Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.228
Filtrar
1.
Sci Total Environ ; 932: 173023, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719060

RESUMEN

This study addresses the increasing concern regarding cyanotoxin contamination of water bodies, highlighting the diversity of these toxins and their potential health implications. Cyanobacteria, which are prevalent in aquatic environments, produce toxic metabolites, raising concerns regarding human exposure and associated health risks, including a potential increase in cancer risk. Although existing research has primarily focused on well-known cyanotoxins, recent technological advancements have revealed numerous unknown cyanotoxins, necessitating a comprehensive assessment of multiple toxin categories. To enhance the cyanotoxin databases, we optimized the CyanoMetDB cyanobacterial secondary metabolites database by incorporating secondary fragmentation patterns using the Mass Frontier fragmentation data prediction software. Water samples from diverse locations in Shanghai were analyzed using high-resolution mass spectrometry. Subsequently, the toxicity of cyanobacterial metabolites in the water samples was examined through acute toxicity assays using the crustacean Thamnocephalus platyurus. After 24 h of exposure, the semi-lethal concentrations (LC50) of the water samples ranged from 0.31 mg L-1 to 1.78 mg L-1 (MC-LR equivalent concentration). Our findings revealed a critical correlation between the overall concentration of cyanobacterial metabolites and toxicity. The robust framework and insights of this study underscore the need for an inclusive approach to water quality management, emphasizing continuous efforts to refine detection methods and comprehend the broader ecological impact of cyanobacterial blooms on aquatic ecosystems.


Asunto(s)
Cianobacterias , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Cianobacterias/metabolismo , China , Contaminantes Químicos del Agua/análisis , Microcistinas/análisis , Microcistinas/metabolismo , Toxinas Bacterianas/análisis , Animales , Metabolismo Secundario , Toxinas Marinas/análisis , Toxinas de Cianobacterias , Ciudades
2.
Sci Total Environ ; 931: 172689, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38692315

RESUMEN

Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a significant threat to communities globally, impacting ecosystems and public health. This study provides an in-depth review of the current state of cyanotoxins and the distribution of CyanoHABs species in Brazil, while also detailing the methods used for their detection. Four hundred and twenty-one incidents were analyzed from 1993 to 2021, compiling cyanotoxin records and toxic CyanoHABs occurrences. The investigation begins with the first detection of microcystins in 1994 and highlights pivotal moments, like the 1996 "Caruaru Syndrome" outbreak. This event encouraged research and updated cyanotoxin-monitoring guidelines. The Brazilian drought period of 2015-2016 exacerbated cyanobacterial growth and saxitoxin levels, coinciding with Zika-related microcephaly. This study delves into methods used for cyanotoxin analysis, including ELISA, bioassays, HPLC, and LC-MS. Additionally, we investigated the toxicity of 37 cyanobacterial strains isolated from various Brazilian environments. Extracts were tested against Artemia salina and analyzed by LC-MS. Results revealed toxicity in extracts from 49 % of cyanobacterial strains. LC-MS results were analyzed using GNPS MS/MS molecular networking for comparing experimental spectra with those of cyanotoxin standards against in-house databases and the existing literature. Our research underscores the variability in cyanotoxin production among species and over time, extending beyond microcystins. LC-MS results, interpreted through the GNPS platform, revealed six cyanotoxin groups in Brazilian strains. Yet, compounds present in 75 % of the toxic extracts remained unidentified. Further research is crucial for fully comprehending the impact of potentially harmful organisms on water quality and public health management strategies. The study highlights the urgent need for continuously monitoring cyanobacteria and the cyanotoxin inclusion of management in public health policies.


Asunto(s)
Cianobacterias , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Microcistinas , Brasil/epidemiología , Monitoreo del Ambiente/métodos , Microcistinas/análisis , Toxinas Bacterianas/análisis , Toxinas Marinas/análisis
3.
Anal Chim Acta ; 1306: 342599, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692792

RESUMEN

BACKGROUND: Microcystin-leucine-arginine (MC-LR) produced by various cyanobacteria during harmful algal bloom poses serious threats to drinking water safety and human health. Conventional chromatography-based detection methods require expensive instruments and complicated sample pretreatment, limiting their application for on-site detection. Colorimetric aptasensors are simple and rapid, and are amenable to fast detection. However, they provide only one output signal, resulting in poor sensitivity and accuracy. Dual-channel ratiometric colorimetric method based on the peroxidase-like activity of nanozyme can achieve self-calibration by recording two reverse signals, providing significantly enhanced sensitivity and accuracy. RESULTS: CeO2 nanocages (CeO2 NCs) with tetra-enzyme mimetic activities (oxidase-, peroxidase-, catalase- and superoxide dismutase-like activities) were facilely synthesized using zeolitic imidazolate framework-67 (ZIF-67) as sacrificial template. The peroxidase-like activity of CeO2 NCs can be regulated by DNA, and it showed opposite response to two chromogenic substrates (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB)), which was mainly attributed to the changed affinity. On the basis of MC-LR aptamer-tunable peroxidase-like activity of CeO2 NCs in TMB and ABTS channel, a dual-channel ratiometric colorimetric aptasensor was constructed for detection of MC-LR. Compared with conventional single-signal colorimetric assays, the proposed method showed lower limit of detection (0.66 pg mL-1) and significantly enhanced sensitivity. Moreover, the practicability of the ratiometric colorimetric assay was demonstrated by detecting MC-LR in real water samples, and satisfactory recoveries (94.9-101.9 %) and low relative standard deviations (1.6-6.3 %) were obtained. SIGNIFICANCE: This work presents a nanozyme-based ratiometric colorimetric aptasensor for MC-LR detection by recording the reverse responses of two chromogenic reactions. Benefiting from the self-calibration function, the method can achieve higher sensitivity and accuracy. The short detection time and practical application in real water samples show great potential for environmental monitoring.


Asunto(s)
Cerio , Colorimetría , Toxinas Marinas , Microcistinas , Microcistinas/análisis , Colorimetría/métodos , Toxinas Marinas/análisis , Cerio/química , Aptámeros de Nucleótidos/química , Límite de Detección , Nanoestructuras/química , Técnicas Biosensibles/métodos
4.
Biosens Bioelectron ; 255: 116269, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579624

RESUMEN

Saxitoxin (STX), which is produced by certain dinoflagellate species, is a type of paralytic shellfish poisoning toxin that poses a serious threat to human health and the environment. Therefore, developing a technology for the convenient and cost-effective detection of STX is imperative. In this study, we developed an affinity peptide-imprinted polymer-based indirect competitive ELISA (ic-ELISA) without using enzyme-toxin conjugates. AuNP/Co3O4@Mg/Al cLDH was synthesized by calcining AuNP/ZIF-67@Mg/Al LDH, which was obtained by combining AuNPs, ZIF-67, and flower-like Mg/Al LDH. This synthesized nanozyme exhibited high catalytic activity (Km = 0.24 mM for TMB and 132.5 mM for H2O2). The affinity peptide-imprinted polymer (MIP) was imprinted with an STX-specific template peptide (STX MIP) on a multi-well microplate and then reacted with an STX-specific signal peptide (STX SP). The interaction between the STX SP and MIP was detected using a streptavidin-coated nanozyme (SA-AuNP/Co3O4@Mg/Al cLDH). The developed MIP-based ic-ELISA exhibited excellent selectivity and sensitivity, with a limit of detection of 3.17 ng/mL (equivalent: 0.317 µg/g). Furthermore, the system was validated using a commercial ELISA kit and mussel tissue samples, and it demonstrated a high STX recovery with a low coefficient of variation. These results imply that the developed ic-ELISA can be used to detect STX in real samples.


Asunto(s)
Técnicas Biosensibles , Cobalto , Nanopartículas del Metal , Óxidos , Humanos , Toxinas Marinas/análisis , Polímeros Impresos Molecularmente , Oro , Peróxido de Hidrógeno , Mariscos/análisis , Saxitoxina , Ensayo de Inmunoadsorción Enzimática/métodos , Péptidos , Polímeros
5.
J Environ Manage ; 357: 120799, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581895

RESUMEN

Policies and management decisions in the marine environment are driven in part by public sentiment which can grow more intense during hazard events like Harmful Algae Blooms (HABs). The public conversations on social media sites like Twitter (before X) reveal the polarized nature of HABs through nuanced language and sentiment. This article uses mixed methods of machine learned topic modeling and inductive qualitative coding to describe the ways the long-term 2017-2019 Karenia brevis "red tide" bloom were politicized across Florida's South West coast. It finds that there are topical differences in keywords related to place (e.g. beach, Florida, coast), agent (individual or organization), and epistemic values (reliance on scientific and/or media reports). These topical differences demonstrate different levels of politicization and partisanship in qualitative analysis. Conceptually, this research demonstrates the ways different dimensions of a long-duration marine hazard can be polarized. Regarding management, this research provides insights to political and organizational stakeholders and the gaps in the discourse shaping marine hazards which can be used to strategically guide future social media engagement to manage politicization. What if all the careful work that resource and environmental managers do can be undone by simple, seemingly uncontroversial words? In an era of increased environmental and marine distress-coupled with short format communication-the ways environmental managers choose their words is crucial, even between ostensibly inconsequential nouns like "red tide" or "algae bloom." Policies and management decisions in the marine environment are driven in part by public sentiment which can grow more intense during hazard events like Harmful Algae Blooms (HABs). The public conversations on social media sites like Twitter (before X) reveal the polarized nature of HABs through nuanced language and sentiment. This article relies on mining social media posts, and uses mixed methods of machine-learned topic modeling and human-driven inductive qualitative coding to describe the ways the long-term 2017-2019 Karenia brevis "red tide" blooms were politicized across Florida's South West coast. It finds that there are topical differences in keywords related to place (e.g. beach, Florida, coast), agent (individual or organization), and epistemic values (reliance on scientific and/or media reports). These topical differences demonstrate different levels of politicization and partisanship in qualitative analysis. Conceptually, this research demonstrates the ways different dimensions of a long-duration marine hazard can be polarized. Regarding management, this research provides insights to political and organizational stakeholders and the gaps in the discourse shaping marine hazards which can be used to strategically guide future social media engagement to manage politicization.


Asunto(s)
Dinoflagelados , Medios de Comunicación Sociales , Humanos , Floraciones de Algas Nocivas , Toxinas Marinas/análisis , Florida
6.
Biosensors (Basel) ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667196

RESUMEN

Marine biotoxins (MBs), harmful metabolites of marine organisms, pose a significant threat to marine ecosystems and human health due to their diverse composition and widespread occurrence. Consequently, rapid and efficient detection technology is crucial for maintaining marine ecosystem and human health. In recent years, rapid detection technology has garnered considerable attention for its pivotal role in identifying MBs, with advancements in sensitivity, specificity, and accuracy. These technologies offer attributes such as speed, high throughput, and automation, thereby meeting detection requirements across various scenarios. This review provides an overview of the classification and risks associated with MBs. It briefly outlines the current research status of marine biotoxin biosensors and introduces the fundamental principles, advantages, and limitations of optical, electrochemical, and piezoelectric biosensors. Additionally, the review explores the current applications in the detection of MBs and presents forward-looking perspectives on their development, which aims to be a comprehensive resource for the design and implementation of tailored biosensors for effective MB detection.


Asunto(s)
Organismos Acuáticos , Técnicas Biosensibles , Toxinas Marinas , Humanos , Organismos Acuáticos/química , Técnicas Biosensibles/métodos , Toxinas Marinas/análisis
7.
Sci Total Environ ; 928: 172374, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615760

RESUMEN

The Reloncaví estuary in southern Chile is famous for its aquaculture. However, recurring harmful algal blooms have adversely affected mussel production. Therefore, regular monitoring of algal toxins is urgently needed to better understand the contamination status of the estuary. In this study, we quantified 15 types of lipophilic shellfish toxins in Metri Bay in the Reloncaví estuary on a biweekly basis for 4 years. We identified algal species using microscopy and metabarcoding analysis. We also measured water temperature, salinity, chlorophyll-a, and dissolved oxygen to determine the potential relationships of these parameters with algal toxin production. Our results revealed the presence of a trace amount of pectenotoxin and the causal phytoplankton Dinophysis, as well as yessotoxin and the causal phytoplankton Protoceratium. Statistical analysis indicated that fluctuations in water temperature affected the detection of these toxins. Additionally, metabarcoding analysis detected the highly toxic phytoplankton Alexandrium spp. in some samples. Although our results suggest that the level of lipophilic shellfish toxins in Metri Bay during the study period was insignificantly low using our current LC-MS method, the confirmed presence of highly toxic algae in Metri Bay raises concerns, given that favorable environmental conditions could cause blooms.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Floraciones de Algas Nocivas , Toxinas Marinas , Fitoplancton , Chile , Toxinas Marinas/análisis , Animales , Dinoflagelados
8.
Toxicon ; 243: 107710, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38579982

RESUMEN

For food safety, the concentrations and profiles of paralytic shellfish toxins (PSTs) and tetrodotoxin were examined in economically important scallops and bloody clams collected from the coast of the Miyagi Prefecture, Japan. PSTs were the major toxins in both species. The tetrodotoxin concentration in scallops increased in summer, although the highest value (18.7 µg/kg) was lower than the European Food Safety Authority guideline threshold (44 µg/kg). This confirmed the safety for tetrodotoxin in this area.


Asunto(s)
Bivalvos , Pectinidae , Tetrodotoxina , Animales , Tetrodotoxina/análisis , Pectinidae/química , Japón , Bivalvos/química , Toxinas Marinas/análisis , Saxitoxina/análisis , Saxitoxina/análogos & derivados , Intoxicación por Mariscos , Estaciones del Año , Contaminación de Alimentos/análisis
9.
J Chromatogr A ; 1720: 464795, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38490144

RESUMEN

An accurate and efficient method was developed for the determination of azaspiracid shellfish toxins (azaspiracids-1, -2, and -3), neurotoxic shellfish toxins (brevetoxins-2 and -3), diarrhetic shellfish toxins (okadaic acid and dinophysistoxins-1 and -2), and the amnesic shellfish toxin (domoic acid) in mussels (Mytilus galloprovincialis). Lipophilic marine biotoxins (azaspiracids, brevetoxins, and okadaic acid group) were extracted with 0.5 % acetic acid in methanol under heating at 60°C to improve the extraction efficiency of okadaic acid group toxins and then cleaned up with a C18 solid-phase extraction cartridge. Domoic acid was extracted with 50 % aqueous methanol and then cleaned up with a graphitized carbon solid-phase extraction cartridge. Lipophilic marine biotoxins and domoic acid were quantified by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The developed method had insignificant matrix effects for the nine analytes and good recoveries in the range of 79.0 % to 97.6 % at three spiking levels for all analytes except brevetoxin-2 (43.8-49.8 %). The developed method was further validated by analyzing mussel tissue certified reference materials, and good agreement was observed between certified and determined values.


Asunto(s)
Bivalvos , Ácido Kaínico/análogos & derivados , Oxocinas , Toxinas Poliéteres , Compuestos de Espiro , Espectrometría de Masas en Tándem , Animales , Ácido Ocadaico/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía de Fase Inversa , Metanol , Cromatografía Liquida/métodos , Mariscos/análisis , Toxinas Marinas/análisis , Bivalvos/química , Extracción en Fase Sólida
10.
Harmful Algae ; 133: 102608, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38485442

RESUMEN

The study of marine toxins in shellfish is of the utmost importance to ensure people's food safety. Marine toxins in shellfish and microalgae in the water column off the south-central coast of Chile (36°â€’43° S) were studied in a network of 64 stations over a 14-month period. The relative abundance of harmful species Alexandrium catenella, Alexandrium ostenfeldii, Protoceratium reticulatum, Dinophysis acuminata, Dinophysis acuta, Pseudo-nitzschia seriata group and P. delicatissima group was analyzed. The detection and quantification of lipophilic toxins and domoic acid (DA) in shellfish was determined by UHPLC-MS/MS, and for Paralytic Shellfish Toxins (PSTs) by HPLC-FD with post-column oxidation, while for a culture of A. ostenfeldii a Hylic-UHPLC-MS/MS was used. Results showed that DA, gonyautoxin (GTX)-2, GTX-3 and pectenotoxin (PTX)-2 were detected below the permitted limits, while Gymnodimine (GYM)-A and 13-desmethylespirolide C (SPX-1) were below the limit of quantitation. According to the distribution and abundance record of microalgae, DA would be associated to P. seriata and P. delicatissima-groups, PTX-2 to D. acuminata, and GTX-2, GTX-3, GYM-A, and SPX-1 to A. ostenfeldii. However, the toxin analysis of an A. ostenfeldii culture from the Biobío region only showed the presence of the paralytic toxins C2, GTX-2, GTX-3, GTX-5 and saxitoxin, therefore, the source of production of GYM and SPX is still undetermined.


Asunto(s)
Dinoflagelados , Compuestos Heterocíclicos con 3 Anillos , Hidrocarburos Cíclicos , Iminas , Microalgas , Humanos , Espectrometría de Masas en Tándem , Chile , Toxinas Marinas/análisis , Mariscos/análisis , Alimentos Marinos/análisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-38460449

RESUMEN

Lipophilic marine biotoxin azaspiracids (AZAs) are produced by dinoflagellates Azadinium and Amphidoma. Recently, several strains of Azadinium poporum were isolated from Japanese coastal waters, and detailed toxin profiles of two strains (mdd421 and HM536) among them were clarified by several detection techniques on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOFMS). In our present study, AZA analogues in seven strains of A. poporum from Japanese coastal waters (including two previously reported strains) were determined by these detection techniques. The dominant AZA in the seven strains was AZA2 accompanied by small amounts of several known AZAs and twelve new AZA analogues. Eight of the twelve new AZA analogues discovered in our present study were detected as bi-charged ions on the positive mode LC/MS/MS. This is the first report describing AZA analogues detected as bi-charged ions with hexose and sulfate groups in their structures.


Asunto(s)
Dinoflagelados , Toxinas Poliéteres , Compuestos de Espiro , Espectrometría de Masas en Tándem , Cromatografía Liquida , Japón , Dinoflagelados/química , Toxinas Marinas/análisis , Compuestos de Espiro/análisis
12.
Mar Pollut Bull ; 199: 116027, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38217914

RESUMEN

Harmful algal blooms (HABs) and their associated phycotoxins are increasing globally, posing great threats to local coastal ecosystems and human health. Nutrients have been carried by the freshwater Yangtze River and have entered the estuary, which was reported to be a biodiversity-rich but HAB-frequent region. Here, in situ solid phase adsorption toxin tracking (SPATT) was used to monitor lipophilic shellfish toxins (LSTs) in seawaters, and extended local similarity analysis (eLSA) was conducted to trace the temporal and special regions of those LSTs in a one-year trail in a mussel culture ranch in the Yangtze River Estuary. Nine analogs of LSTs, including okadaic acid (OA), dinophysistoxin-1 (DTX1), yessotoxin (YTX), homoyessotoxin (homoYTX), 45-OH-homoYTX, pectenotoxin-2 (PTX2), 7-epi-PTX2 seco acid (7-epi-PTX2sa), gymnodimine (GYM) and azaspiracids-3 (AZA3), were detected in seawater (SPATT) or rope farmed mussels. The concentrations of OA + DTX1 and homoYTX in mussels were positively correlated with those in SPATT samplers (Pearson test, p < 0.05), indicating that SPATT (with resin HP20) would be a good monitoring tool and potential indicator for OA + DTX1 and homoYTX in mussel Mytilus coruscus. The eLSA results indicated that late summer and early autumn were the most phycotoxin-contaminated seasons in the Yangtze River Estuary. OA + DTX1, homoYTX, PTX2 and GYM were most likely driven by the local growing HAB species in spring and summer, while Yangtze River diluted water may impact the accumulation of HAB species, causing potential phycotoxin contamination in the Yangtze River Estuary in autumn and winter. Together, the results showed that the mussel harvesting season, late summer and early autumn, would be the season with the greatest phycotoxin risk and would be the most contaminated by local growing toxic algae. Routine monitoring sites should be set up close to the local seawaters.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Hidrocarburos Cíclicos , Iminas , Toxinas Marinas , Mytilus , Ácido Ocadaico/análogos & derivados , Animales , Humanos , Toxinas Marinas/análisis , Estuarios , Adsorción , Ríos , Ecosistema , Mariscos/análisis
13.
Food Chem ; 438: 137995, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38029684

RESUMEN

Marine toxins can lead to varying degrees of human poisoning, often resulting in fatal symptoms and causing significant economic losses in seafood-producing regions. To gain a deeper comprehension of the role of marine toxins in seafood and their impact on the environment, it is imperative to develop rapid, cost-effective, environmentally friendly, and efficient methods for sample pretreatment and determination to mitigate adverse impacts of marine toxins. This review presents a comprehensive overview of advancements made in sample pretreatment and determination techniques for marine toxins since 2017. The advantages and disadvantages of various technologies were critically examined. Additionally, the current challenges and future development strategies for the analysis of marine toxins are provided.


Asunto(s)
Toxinas Marinas , Alimentos Marinos , Humanos , Toxinas Marinas/toxicidad , Toxinas Marinas/análisis , Alimentos Marinos/análisis
14.
Mar Environ Res ; 194: 106321, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159409

RESUMEN

The dinoflagellates Protoceratium reticulatum and Lingulodinium polyedra are potential yessotoxin (YTX) producers, which have been associated with blooms responsible for economic, social, and ecological impacts around the world. They occur in Iberian waters, but in this region, little is known of their ecophysiology and toxin profiles. This study investigated the growth and toxin production of two strains of each species, from the Portuguese coast, at 15 °C, 19 °C, and 23 °C. Growth curves showed higher growth rates at 19 °C, for both species. YTX and three analogs (homo YTX; 45-OH YTX; 45-OH homo YTX) were investigated by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), and the presence of other analogs was investigated by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS). No evidence of toxin production was found in L. polyedra. By contrast, YTX and 45,55-diOH-YTX were detected in both strains of P. reticulatum. These results confirm P. reticulatum as a source of yessotoxins along the Portuguese coast and add to the observed high intraspecific variability on YTX production of both species, at a global scale.


Asunto(s)
Dinoflagelados , Toxinas Marinas , Venenos de Moluscos , Oxocinas , Cromatografía Liquida , Toxinas Marinas/análisis , Temperatura , Portugal , Espectrometría de Masas en Tándem
15.
Harmful Algae ; 129: 102528, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951613

RESUMEN

A three-year field study at a mussel (Mytilus edulis) aquaculture site in Ship Harbour, Nova Scotia, Canada was carried out between 2004 and 2006 to detect toxic phytoplankton species and dissolved lipophilic phycotoxins and domoic acid. A combination of plankton monitoring and solid phase adsorption toxin tracking (SPATT) techniques were used. Net tow and pipe phytoplankton samples were taken weekly to determine the abundance of potentially toxic species and SPATT samplers were deployed weekly for phycotoxin analysis. Mussels were also collected for toxin analysis in 2005. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyse the samples for spirolides (SPXs), pectenotoxins (PTXs), okadaic acid group toxins (OA, DTXs) and domoic acid (DA). Phycotoxins were detected with SPATT samplers beginning from the time of deployment until after the producing organisms were no longer observed in pipe samples. Seasonal changes in toxin composition occurred over the sampling period and were related to changes in cell concentrations of Alexandrium Halim, Dinophysis Ehrenberg and Pseudo-nitzschia (Hasle) Hasle. Spirolides peaked in late spring and early summer, followed by DA in mid-July. Okadaic acid, DTX1 and PTXs occurred throughout the field season but peaked in late summer. Concentrations of some phycotoxins detected in SPATT samplers deployed within the area where mussels were suspended on lines were lower than in those deployed outside the mussel farm. The SPATT samplers provided a useful tool to detect the presence of phycotoxins and to establish trends in their appearance in the Ship Harbour estuary.


Asunto(s)
Bivalvos , Dinoflagelados , Animales , Fitoplancton/metabolismo , Ácido Ocadaico/análisis , Estaciones del Año , Toxinas Marinas/análisis , Cromatografía Liquida/métodos , Nueva Escocia , Espectrometría de Masas en Tándem/métodos , Bivalvos/química , Dinoflagelados/química , Acuicultura
16.
Anal Methods ; 15(47): 6590-6602, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38018453

RESUMEN

Algal toxins are important metabolites of toxic harmful algal blooms (HABs), and their qualitative and qualitative detection can serve as early warning indicators for toxic HABs, complementing traditional HAB monitoring and improving the accuracy of early warning. Therefore, this work took the detection of domoic acid (DA) as an example and prepared zeolitic imidazolate framework-8 (ZIF-8) with high enrichment performance and high water stability and its core-shell composite material SiO2@ZIF-8 as an adsorbent filler. Density functional theory (DFT) calculations and interference experiments verified that Zn2+ on SiO2@ZIF-8 played a crucial role in enriching DA on SiO2@ZIF-8. By using it as a solid-phase extraction (SPE) filler, it showed excellent performance compared with other SPE columns (C18/HLB/SAX/ZIF-8). Therefore, the SiO2@ZIF-8 column was coupled to high-performance liquid chromatography-mass spectrometry (SPE-HPLC-MS/MS) to establish a highly sensitive detection method for algal toxins in seawater, which had a wide linear range (12.0-5000.0 ng L-1), good reproducibility (RSD) and low limit of detection (4.0 ng L-1), and realized the monitoring of trace DA in the Pingtan sea area of Fujian Province from 2021 to 2022. By comparing other HAB early warning indicators such as salinity and pH and combining them with the information released by the Fujian Provincial Ocean and Fisheries Bureau, the content of DA in seawater measured by the established SPE-HPLC-MS/MS method can provide reference information for HAB monitoring and early warning.


Asunto(s)
Dióxido de Silicio , Zeolitas , Espectrometría de Masas en Tándem/métodos , Adsorción , Zeolitas/química , Reproducibilidad de los Resultados , Teoría Funcional de la Densidad , Agua de Mar/química , Toxinas Marinas/análisis , Extracción en Fase Sólida/métodos
17.
Toxins (Basel) ; 15(11)2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37999494

RESUMEN

For the purpose of assessing human health exposure, it is necessary to characterize the toxins present in a given area and their potential impact on commercial species. The goal of this research study was: (1) to screen the prevalence and concentrations of lipophilic toxins in nine groups of marine invertebrates in the northwest Iberian Peninsula; (2) to evaluate the validity of wild mussels (Mytilus galloprovincialis) as sentinel organisms for the toxicity in non-bivalve invertebrates from the same area. The screening of multiple lipophilic toxins in 1150 samples has allowed reporting for the first time the presence of 13-desmethyl spirolide C, pinnatoxin G, okadaic acid, and dinophysistoxins 2 in a variety of non-traditional vectors. In general, these two emerging toxins showed the highest prevalence (12.5-75%) in most of the groups studied. Maximum levels for 13-desmethyl spirolide C and pinnatoxin G were found in the bivalves Magallana gigas (21 µg kg-1) and Tellina donacina (63 µg kg-1), respectively. However, mean concentrations for the bivalve group were shallow (2-6 µg kg-1). Okadaic acid and dinophysistoxin 2 with lower prevalence (1.6-44.4%) showed, on the contrary, very high concentration values in specific species of crustaceans and polychaetes (334 and 235 µg kg--1, respectively), to which special attention should be paid. Statistical data analyses showed that mussels could be considered good biological indicators for the toxicities of certain groups in a particular area, with correlations between 0.710 (for echinoderms) and 0.838 (for crustaceans). Polychaetes could be an exception, but further extensive surveys would be needed to draw definitive conclusions.


Asunto(s)
Bivalvos , Mytilus , Intoxicación por Mariscos , Animales , Humanos , Ácido Ocadaico/análisis , Toxinas Marinas/toxicidad , Toxinas Marinas/análisis , Mariscos/análisis , Intoxicación por Mariscos/prevención & control , Cromatografía Liquida , Espectrometría de Masas en Tándem
18.
Toxins (Basel) ; 15(11)2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37999524

RESUMEN

The presence of yessotoxins (YTXs) was analyzed in 10,757 samples of Galician bivalves from 2014 to 2022. Only YTX and 45-OH YTX were found. YTX was detected in 31% of the samples, while 45-OH YTX was found in 11.6% of them. Among the samples containing YTX, 45-OH YTX was detected in 37.3% of cases. The maximum recorded levels were 1.4 and 0.16 mg of YTX-equivalentsg-1, for YTX and 45-OH YTX, respectively, which are well below the regulatory limit of the European Union. The YTX and 45-OH YTX toxicities in the raw extracts and extracts subjected to alkaline hydrolysis were strongly and linearly related. Due to the lack of homo-YTX in Galician samples, the effect of alkaline hydrolysis on homo-YTX and 45OH-Homo-YTX was only checked in 23 additional samples, observing no negative effect but a high correlation between raw and hydrolyzed extracts. Hydrolyzed samples can be used instead of raw ones to carry out YTXs determinations in monitoring systems, which may increase the efficiency of those systems where okadaic acid episodes are very frequent and therefore a higher number of hydrolyzed samples are routinely analyzed. The presence of YTX in the studied bivalves varied with the species, with mussels and cockles having the highest percentages of YTX-detected samples. The presence of 45-OH YTX was clearly related to YTX and was detected only in mussels and cockles. Wild populations of mussels contained proportionally more 45-OH YTX than those that were raft-cultured. Spatially, toxin toxicities varied across the sampling area, with higher levels in raft-cultured mussels except those of Ría de Arousa. Ría de Ares (ARE) was the most affected geographical area, although in other northern locations, lower toxin levels were detected. Seasonally, YTX and 45-OH YTX toxicities showed similar patterns, with higher levels in late summer and autumn but lower toxicities of the 45-OH toxin in August. The relationship between the two toxins also varied seasonally, in general with a minimum proportion of 45-OH YTX in July-August but with different maximum levels for raft-cultured and wild mussel populations. Interannually, the average toxicities of YTX decreased from 2014 to 2017 and newly increased from 2018 to 2021, but decreased slightly in 2022. The relationship between 45-OH YTX and YTX also varied over the years, but neither a clear trend nor a similar trend for wild and raft mussels was observed.


Asunto(s)
Bivalvos , Oxocinas , Animales , Toxinas Marinas/análisis , Hidrólisis , Cromatografía Liquida , Venenos de Moluscos/metabolismo , Oxocinas/metabolismo , Bivalvos/metabolismo , Biotransformación
19.
Artículo en Inglés | MEDLINE | ID: mdl-37716343

RESUMEN

Cyclic imines (CIs) produced by microalgae species and accumulating in the food chain of marine organisms are novel biotoxins that do not belong to the classical group of marine biotoxins. In the past, CIs were found only in limited areas, but in recent years, rapid changes in marine ecosystems have led to widespread CIs, increasing exposure to toxic risks. Monitoring of CIs is therefore required, but still analytically challenging due to the presence of high levels of analogues and interference from other lipophilic substances. Herein, we developed the LC/MRM-MS-based quantitative platform that can selectively enrich for marine-derived CIs and monitor seven CIs simultaneously: pinnatoxin (PnTX E, PnTX F, PnTX G), gymnodimine (GYM A), and spirolide (13-desMe SPX C, 13,19-didesMe SPX C, 20-Me SPX G). In particular, the combination of chromatographic separation by the hydrophobic nature of intrinsic residues of CIs with monitoring of CI structure-specific product ions generated by CID-MS/MS significantly improves the selectivity and sensitivity for quantitative analysis. Indeed, three CIs corresponding to PnTX G, GYM A, and 13-desMe SPX C could be successfully determined at the level of part-per-trillion (ppt) in three species of shellfish collected around the Korean Peninsula. Our analysis revealed that the expression of CIs in the Korean Peninsula was more influenced by the season rather than the species. This analytical platform with high sensitivity can be applied not only to marine biology but also to various other fields requiring CI analysis. Key Contribution: A highly sensitive analytical method for the simultaneous quantitation of cyclic imines based on LC/MRM-MS has been developed.


Asunto(s)
Ecosistema , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Mariscos/análisis , Toxinas Marinas/análisis , Iminas/análisis
20.
Sci Total Environ ; 905: 167254, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37741417

RESUMEN

Santa Catarina is the main producer state of oysters and mussels in Brazil, reaching 98 % of national production. To assure the safety of bivalve mollusks production, control programs of marine biotoxins (MBs) have been continuously performed. Herein, the co-occurrence of MBs and contaminants of emerging concern (CECs) in oyster and mussels from the main production sites of Santa Catarina was reported, covering 178 compounds. Samples of wild and non-cultivated oysters and mussels were also assessed. Chemometric tools were used to evaluate and optimize several sample preparation techniques such as solid-liquid, ultrasound assisted, and pressurized liquid extraction. The optimized protocol was based on ultrasound assisted extraction followed by liquid chromatography coupled to tandem mass spectrometry. The results showed the incidence of several CECs and MBs. In the case of MBs, all results were below the regulatory limits for both cultivated and non-cultivated samples. Wild mollusks have shown a higher number of compounds. Regarding CECs, the more frequent compounds were caffeine, diclofenac, meloxicam, and sertraline. Domoic acid and okadaic acid were the main toxins detected. The results highlighted the need of monitoring for MBs and the potential of oyster and mussels as sentinel organisms to risk analysis of CECs in coastal regions. To the best of our knowledge, this is the first method to describe a simultaneous sample preparation and analysis of CECs and MBs in bivalve mollusks, as well as the first report of meloxicam and florfenicol in mussels and oysters.


Asunto(s)
Bivalvos , Ostreidae , Animales , Toxinas Marinas/análisis , Brasil , Meloxicam , Bivalvos/química , Ácido Ocadaico/análisis , Ostreidae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...