Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 605
Filtrar
1.
Pancreatology ; 24(2): 279-288, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272717

RESUMEN

BACKGROUND: FOLFIRINOX and gemcitabine-nabpaclitaxel (GnP) are standard first-line treatment regimens for advanced pancreatic ductal adenocarcinoma (PDAC). However, currently, there is a lack of predictive biomarkers to aid in the treatment selection. We aimed to explore the prognostic and predictive value of class III ß-Tubulin (TUBB3) and human equilibrative nucleoside transporter 1 (hENT1) expression, which have previously been shown to be associated with taxane and gemcitabine resistance in advanced PDAC. METHODS: We conducted a retrospective analysis of 106 patients with advanced PDAC treated with GnP and/or FOLFIRINOX at our institution. TUBB3 and hENT1 immunohistochemical staining was performed on tumor specimens and subsequently evaluated based on the intensity and percentage of expression. RESULTS: In patients who received the GnP regimen, a high combined score (TUBB3low/hENT1high) was associated with a higher DCR and longer PFS compared to those with intermediate (TUBB3high/hENT1high or TUBB3low/hENT1low) and low score (TUBB3high/hENT1low). In the multivariate analysis, a high combined score was an independent predictor of higher DCR (OR:11.96; 95 % CI:2.61-54.82; p = 0.001) and longer PFS (HR:0.33; 95%CI:0.18-0.60; p < 0.001). However, there was no difference in response rates or PFS based on TUBB3 and hENT1 expression among patients receiving the FOLFIRINOX regimen. CONCLUSION: Our findings indicate that tumor TUBB3 and hENT1 expression may predict the efficacy of the GnP regimen, and low TUBB3 and high hENT1 expression (TUBB3low/hENT1high) are associated with a higher DCR and longer PFS in patients treated with GnP. Evaluating TUBB3 and hENT1 jointly can identify the patients most (as well as least) likely to benefit from GnP chemotherapy.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Desoxicitidina/uso terapéutico , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/análisis , Gemcitabina , Neoplasias Pancreáticas/patología , Pronóstico , Estudios Retrospectivos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/uso terapéutico
2.
Purinergic Signal ; 20(2): 193-205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37423967

RESUMEN

Evaluation of kinetic parameters of drug-target binding, kon, koff, and residence time (RT), in addition to the traditional in vitro parameter of affinity is receiving increasing attention in the early stages of drug discovery. Target binding kinetics emerges as a meaningful concept for the evaluation of a ligand's duration of action and more generally drug efficacy and safety. We report the biological evaluation of a novel series of spirobenzo-oxazinepiperidinone derivatives as inhibitors of the human equilibrative nucleoside transporter 1 (hENT1, SLC29A1). The compounds were evaluated in radioligand binding experiments, i.e., displacement, competition association, and washout assays, to evaluate their affinity and binding kinetic parameters. We also linked these pharmacological parameters to the compounds' chemical characteristics, and learned that separate moieties of the molecules governed target affinity and binding kinetics. Among the 29 compounds tested, 28 stood out with high affinity and a long residence time of 87 min. These findings reveal the importance of supplementing affinity data with binding kinetics at transport proteins such as hENT1.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido , Tioinosina , Humanos , Transporte Biológico , Tioinosina/metabolismo , Tioinosina/farmacología , Tranportador Equilibrativo 1 de Nucleósido/química , Tranportador Equilibrativo 1 de Nucleósido/metabolismo
3.
PLoS One ; 18(12): e0293923, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38113238

RESUMEN

Malaria remains a major public health threat for billions of people worldwide. Infection with obligate intracellular, unicellular parasites from the genus Plasmodium causes malaria. Plasmodium falciparum causes the deadliest form of human malaria. Plasmodium parasites are purine auxotrophic. They rely on purine import from the host red blood cell cytoplasm via equilibrative nucleoside transporters to supply substrates to the purine salvage pathway. We previously developed a high throughput screening assay to identify inhibitors of the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Screening a small molecule library identified PfENT1 inhibitors that blocked proliferation of P. falciparum parasites in in vitro culture. The goal of the current work was to validate a high-resolution model of PfENT1 predicted by the AlphaFold protein structure prediction program. We superimposed the predicted PfENT1 structure on the human homologue structure, hENT1, and developed a structure-based sequence alignment. We mutated the residues in PfENT1 aligned with and flanking the residues in hENT1 that interact with the purine analog, nitrobenzylthioinosine (NBMPR). Mutation of the PfENT1 residues Q135, D287, and R291 that are predicted to form hydrogen bonds to purine nucleosides eliminated purine and pyrimidine transport function in various yeast-based growth and radiolabeled substrate uptake assays. Mutation of two flanking residues, W53 and S290, also resulted in inactive protein. Mutation of L50 that forms hydrophobic interactions with the purine nucleobase reduced transport function. Based on our results the AlphaFold predicted structure for PfENT1 may be useful in guiding medicinal chemistry efforts to improve the potency of our PfENT1 inhibitors.


Asunto(s)
Malaria Falciparum , Malaria , Proteínas Portadoras de Nucleobases, Nucleósidos, Nucleótidos y Ácidos Nucleicos , Parásitos , Animales , Humanos , Nucleósidos de Purina/metabolismo , Parásitos/metabolismo , Proteínas Portadoras de Nucleobases, Nucleósidos, Nucleótidos y Ácidos Nucleicos/metabolismo , Malaria Falciparum/parasitología , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Tranportador Equilibrativo 1 de Nucleósido
5.
JCI Insight ; 8(11)2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37288658

RESUMEN

Previous studies implicate extracellular adenosine signaling in attenuating myocardial ischemia and reperfusion injury (IRI). This extracellular adenosine signaling is terminated by its uptake into cells by equilibrative nucleoside transporters (ENTs). Thus, we hypothesized that targeting ENTs would function to increase cardiac adenosine signaling and concomitant cardioprotection against IRI. Mice were exposed to myocardial ischemia and reperfusion injury. Myocardial injury was attenuated in mice treated with the nonspecific ENT inhibitor dipyridamole. A comparison of mice with global Ent1 or Ent2 deletion showed cardioprotection only in Ent1-/- mice. Moreover, studies with tissue-specific Ent deletion revealed that mice with myocyte-specific Ent1 deletion (Ent1loxP/loxP Myosin Cre+ mice) experienced smaller infarct sizes. Measurements of cardiac adenosine levels demonstrated that postischemic elevations of adenosine persisted during reperfusion after targeting ENTs. Finally, studies in mice with global or myeloid-specific deletion of the Adora2b adenosine receptor (Adora2bloxP/loxP LysM Cre+ mice) implied that Adora2b signaling on myeloid-inflammatory cells in cardioprotection provided by ENT inhibition. These studies reveal a previously unrecognized role for myocyte-specific ENT1 in cardioprotection by enhancing myeloid-dependent Adora2b signaling during reperfusion. Extension of these findings implicates adenosine transporter inhibitors in cardioprotection against ischemia and reperfusion injury.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido , Isquemia Miocárdica , Receptor de Adenosina A2B , Daño por Reperfusión , Animales , Ratones , Adenosina , Tranportador Equilibrativo 1 de Nucleósido/genética , Miocardio , Receptor de Adenosina A2B/genética
6.
Anal Chem ; 95(24): 9207-9218, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37276019

RESUMEN

Nucleoside transporters (NTs) play an important role in the metabolism of nucleoside substances and the efficacy of nucleoside drugs. Its spatial information related to biofunctions at the single-molecule level remains unclear, owing to the limitation of the existing labeling methods and traditional imaging methods. Therefore, we synthesize the inhibitor-based fluorescent probe SAENTA-Cy5 and apply direct stochastic optical reconstruction microscopy (dSTORM) to conduct refined observation of human equilibrative nucleoside transporter 1 (hENT1), the most important and famous member of NTs. We first demonstrate the labeling specificity and superiority of SAENTA-Cy5 to the antibody probe. Then, we found different assembly patterns of hENT1 on the apical and basal membranes, which are further investigated to be caused by varying associations of membrane carbohydrates, membrane classical functional domains (lipid rafts), and associated membrane proteins (EpCAM). Our work provides an efficient method for labeling hENT1, which contributes to realize fine observation of NTs. The findings on the assembly features and potential assembly mechanism of hENT1 promote a better understanding of its biofunction, which facilitates further investigations on how NTs work in the metabolism of nucleoside and nucleoside analogues.


Asunto(s)
Microscopía , Nucleósidos , Humanos , Proteínas de Transporte de Nucleósidos , Tranportador Equilibrativo 1 de Nucleósido/metabolismo
7.
J Pharm Sci ; 112(10): 2676-2684, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37364771

RESUMEN

NDec is a novel combination of oral decitabine and tetrahydrouridine that is currently under clinical development for the treatment of sickle cell disease (SCD). Here, we investigate the potential for the tetrahydrouridine component of NDec to act as an inhibitor or substrate of key concentrative nucleoside transporters (CNT1-3) and equilibrative nucleoside transporters (ENT1-2). Nucleoside transporter inhibition and tetrahydrouridine accumulation assays were performed using Madin-Darby canine kidney strain II (MDCKII) cells overexpressing human CNT1, CNT2, CNT3, ENT1, and ENT2 transporters. Results showed that tetrahydrouridine did not influence CNT- or ENT-mediated uridine/adenosine accumulation in MDCKII cells at the concentrations tested (25 and 250 µM). Accumulation of tetrahydrouridine in MDCKII cells was initially shown to be mediated by CNT3 and ENT2. However, while time- and concentration-dependence experiments showed active accumulation of tetrahydrouridine in CNT3-expressing cells, allowing for estimation of Km (3,140 µM) and Vmax (1,600 pmol/mg protein/min), accumulation of tetrahydrouridine was not observed in ENT2-expressing cells. Potent CNT3 inhibitors are a class of drugs not generally prescribed to patients with SCD, except in certain specific circumstances. These data suggest that NDec can be administered safely with drugs that act as substrates and inhibitors of the nucleoside transporters included in this study.


Asunto(s)
Proteínas de Transporte de Nucleósidos , Nucleósidos , Humanos , Animales , Perros , Tetrahidrouridina , Tranportador Equilibrativo 1 de Nucleósido , Proteínas de Transporte de Membrana
8.
Nucl Med Biol ; 120-121: 108350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229950

RESUMEN

PURPOSE: To use bifunctional target genes to increase the intracellular transport of gemcitabine (GEM) to reverse chemotherapy resistance and to simultaneously use reporter gene imaging to localize therapeutic genes. The therapeutic effect was evaluated by [18F]FLT PET/CT to visualize the effect of gene therapy. METHODS: A viral gene vector containing the pancreatic cancer-targeting promoter MUC1 for specific transcription of equilibrative nucleoside transporter 1 (ENT1) and NIS (nuclide transport channel) was employed. [125I]NaI uptake tests and [131I]NaI SPECT imaging were performed to verify the function of NIS and the target function of MUC1. The correlation between [18F]FLT uptake and GEM resistance were assessed, and the influence ENT1 and thymidine kinase 1 (TK1) expression on [18F]FLT micro-PET/CT was measured, which provides a theoretical basis for the use of [18F]FLT micro-PET/CT to evaluate the efficacy of gene therapy. RESULTS: First, functions of gene therapy were confirmed: ENT1 reversed the drug resistance of GEM-resistant pancreatic cancer cells by increasing GEM intracellular transport; MUC1 drove NIS target gene expression in pancreatic cancer; and therapeutic genes could be localized using [131I]NaI SPECT reporter gene imaging. Second, the [18F]FLT uptake ratio was affected by drug resistance and GEM treatment. The mechanism underlying this effect was related to ENT1 and TK1. Increased expression of ENT1 inhibited the expression of TK1 after GEM chemotherapy to reduce the uptake of [18F]FLT. Finally, micro-PET/CT indicated that the SUVmax of [18F]FLT could predict survival time. SUVmax exhibited an increasing trend in resistant pancreatic cancer but a trend of inhibition after upregulation of ENT1, which was more significant after GEM treatment. CONCLUSIONS: Bifunctional targeted genes can localize therapeutic genes through reporter gene imaging, reverse the drug resistance of GEM-resistant pancreatic cancer and be visually evaluated through [18F]FLT micro-PET/CT.


Asunto(s)
Resistencia a Antineoplásicos , Gemcitabina , Terapia Genética , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Didesoxinucleósidos/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Mucina-1/genética , Mucina-1/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas
9.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834962

RESUMEN

Azacitidine (AZA) is commonly used hypomethylating agent for higher risk myelodysplastic syndromes and acute myeloid leukemia (AML). Although some patients achieve remission, eventually most patients fail AZA therapy. Comprehensive analysis of intracellular uptake and retention (IUR) of carbon-labeled AZA (14C-AZA), gene expression, transporter pump activity with or without inhibitors, and cytotoxicity in naïve and resistant cell lines provided insight into the mechanism of AZA resistance. AML cell lines were exposed to increasing concentrations of AZA to create resistant clones. 14C-AZA IUR was significantly lower in MOLM-13- (1.65 ± 0.08 ng vs. 5.79 ± 0.18 ng; p < 0.0001) and SKM-1- (1.10 ± 0.08 vs. 5.08 ± 0.26 ng; p < 0.0001) resistant cells compared to respective parental cells. Importantly, 14C-AZA IUR progressively reduced with downregulation of SLC29A1 expression in MOLM-13- and SKM-1-resistant cells. Furthermore, nitrobenzyl mercaptopurine riboside, an SLC29A inhibitor, reduced 14C-AZA IUR in MOLM-13 (5.79 ± 0.18 vs. 2.07 ± 0.23, p < 0.0001) and SKM-1-naive cells (5.08 ± 2.59 vs. 1.39 ± 0.19, p = 0.0002) and reduced efficacy of AZA. As the expression of cellular efflux pumps such as ABCB1 and ABCG2 did not change in AZA-resistant cells, they are unlikely contribute to AZA resistance. Therefore, the current study provides a causal link between in vitro AZA resistance and downregulation of cellular influx transporter SLC29A1.


Asunto(s)
Azacitidina , Resistencia a Antineoplásicos , Tranportador Equilibrativo 1 de Nucleósido , Leucemia Mieloide Aguda , Humanos , Azacitidina/farmacología , Azacitidina/uso terapéutico , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Tranportador Equilibrativo 1 de Nucleósido/efectos de los fármacos , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
11.
J Sep Sci ; 46(6): e2200921, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36637096

RESUMEN

Gliflozins are successfully marketed antidiabetic agents with a reported neuroprotective effect, and this study tests their blood-brain barrier crossing ability. Henceforward, a computational hypothesis interpreting their effects was reasonable after failure to cross into the brain. A chromatographic bioassay for canagliflozin, dapagliflozin, and empagliflozin was developed, validated, and applied to the rat's and rat's plasma and brain. HPLC method robustness was tested over two levels using Design of Experiment on MINITAB. It is the first method for gliflozins' detection in rats' brain tissue. The method was applied on 18 rats and six for each drug. Concentrations in plasma were determined but neither of them was detected in brain at the described chromatographic conditions. A computational study for the three drugs was endorsing two techniques. First, ligand-based target fishing reveals possible targets for gliflozins. They showed an ability to bind with human equilibrative nucleoside transporter 1, a regulator of adenosine extracellularly. Second, a docking study was carried out on this protein receptor. Results showed perfect alignment with a minimum of one hydrogen bond. Dapagliflozin achieved the lowest energy score with two hocking hydrogen bonds. This is proposing gliflozins ability to regulate equilibrative nucleoside transporter 1 receptors in peripheries, elevating the centrally acting neuroprotective adenosine.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido , Humanos , Animales , Ratas , Fármacos Neuroprotectores/farmacología , Barrera Hematoencefálica , Reposicionamiento de Medicamentos , Adenosina/química , Adenosina/genética , Inhibidores del Cotransportador de Sodio-Glucosa 2/química
12.
Cancer Lett ; 552: 215981, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341997

RESUMEN

Inhibitors of dihydroorotate dehydrogenase (DHODH), a key enzyme for de novo synthesis of pyrimidine nucleotides, have failed in clinical trials for various cancers despite robust efficacy in preclinical animal models. To probe for druggable mediators of DHODH inhibitor resistance, we performed a combination screen with a small molecule library against pancreatic cancer cell lines that are highly resistant to the DHODH inhibitor brequinar (BQ). The screen revealed that CNX-774, a preclinical Bruton tyrosine kinase (BTK) inhibitor, sensitizes resistant cell lines to BQ. Mechanistic studies showed that this effect is independent of BTK and instead results from inhibition of equilibrative nucleoside transporter 1 (ENT1) by CNX-774. We show that ENT1 mediates BQ resistance by taking up extracellular uridine, which is salvaged to generate pyrimidine nucleotides in a DHODH-independent manner. In BQ-resistant cell lines, BQ monotherapy slowed proliferation and caused modest pyrimidine nucleotide depletion, whereas combination treatment with BQ and CNX-774 led to profound cell viability loss and pyrimidine starvation. We also identify N-acetylneuraminic acid accumulation as a potential marker of the therapeutic efficacy of DHODH inhibitors. In an aggressive, immunocompetent pancreatic cancer mouse model, combined targeting of DHODH and ENT1 dramatically suppressed tumor growth and prolonged mouse survival. Overall, our study defines CNX-774 as a previously uncharacterized ENT1 inhibitor and provides strong proof of concept support for dual targeting of DHODH and ENT1 in pancreatic cancer.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Neoplasias Pancreáticas , Ratones , Animales , Dihidroorotato Deshidrogenasa , Tranportador Equilibrativo 1 de Nucleósido/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pirimidinas/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Nucleótidos de Pirimidina , Neoplasias Pancreáticas
13.
Br J Haematol ; 200(6): 812-820, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36464247

RESUMEN

Hypoxia-mediated red blood cell (RBC) sickling is central to the pathophysiology of sickle cell disease (SCD). The signalling nucleoside adenosine is thought to play a significant role in this process. This study investigated expression of the erythrocyte type 1 equilibrative nucleoside transporter (ENT1), a key regulator of plasma adenosine, in adult patients with SCD and carriers of sickle cell trait (SCT). Relative quantitative expression analysis of erythrocyte ENT1 was carried out by Western blot and flow cytometry. Patients with SCD with steady state conditions, either with SS or SC genotype, untreated or under hydroxycarbamide (HC) treatment, exhibited a relatively high variability of erythrocyte ENT1, but with levels not significantly different from normal controls. Most strikingly, expression of erythrocyte ENT1 was found to be significantly decreased in patients with SCD undergoing painful vaso-occlusive episode and, unexpectedly, also in healthy SCT carriers. Promoting hypoxia-induced adenosine signalling, the reduced expression of erythrocyte ENT1 might contribute to the pathophysiology of SCD and to the susceptibility of SCT individuals to altitude hypoxia or exercise to exhaustion.


Asunto(s)
Rasgo Drepanocítico , Humanos , Adenosina , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Eritrocitos/metabolismo , Hipoxia/metabolismo
14.
Mol Neurobiol ; 60(1): 369-381, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36269542

RESUMEN

Neuroinflammation plays a critical role in the neurological recovery of spinal cord injury (SCI). Adenosine can modulate neuroinflammation, whose uptake is mediated by nucleoside transporters. This study aimed to investigate the roles of equilibrative nucleoside transporter 1 (Ent1) in the inflammatory responses and functional recovery of SCI. Spinal cord contusion at the T10 dorsal portion was induced in mice to cause partial paralysis of the hindlimbs. Genetic deletion and pharmacological inhibition of Ent1 were used to evaluate the role of Ent1 in SCI. The outcomes were evaluated in terms of the Basso Mouse Scale (BMS), gait analysis, astrogliosis, microgliosis, and cytokine levels on day 14 post-injury. As a result, Ent1 deletion reduced neuroinflammation and improved the BMS score (4.88 ± 0.35 in Ent1-/- vs. 3.78 ± 1.09 in Ent1+/+) and stride length (3.74 ± 0.48 cm in Ent1-/- vs. 2.82 ± 0.78 cm in Ent1+/+) of mice with SCI. Along with the reduced lesion size, more preserved neurons were identified in the perilesional area of mice with Ent1 deletion (102 ± 23 in Ent1-/- vs. 73 ± 10 in Ent1+/+). The results of pharmacological inhibition were consistent with the findings of genetic deletion. Moreover, Ent1 inhibition decreased the protein level of complement 3 (an A1 marker), but increased the levels of S100 calcium-binding protein a10 (an A2 marker) and transforming growth factor-ß, without changing the levels of inducible nitric oxide synthase (a M1 marker) and arginase 1 (a M2 marker) at the injured site. These findings indicate the important role of Ent1 in the pathogenesis and treatment of SCI.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido , Traumatismos de la Médula Espinal , Animales , Ratones , Adenosina/farmacología , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Enfermedades Neuroinflamatorias , Neuronas/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico
15.
Clin Cancer Res ; 28(23): 5115-5120, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222851

RESUMEN

PURPOSE: Modified FOLFIRINOX (mFFX) and gemcitabine/nab-paclitaxel (GnP) remain standard first-line options for patients with advanced pancreatic ductal adenocarcinoma (PDAC). Human equilibrative nucleoside transporter 1 (hENT1) was hypothesized to be a biomarker of gemcitabine in the adjuvant setting, with conflicting results. In this study, we explore hENT1 mRNA expression as a predictive biomarker in advanced PDAC. EXPERIMENTAL DESIGN: COMPASS was a prospective observational trial of patients with advanced PDAC. A biopsy was required prior to initiating chemotherapy, as determined by treating physician. Biopsies underwent laser capture microdissection prior to whole genome and RNA sequencing. The cut-off thresholds for hENT1 expression were determined using the maximal χ2 statistic. RESULTS: 253 patients were included in the analyses with a median follow-up of 32 months, with 138 patients receiving mFFX and 92 receiving GnP. In the intention to treat population, median overall survival (OS) was 10.0 months in hENT1high versus 7.9 months in hENT1low (P = 0.02). In patients receiving mFFX, there was no difference in overall response rate (ORR; 35% vs. 28%, P = 0.56) or median OS (10.6 vs. 10.5 months, P = 0.45). However, in patients treated with GnP, the ORR was significantly higher in hENT1high compared with hENT1low tumors (43% vs. 21%, P = 0.038). Median OS in this GnP-treated cohort was 10.6 months in hENT1high versus 6.7 months hENT1low (P < 0.001). In an interaction analysis, hENT1 was predictive of treatment response to GnP (interaction P = 0.002). CONCLUSIONS: In advanced PDAC, hENT1 mRNA expression predicts ORR and OS in patients receiving GnP.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , ARN Mensajero , Gemcitabina , Neoplasias Pancreáticas
16.
Biomed Pharmacother ; 153: 113491, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076585

RESUMEN

Cordyceps militaris is rich in adenosine derivatives, including 3'-deoxyadenosine, also known as cordycepin. It has been reported for antitumor effects, but its underlying molecular mechanism has yet to be elucidated. We investigated how adenosine derivatives exerted antitumor effects against ovarian cancer using human ovarian cancer cells and a xenograft mouse model. Treatment with adenosine derivatives effectively resulted in cell death of ovarian cancer cells through AMPK activation and subsequently mTOR-mediated autophagic induction. Intriguingly, the effect required membrane transport of adenosine derivatives via ENT1, rather than ADORA-mediated cellular signaling. Our data suggest that adenosine derivatives may be an effective therapeutic intervention in ovarian cancer through induction of ENT1-AMPK-mTOR-mediated autophagic cell death.


Asunto(s)
Adenosina , Muerte Celular Autofágica , Cordyceps , Neoplasias Ováricas , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacología , Animales , Muerte Celular Autofágica/efectos de los fármacos , Carcinoma Epitelial de Ovario , Cordyceps/química , Desoxiadenosinas/farmacología , Tranportador Equilibrativo 1 de Nucleósido/efectos de los fármacos , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Femenino , Humanos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo
17.
Nature ; 609(7926): 361-368, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35790189

RESUMEN

Brown adipose tissue (BAT) dissipates energy1,2 and promotes cardiometabolic health3. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centred obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic programme in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate-protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced 'browning' of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacological inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, respectively. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a 'replace me' signalling function that regulates thermogenic fat and counteracts obesity.


Asunto(s)
Adipocitos Marrones , Tejido Adiposo Pardo , Metabolismo Energético , Inosina , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Tranportador Equilibrativo 1 de Nucleósido/antagonistas & inhibidores , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Humanos , Inosina/metabolismo , Inosina/farmacología , Ratones , Obesidad/genética , Obesidad/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/metabolismo
18.
J Neurosci ; 42(9): 1738-1751, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35042768

RESUMEN

Striatal adenosine A1 receptor (A1R) activation can inhibit dopamine release. A1Rs on other striatal neurons are activated by an adenosine tone that is limited by equilibrative nucleoside transporter 1 (ENT1) that is enriched on astrocytes and is ethanol sensitive. We explored whether dopamine release in nucleus accumbens core is under tonic inhibition by A1Rs, and is regulated by astrocytic ENT1 and ethanol. In ex vivo striatal slices from male and female mice, A1R agonists inhibited dopamine release evoked electrically or optogenetically and detected using fast-scan cyclic voltammetry, most strongly for lower stimulation frequencies and pulse numbers, thereby enhancing the activity-dependent contrast of dopamine release. Conversely, A1R antagonists reduced activity-dependent contrast but enhanced evoked dopamine release levels, even for single optogenetic pulses indicating an underlying tonic inhibition. The ENT1 inhibitor nitrobenzylthioinosine reduced dopamine release and promoted A1R-mediated inhibition, and, conversely, virally mediated astrocytic overexpression of ENT1 enhanced dopamine release and relieved A1R-mediated inhibition. By imaging the genetically encoded fluorescent adenosine sensor [GPCR-activation based (GRAB)-Ado], we identified a striatal extracellular adenosine tone that was elevated by the ENT1 inhibitor and sensitive to gliotoxin fluorocitrate. Finally, we identified that ethanol (50 mm) promoted A1R-mediated inhibition of dopamine release, through diminishing adenosine uptake via ENT1. Together, these data reveal that dopamine output dynamics are gated by a striatal adenosine tone, limiting amplitude but promoting contrast, regulated by ENT1, and promoted by ethanol. These data add to the diverse mechanisms through which ethanol modulates striatal dopamine, and to emerging datasets supporting astrocytic transporters as important regulators of striatal function.SIGNIFICANCE STATEMENT Dopamine axons in the mammalian striatum are emerging as strategic sites where neuromodulators can powerfully influence dopamine output in health and disease. We found that ambient levels of the neuromodulator adenosine tonically inhibit dopamine release in nucleus accumbens core via adenosine A1 receptors (A1Rs), to a variable level that promotes the contrast in dopamine signals released by different frequencies of activity. We reveal that the equilibrative nucleoside transporter 1 (ENT1) on astrocytes limits this tonic inhibition, and that ethanol promotes it by diminishing adenosine uptake via ENT1. These findings support the hypotheses that A1Rs on dopamine axons inhibit dopamine release and, furthermore, that astrocytes perform important roles in setting the level of striatal dopamine output, in health and disease.


Asunto(s)
Astrocitos , Dopamina , Tranportador Equilibrativo 1 de Nucleósido , Etanol , Núcleo Accumbens , Receptor de Adenosina A1 , Adenosina/farmacología , Agonistas del Receptor de Adenosina A1/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Dopamina/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Etanol/farmacología , Femenino , Masculino , Ratones , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptor de Adenosina A1/metabolismo
19.
Cancer Rep (Hoboken) ; 5(5): e1507, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34327872

RESUMEN

BACKGROUND: Expression of human equilibrative nucleoside transporter-1 (hENT1) is reported to predict survival of gemcitabine (GEM)-treated patients. However, predictive values of immunohistochemical hENT1 expression may differ according to the antibodies, 10D7G2 and SP120. AIM: We aimed to investigate the concordance of immunohistochemical hENT1 expression between the two antibodies and prognosis. METHODS: The subjects of this study were totally 332 whose formalin-fixed paraffin-embedded specimens and/or unstained sections were obtained. The individual H-scores and four classifications according to the staining intensity were applied for the evaluation of hENT1 expression by 10D7G2 and SP120, respectively. RESULTS: The highest concordance rate (79.8%) was obtained when the cut-off between high and low hENT1 expression using SP120 was set between moderate and strong. There were no correlations of hENT1 mRNA level with H-score (p = .258). Although the hENT1 mRNA level was significantly different among four classifications using SP120 (p = .011), there was no linear relationship among them. Multivariate analyses showed that adjuvant GEM was a significant predictor of the patients with low hENT1 expression using either 10D7G2 (Hazard ratio [HR] 2.39, p = .001) or SP120 (HR 1.84, p < .001). In contrast, agent for adjuvant chemotherapy was not significant predictor for the patients with high hENT1 expression regardless of the kind of antibody. CONCLUSION: The present study suggests that the two antibodies for evaluating hENT1 expression are equivalent depending on the cut-off point and suggests that S-1 is the first choice of adjuvant chemotherapy for pancreatic cancer with low hENT1 expression, whereas either S-1 or GEM can be introduced for the pancreatic cancer with high hENT1 expression, no matter which antibody is used.


Asunto(s)
Antimetabolitos Antineoplásicos , Neoplasias Pancreáticas , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Quimioterapia Adyuvante , Tranportador Equilibrativo 1 de Nucleósido/análisis , Tranportador Equilibrativo 1 de Nucleósido/genética , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , ARN Mensajero/uso terapéutico , Conejos , Neoplasias Pancreáticas
20.
Clin Pharmacokinet ; 61(2): 167-187, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34894346

RESUMEN

Cladribine is a nucleoside analog that is phosphorylated in its target cells (B and T-lymphocytes) to its active triphosphate form (2-chlorodeoxyadenosine triphosphate). Cladribine tablets 10 mg (Mavenclad®), administered for up to 10 days per year in 2 consecutive years (3.5-mg/kg cumulative dose over 2 years), are used to treat patients with relapsing multiple sclerosis. Cladribine has been shown to be a substrate of various nucleoside transporters (NTs). Intestinal absorption and distribution of cladribine throughout the body appear to be essentially mediated by equilibrative NTs (ENTs) and concentrative NTs (CNTs), specifically by ENT1, ENT2, ENT4, CNT2 (low affinity), and CNT3. Other efficient transporters of cladribine are the ABC efflux transporters, specifically breast cancer resistance protein, which likely modulates the oral absorption and renal excretion of cladribine. A key transporter for the intracellular uptake of cladribine into B and T-lymphocytes is ENT1 with ancillary contributions of ENT2 and CNT2. Transporter-based drug interactions affecting absorption and target cellular uptake of a prodrug such as cladribine are likely to reduce systemic bioavailability and target cell exposure, thereby possibly hampering clinical efficacy. In order to manage optimized therapy, i.e., to ensure uncompromised target cell uptake to preserve the full therapeutic potential of cladribine, it is important that clinicians are aware of the existence of NT-inhibiting medicinal products, various lifestyle drugs, and food components. This article reviews the existing knowledge on inhibitors of NT, which may alter cladribine absorption, distribution, and uptake into target cells, thereby summarizing the existing knowledge on optimized methods of administration and concomitant drugs that should be avoided during cladribine treatment.


Asunto(s)
Cladribina , Proteínas de Transporte de Nucleósidos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP , Cladribina/farmacología , Interacciones Farmacológicas , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...