. Systematic mutagenesis and rational design yielded the mutations E148Y, K166F, S254A, and G305D, each of which individually increased the activity of LC/A against SNAP-23 between 3- to 23-fold. The assembled quadruple mutant showed approximately 2000-fold increased catalytic activity against human SNAP-23 in in vitro cleavage assays. A comparable increase in activity was recorded for the full-length BoNT/A quadruple mutant tested in cultivated primary neurons transduced with a fluorescently tagged-SNAP-23 encoding gene. Equipped with a suitable targeting domain this quadruple mutant promises to complete successfully tests in cells of the immune system.


Asunto(s)
Toxinas Botulínicas Tipo A/síntesis química , Toxinas Botulínicas Tipo A/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Qb-SNARE/síntesis química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/síntesis química , Proteínas Qc-SNARE/metabolismo , Secuencia de Aminoácidos , Animales , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estructura Secundaria de Proteína , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Ratas , Ratas Sprague-Dawley
7.
Microbiol Immunol ; 64(7): 502-511, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32301520

RESUMEN

Botulinum neurotoxin (BoNT) is the causative agent of botulism in humans and animals. Only BoNT serotype A subtype 1 (BoNT/A1) is used clinically because of its high potency and long duration of action. BoNT/A1 and BoNT/A subtype 2 (BoNT/A2) have a high degree of amino acid sequence similarity in the light chain (LC) (96%), whereas their N-and C-terminal heavy chain (HN and HC ) differ by 13%. The LC acts as a zinc-dependent endopeptidase, HN as the translocation domain, and HC as the receptor-binding domain. BoNT/A2 and BoNT/A1 had similar potency in the mouse bioassay, but BoNT/A2 entered faster and more efficiently into neuronal cells. To identify the domains responsible for these characteristics, HN of BoNT/A1 and BoNT/A2 was exchanged to construct chimeric BoNT/A121 and BoNT/A212. After expression in Escherichia coli, chimeric and wild-type BoNT/As were purified as single-chain proteins and activated by conversion to disulfide-linked dichains. The toxicities of recombinant wild-type and chimeric BoNT/As were similar, but dropped to 60% compared with the values of native BoNT/As. The relative orders of SNAP-25 cleavage activity in neuronal cells and toxicity differed. BoNT/A121 and recombinant BoNT/A2 have similar SNAP-25 cleavage activity. BoNT/A2 HN is possibly responsible for the higher potency of BoNT/A2 than BoNT/A1.


Asunto(s)
Toxinas Botulínicas Tipo A/química , Neuronas/metabolismo , Proteínas Recombinantes/química , Animales , Toxinas Botulínicas Tipo A/genética , Células Cultivadas , Clostridium botulinum/metabolismo , Escherichia coli/metabolismo , Ratones , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/genética
8.
PLoS Biol ; 18(3): e3000618, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32182233

RESUMEN

Botulinum neurotoxins (BoNTs) are a family of bacterial toxins with seven major serotypes (BoNT/A-G). The ability of these toxins to target and bind to motor nerve terminals is a key factor determining their potency and efficacy. Among these toxins, BoNT/B is one of the two types approved for medical and cosmetic uses. Besides binding to well-established receptors, an extended loop in the C-terminal receptor-binding domain (HC) of BoNT/B (HC/B) has been proposed to also contribute to toxin binding to neurons by interacting with lipid membranes (termed lipid-binding loop [LBL]). Analogous loops exist in the HCs of BoNT/C, D, G, and a chimeric toxin DC. However, it has been challenging to detect and characterize binding of LBLs to lipid membranes. Here, using the nanodisc system and biolayer interferometry assays, we find that HC/DC, C, and G, but not HC/B and HC/D, are capable of binding to receptor-free lipids directly, with HC/DC having the highest level of binding. Mutagenesis studies demonstrate the critical role of consecutive aromatic residues at the tip of the LBL for binding of HC/DC to lipid membranes. Taking advantage of this insight, we then create a "gain-of-function" mutant HC/B by replacing two nonaromatic residues at the tip of its LBL with tryptophan. Cocrystallization studies confirm that these two tryptophan residues do not alter the structure of HC/B or the interactions with its receptors. Such a mutated HC/B gains the ability to bind receptor-free lipid membranes and shows enhanced binding to cultured neurons. Finally, full-length BoNT/B containing two tryptophan mutations in its LBL, together with two additional mutations (E1191M/S1199Y) that increase binding to human receptors, is produced and evaluated in mice in vivo using Digit Abduction Score assays. This mutant toxin shows enhanced efficacy in paralyzing local muscles at the injection site and lower systemic diffusion, thus extending both safety range and duration of paralysis compared with the control BoNT/B. These findings establish a mechanistic understanding of LBL-lipid interactions and create a modified BoNT/B with improved therapeutic efficacy.


Asunto(s)
Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/farmacología , Membrana Celular/metabolismo , Animales , Sitios de Unión , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Células Cultivadas , Cristalografía por Rayos X , Femenino , Gangliósidos/metabolismo , Lípidos de la Membrana/metabolismo , Ratones , Músculo Esquelético/efectos de los fármacos , Mutación , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Parálisis/inducido químicamente , Ingeniería de Proteínas , Ratas Transgénicas , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Sinaptotagminas/metabolismo , Triptófano/química , Triptófano/metabolismo
9.
Sci Adv ; 5(1): eaau7196, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30746458

RESUMEN

Although botulinum neurotoxin serotype A (BoNT/A) products are common treatments for various disorders, there is only one commercial BoNT/B product, whose low potency, likely stemming from low affinity toward its human receptor synaptotagmin 2 (hSyt2), has limited its therapeutic usefulness. We express and characterize two full-length recombinant BoNT/B1 proteins containing designed mutations E1191M/S1199Y (rBoNT/B1MY) and E1191Q/S1199W (rBoNT/B1QW) that enhance binding to hSyt2. In preclinical models including human-induced pluripotent stem cell neurons and a humanized transgenic mouse, this increased hSyt2 affinity results in high potency, comparable to that of BoNT/A. Last, we solve the cocrystal structure of rBoNT/B1MY in complex with peptides of hSyt2 and its homolog hSyt1. We demonstrate that neuronal surface receptor binding limits the clinical efficacy of unmodified BoNT/B and that modified BoNT/B proteins have promising clinical potential.


Asunto(s)
Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/farmacología , Proteínas Recombinantes/metabolismo , Sinaptotagmina II/metabolismo , Animales , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Cristalografía por Rayos X , Femenino , Glicina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ingeniería de Proteínas , Conejos , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Electricidad Estática , Sinaptotagmina II/química , Sinaptotagmina II/genética
10.
Toxins (Basel) ; 12(1)2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906154

RESUMEN

The botulinum neurotoxin (BoNT) has been extensively researched over the years in regard to its structure, mode of action, and applications. Nevertheless, the biological roles of four proteins encoded from a number of BoNT gene clusters, i.e., OrfX1-3 and P47, are unknown. Here, we investigated the diversity of orfX-p47 gene clusters using in silico analytical tools. We show that the orfX-p47 cluster was not only present in the genomes of BoNT-producing bacteria but also in a substantially wider range of bacterial species across the bacterial phylogenetic tree. Remarkably, the orfX-p47 cluster was consistently located in proximity to genes coding for various toxins, suggesting that OrfX1-3 and P47 may have a conserved function related to toxinogenesis and/or pathogenesis, regardless of the toxin produced by the bacterium. Our work also led to the identification of a putative novel BoNT-like toxin gene cluster in a Bacillus isolate. This gene cluster shares striking similarities to the BoNT cluster, encoding a bont/ntnh-like gene and orfX-p47, but also differs from it markedly, displaying additional genes putatively encoding the components of a polymorphic ABC toxin complex. These findings provide novel insights into the biological roles of OrfX1, OrfX2, OrfX3, and P47 in toxinogenesis and pathogenesis of BoNT-producing and non-producing bacteria.


Asunto(s)
Bacterias/patogenicidad , Clostridium/genética , Clostridium/patogenicidad , Familia de Multigenes/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Toxinas Botulínicas/química , Toxinas Botulínicas Tipo A/biosíntesis , Toxinas Botulínicas Tipo A/genética , Simulación por Computador , Modelos Moleculares , Filogenia , Toxinas Biológicas/metabolismo
11.
Pathog Dis ; 76(4)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688327

RESUMEN

The extreme toxicity of botulinum neurotoxins (BoNTs) relies on their specific cleavage of SNARE proteins, which eventually leads to muscle paralysis. One newly identified mosaic toxin, BoNT/HA (aka H or FA), cleaves VAMP-2 at a unique position between residues L54 and E55, but the molecular basis underlying VAMP-2 recognition of BoNT/HA remains poorly characterized. Here, we report a ∼2.09 Šresolution crystal structure of the light chain protease domain of BoNT/HA (LC/HA). Structural comparison between LC/HA and LC of BoNT/F1 (LC/F1) reveals distinctive hydrophobic and electrostatic features near the active sites, which may explain their different VAMP-2 cleavage sites. When compared to BoNT/F5 that cleaves VAMP-2 at the same site as BoNT/HA, LC/HA displays higher affinity for VAMP-2, which could be caused by their different surface charge properties surrounding a VAMP-2 exosite-binding cleft. Furthermore, systematic mutagenesis studies on VAMP-2 and structural modeling demonstrate that residues R47 to K59 spanning the cleavage site in VAMP-2 may adopt a novel extended conformation when interacting with LC/HA and LC/F5. Taken together, our structure provides new insights into substrate recognition of BoNT/HA and paves the way for rational design of small molecule or peptide inhibitors against LC/HA.


Asunto(s)
Toxinas Botulínicas Tipo A/química , Clostridium botulinum/química , Proteína 2 de Membrana Asociada a Vesículas/química , Secuencia de Aminoácidos , Sitios de Unión , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Clonación Molecular , Clostridium botulinum/enzimología , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutagénesis , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Especificidad por Sustrato , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
12.
Toxins (Basel) ; 10(2)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29462889

RESUMEN

The standard of treatment for botulism, equine antitoxin, is a foreign protein with associated safety issues and a short serum half-life which excludes its use as a prophylactic antitoxin and makes it a less-than-optimal therapeutic. Due to these limitations, a recombinant monoclonal antibody (mAb) product is preferable. It has been shown that combining three mAbs that bind non-overlapping epitopes leads to highly potent botulinum neurotoxin (BoNT) neutralization. Recently, a triple human antibody combination for BoNT/A has demonstrated potent toxin neutralization in mouse models with no serious adverse events when tested in a Phase I clinical trial. However, a triple antibody therapeutic poses unique development and manufacturing challenges. Thus, potentially to streamline development of BoNT antitoxins, we sought to achieve the potency of multiple mAb combinations in a single IgG-based molecule that has a long serum half-life. The design, production, and testing of a single tri-epitopic IgG1-based mAb (TeAb) containing the binding sites of each of the three parental BoNT/A mAbs yielded an antibody of nearly equal potency to the combination. The approach taken here could be applied to the design and creation of other multivalent antibodies that could be used for a variety of applications, including toxin elimination.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Toxinas Botulínicas Tipo A/inmunología , Epítopos/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/farmacología , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/farmacología , Células CHO , Cricetulus , Femenino , Ratones , Neuronas/metabolismo , Pruebas de Neutralización , Ratas
13.
Hum Vaccin Immunother ; 14(2): 329-336, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29140753

RESUMEN

Botulinum neurotoxins (BoNTs) are the most potent toxins to mammals. A toxoid vaccine was previously used for prevention of botulinum intoxication; however, this vaccine is no longer available. Currently, no approved botulinum vaccines are available from the Food and Drug Administration (FDA). Recently, a recombinant host cell receptor-binding subunit created for use as a potential vaccine completed phase 2 clinical trials. The current study designed a vaccine candidate against BoNT type A (BoNT/A) using a structural design. Our vaccine candidate was the BoNT/A heavy chain C-terminal region (HCR) that contained the point mutation BA15 (R1269A) within the ganglioside-binding site. A Biacore affinity test showed that the affinity of BA15 for ganglioside GT1b was 100 times lower than that of the HCR. A SNAP25 cleavage assay revealed that immunized sera blocked SNAP25 cleavage of the BoNT/A toxin via BA15. In an in vivo experiment, mice and guinea pigs immunized with BA15 produced neutralizing antibodies that protected against 3,000 LD50 of BoNT/A. In conclusion, the results of both in vitro and in vivo assays showed that our BA15 vaccine candidate was similar to the recombinant host cell receptor-binding subunit vaccine. The inability of BA15to bind ganglioside shows that BA15 is a potential safe vaccine candidate.


Asunto(s)
Vacunas Bacterianas/inmunología , Toxinas Botulínicas Tipo A/inmunología , Proteínas Recombinantes/inmunología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Toxinas Botulínicas Tipo A/genética , Botulismo/prevención & control , Línea Celular , Gangliósidos/química , Gangliósidos/metabolismo , Cobayas , Inmunoglobulina G/sangre , Ratones , Modelos Moleculares , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Mutación Puntual , Conformación Proteica , Subunidades de Proteína
14.
J Struct Biol ; 202(2): 113-117, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29288126

RESUMEN

Clostridium botulinum neurotoxins (BoNTs) cause the life-threatening condition, botulism. However, while they have the potential to cause serious harm, they are increasingly being utilised for therapeutic applications. BoNTs comprise of seven distinct serotypes termed BoNT/A through BoNT/G, with the most widely characterised being sub-serotype BoNT/A1. Each BoNT consists of three structurally distinct domains, a binding domain (HC), a translocation domain (HN), and a proteolytic domain (LC). The HC domain is responsible for the highly specific targeting of the neurotoxin to neuronal cell membranes. Here, we present two high-resolution structures of the binding domain of subtype BoNT/A3 (HC/A3) and BoNT/A4 (HC/A4) at 1.6 Šand 1.34 Šresolution, respectively. The structures of both proteins share a high degree of similarity to other known BoNT HC domains whilst containing some subtle differences, and are of benefit to research into therapeutic neurotoxins with novel characteristics.


Asunto(s)
Toxinas Botulínicas Tipo A/química , Botulismo/microbiología , Clostridium botulinum/química , Secuencia de Aminoácidos/genética , Toxinas Botulínicas Tipo A/genética , Botulismo/genética , Clostridium botulinum/genética , Clostridium botulinum/patogenicidad , Humanos , Neuronas/efectos de los fármacos , Unión Proteica , Dominios Proteicos/genética
15.
Sci Rep ; 7(1): 15862, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29158500

RESUMEN

Botulinum neurotoxins (BoNTs) are highly potent toxins that cleave neuronal SNARE proteins required for neurotransmission, causing flaccid paralysis and death by asphyxiation. Currently, there are no clinical treatments to delay or reverse BoNT-induced blockade of neuromuscular transmission. While aminopyridines have demonstrated varying efficacy in transiently reducing paralysis following BoNT poisoning, the precise mechanisms by which aminopyridines symptomatically treat botulism are not understood. Here we found that activity-dependent potentiation of presynaptic voltage-gated calcium channels (VGCCs) underlies 3,4-diaminopyridine (3,4-DAP)-mediated rescue of neurotransmission in central nervous system synapses and mouse diaphragm neuromuscular junctions fully intoxicated by BoNT serotype A. Combinatorial treatments with 3,4-DAP and VGCC agonists proved synergistic in restoring suprathreshold endplate potentials in mouse diaphragms fully intoxicated by BoNT/A. In contrast, synapses fully intoxicated by BoNT serotypes D or E were refractory to synaptic rescue by any treatment. We interpret these data to propose that increasing the duration or extent of VGCC activation prolongs the opportunity for low-efficiency fusion by fusogenic complexes incorporating BoNT/A-cleaved SNAP-25. The identification of VGCC agonists that rescue neurotransmission in BoNT/A-intoxicated synapses provides compelling evidence for potential therapeutic utility in some cases of human botulism.


Asunto(s)
Toxinas Botulínicas Tipo A/toxicidad , Botulismo/genética , Canales de Calcio/genética , Parálisis/genética , Proteína 25 Asociada a Sinaptosomas/genética , Amifampridina/metabolismo , Animales , Toxinas Botulínicas Tipo A/genética , Botulismo/patología , Calcio/metabolismo , Potenciales Postsinápticos Excitadores/genética , Humanos , Ratones , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Neuronas/metabolismo , Neuronas/patología , Parálisis/fisiopatología , Serogrupo , Sinapsis/genética , Sinapsis/patología , Transmisión Sináptica/genética
16.
Protein J ; 36(6): 489-501, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29030733

RESUMEN

Botulinum neurotoxins (BoNTs) are the most toxic proteins known to cause flaccid muscle paralysis as a result of inhibition of neurotransmitter release from peripheral cholinergic synapses. BoNT type A (BoNT/A) is a 150 kDa protein consisting of two major subunits: light chain (LC) and heavy chain (HC). The LC is required for the catalytic activity of neurotoxin, whereas the C and N terminal domains of the HC are required for cell binding, and translocation of LC across the endosome membranes, respectively. To better understand the structural and functional aspects of BoNT/A intoxication we report here the development of high yield Escherichia coli expression system (2-20-fold higher yield than the value reported in the literature) for the production of recombinant light chain-translocation domain (rLC-TD/A) module of BoNT/A which is catalytically active and translocation competent. The open reading frame of rLC-TD/A was PCR amplified from deactivated recombinant BoNT/A gene (a non-select agent reagent), and was cloned using pET45b (+) vector to express in E. coli cells. The purification procedure included a sequential order of affinity chromatography, trypsinization, and anion exchange column chromatography. We were able to purify > 95% pure, catalytically active and structurally well-folded protein. Comparison of enzyme kinetics of purified LC-TD/A to full-length toxin and recombinant light chain A suggest that the affinity for the substrate is in between endopeptidase domain and botulinum toxin. The potential application of the purified protein has been discussed in toxicity and translocation assays.


Asunto(s)
Toxinas Botulínicas Tipo A/aislamiento & purificación , Toxinas Botulínicas Tipo A/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Escherichia coli/genética , Cinética , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
17.
PLoS One ; 12(10): e0185628, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28982136

RESUMEN

Botulinum neurotoxins (BoNTs) are used extensively as therapeutic agents. Serotypes A and B are available as marketed products. Higher doses of BoNT/B are required to reach an efficacy similar to that of products containing BoNT/A. Advances in our understanding of BoNT/B mechanism of action have afforded the opportunity to make rational modifications to the toxin aimed at increasing its activity. Recently, a mutation in the light chain of BoNT/B (S201P) was described that increases the catalytic activity of the isolated BoNT/B light chain in biochemical assays. In this study, we have produced two full-length recombinant BoNT/B toxins in E.coli-one wild type (rBoNT/B1) and one incorporating the S201P mutation (rBoNT/B1(S201P)). We have compared the activity of these two molecules along with a native BoNT/B1 in biochemical cell-free assays and in several biological systems. In the cell-free assay, which measured light-chain activity alone, rBoNT/B1(S201P) cleaved VAMP-2 and VAMP-1 substrate with an activity 3-4-fold higher than rBoNT/B1. However, despite the enhanced catalytic activity of rBoNT/B1(S201P), there was no significant difference in potency between the two molecules in any of the in vitro cell-based assays, using either rodent spinal cord neurons or cortical neurons. Similarly in ex vivo tissue preparations rBoNT/B1(S201P) was not significantly more potent than rBoNT/B1 at inhibiting either diaphragm or detrusor (bladder) muscle activity in C57BL/6N and CD1 mice. Finally, no differences between rBoNT/B1 and rBoNT/B1(S201P) were observed in an in vivo digit abduction score (DAS) assay in C57BL/6N mice, either in efficacy or safety parameters. The lack of translation from the enhanced BoNT/B1(S201P) catalytic activity to potency in complex biological systems suggests that the catalytic step is not the rate-limiting factor for BoNT/B to reach maximum efficacy. In order to augment the efficacy of BoNT/B in humans, strategies other than enhancing light chain activity may need to be considered.


Asunto(s)
Toxinas Botulínicas Tipo A/farmacología , Proteína 1 de Membrana Asociada a Vesículas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Animales , Toxinas Botulínicas Tipo A/genética , Catálisis , Células Cultivadas , Clonación Molecular , Escherichia coli/genética , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ratas
18.
J Med Microbiol ; 66(10): 1393-1399, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28893366

RESUMEN

PURPOSE: Fidaxomicin, a macrocyclic antibiotic, has been approved for the treatment of Clostridium difficile infection (CDI). Previous work by our group has demonstrated that some antibiotics at sub-inhibitory concentrations stimulate early toxin production and sporulation by C. difficile. Prior studies revealed that fidaxomicin, when added to late stationary-phase organisms, reduced exotoxin production and spore formation by C. difficile. However, the ability of fidaxomicin to trigger early virulence factor production and spore formation has never been investigated. METHODOLOGY: Sub-inhibitory concentrations of the RNA synthesis inhibitor fidaxomicin (1/4×, 1/8×, 1/16× MIC) were added immediately to lag-phase cultures of historical (strain 9689) and epidemic BI/NAP1/027 (strain 5325) strains of C. difficile, and their effects on sporulation and toxin A (TcdA) and toxin B (TcdB) production were compared.Results/Key findings. Even at sub-inhibitory concentrations, all doses of fidaxomicin reduced both TcdA and TcdB gene expression and protein production in the historical and epidemic C. difficile strains. Fidaxomicin also dose-dependently reduced viable spore production by the 9689 and 5325 strains. Reductions in spore formation were also observed in both strains treated with tigecycline and vancomycin. However, all concentrations of metronidazole stimulated a ~2 log increase in spore production by the 5325 isolate. CONCLUSION: The ability of fidaxomicin to suppress early exotoxin production and endospore formation by historical and epidemic strains of C. difficile may explain its clinical success in treating severe and recurrent cases of CDI disease.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Toxinas Botulínicas Tipo A/metabolismo , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/metabolismo , Toxinas Botulínicas Tipo A/genética , Fidaxomicina , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Esporas Bacterianas/efectos de los fármacos
19.
Immunol Lett ; 190: 118-124, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802641

RESUMEN

As dendritic cells (DCs) play a critical role in priming antigen-specific immune responses, the efficacy of DNA vaccines may be enhanced by targeting the encoded antigen proteins to DCs. In this study, we constructed a DC-targeted DNA vaccine encoding the Hc domain of botulinum neurotoxin serotype A (AHc) fused with scDEC, a single-chain Fv antibody (scFv) specific for the DC-restricted antigen-uptake receptor DEC205. Intramuscular injections of mice with the DC-targeted DNA vaccine (pVAX1-scDEC-AHc) stimulated more DCs to mature than the non-targeted DNA vaccine (pVAX1-SAHc) in the splenocytes. The DC-targeted DNA vaccine could induce more DCs maturation at the site of inoculation. The DC-targeted DNA vaccine induced stronger AHc-specific humoral immune responses, lymphocyte proliferative responses and protective potency against BoNT/A in mice than did pVAX1-SAHc. Moreover, the DC-targeting DNA vaccine provided effective protection after only two inoculations. In summary, these results showed that the DC-targeted fusion DNA vaccine could generate strong immunity, indicating that maturation of DCs induced by pVAX1-scDEC-AHc may be helpful for priming and boosting immune responses. Thus, we propose that the strategy of targeting antigen to DCs in vivo via DEC205 can enhance effectively the potency of DNA vaccines against BoNTs or other pathogens in an animal model.


Asunto(s)
Vacunas Bacterianas/inmunología , Toxinas Botulínicas Tipo A/genética , Botulismo/inmunología , Clostridium botulinum/inmunología , Células Dendríticas/inmunología , Fragmentos de Péptidos/genética , Proteínas Recombinantes de Fusión/genética , Anticuerpos de Cadena Única/genética , Vacunas de ADN/inmunología , Animales , Antígenos CD/metabolismo , Femenino , Humanos , Inmunidad Humoral , Lectinas Tipo C/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Antígenos de Histocompatibilidad Menor/metabolismo , Receptores de Superficie Celular/metabolismo , Vacunación , Vacunas de ADN/genética
20.
Euro Surveill ; 22(32)2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28816652

RESUMEN

A case of food-borne botulism occurred in Slovakia in 2015. Clostridium botulinum type A was isolated from three nearly empty commercial hummus tubes. The product, which was sold in Slovakia and the Czech Republic, was withdrawn from the market and a warning was issued immediately through the European Commission's Rapid Alert System for Food and Feed (RASFF). Further investigation revealed the presence of botulinum neurotoxin (BoNT) subtype BoNT/A3, a very rare subtype implicated in only one previous outbreak (Loch Maree in Scotland, 1922). It is the most divergent subtype of BoNT/A with 15.4% difference at the amino acid level compared with the prototype BoNT/A1. This makes it more prone to evading immunological and PCR-based detection. It is recommended that testing laboratories are advised that this subtype has been associated with food-borne botulism for the second time since the first outbreak almost 100 years ago, and to validate their immunological or PCR-based methods against this divergent subtype.


Asunto(s)
Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/diagnóstico , Botulismo/epidemiología , Clostridium botulinum tipo A/aislamiento & purificación , Brotes de Enfermedades , Botulismo/microbiología , Clostridium botulinum tipo A/genética , República Checa/epidemiología , Humanos , Reacción en Cadena de la Polimerasa , Eslovaquia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...