Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.687
Filtrar
1.
Biochem Pharmacol ; 224: 116185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561091

RESUMEN

Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.


Asunto(s)
Metabolismo Energético , Animales , Metabolismo Energético/fisiología , Metabolismo Energético/genética , Humanos , Transcripción Genética/fisiología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/genética , Cardiopatías/metabolismo , Cardiopatías/genética , Miocardio/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Modelos Animales de Enfermedad , Miocitos Cardíacos/metabolismo
2.
Nat Commun ; 14(1): 166, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631525

RESUMEN

The heptad repeats of the C-terminal domain (CTD) of RNA polymerase II (Pol II) are extensively modified throughout the transcription cycle. The CTD coordinates RNA synthesis and processing by recruiting transcription regulators as well as RNA capping, splicing and 3'end processing factors. The SPOC domain of PHF3 was recently identified as a CTD reader domain specifically binding to phosphorylated serine-2 residues in adjacent CTD repeats. Here, we establish the SPOC domains of the human proteins DIDO, SHARP (also known as SPEN) and RBM15 as phosphoserine binding modules that can act as CTD readers but also recognize other phosphorylated binding partners. We report the crystal structure of SHARP SPOC in complex with CTD and identify the molecular determinants for its specific binding to phosphorylated serine-5. PHF3 and DIDO SPOC domains preferentially interact with the Pol II elongation complex, while RBM15 and SHARP SPOC domains engage with writers and readers of m6A, the most abundant RNA modification. RBM15 positively regulates m6A levels and mRNA stability in a SPOC-dependent manner, while SHARP SPOC is essential for its localization to inactive X-chromosomes. Our findings suggest that the SPOC domain is a major interface between the transcription machinery and regulators of transcription and co-transcriptional processes.


Asunto(s)
Proteínas de Unión al ADN , Fosfoserina , Dominios Proteicos , Proteínas de Unión al ARN , Transcripción Genética , Humanos , Fosforilación , Fosfoserina/química , Fosfoserina/metabolismo , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN , Transcripción Genética/fisiología , Dominios Proteicos/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Proteínas de Unión al ARN/química
3.
Nat Cell Biol ; 24(10): 1528-1540, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36202974

RESUMEN

The biological purpose of long non-coding RNAs (lncRNAs) is poorly understood. Haploinsufficient mutations in HNF1A homeobox A (HNF1A), encoding a homeodomain transcription factor, cause diabetes mellitus. Here, we examine HASTER, the promoter of an lncRNA antisense to HNF1A. Using mouse and human models, we show that HASTER maintains cell-specific physiological HNF1A concentrations through positive and negative feedback loops. Pancreatic ß cells from Haster mutant mice consequently showed variegated HNF1A silencing or overexpression, resulting in hyperglycaemia. HASTER-dependent negative feedback was essential to prevent HNF1A binding to inappropriate genomic regions. We demonstrate that the HASTER promoter DNA, rather than the lncRNA, modulates HNF1A promoter-enhancer interactions in cis and thereby regulates HNF1A transcription. Our studies expose a cis-regulatory element that is unlike classic enhancers or silencers, it stabilizes the transcription of its target gene and ensures the fidelity of a cell-specific transcription factor program. They also show that disruption of a mammalian lncRNA promoter can cause diabetes mellitus.


Asunto(s)
Factor Nuclear 1-alfa del Hepatocito , Regiones Promotoras Genéticas , ARN Largo no Codificante , Animales , Humanos , Ratones , Factor Nuclear 1-alfa del Hepatocito/genética , Mamíferos , ARN Largo no Codificante/genética , Transcripción Genética/genética , Transcripción Genética/fisiología
4.
Biochem Biophys Res Commun ; 628: 123-132, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36084550

RESUMEN

The intrinsic, and the Rho-dependent mechanisms of transcription termination are conserved in bacteria. Generally, the two mechanisms have been illustrated as two independent pathways occurring in the 3' ends of different genes with contrasting requirements to halt RNA synthesis. However, a majority of intrinsic terminators terminate transcription inefficiently leading to transcriptional read-through. The unwanted transcription in the downstream region beyond the terminator would have undesired consequences. To prevent such transcriptional read-through, bacteria must have evolved ways to terminate transcription more efficiently at or near the termination sites. We describe the participation of both the mechanisms, where intrinsic terminator and Rho factor contribute to prevent transcriptional read-through. Contribution from both the termination processes is demonstrated at the downstream regions of the genes both in vitro and in vivo in mycobacteria. Distinct patterns of cooperation between the two modes of termination were observed at the 3' untranslated regions of the genes to ensure efficient termination. We demonstrate similar mode of operation between the two termination processes in Escherichia coli suggesting a likely prevalence of this cooperation across bacteria. The reporter system developed to assess the Rho - intrinsic termination collaboration in vivo for mycobacteria and E. coli can readily be applied to other bacteria.


Asunto(s)
Regiones Terminadoras Genéticas , Regiones no Traducidas 3' , Escherichia coli/genética , Escherichia coli/metabolismo , Factor Rho/genética , Factor Rho/metabolismo , Transcripción Genética/fisiología
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197279

RESUMEN

Axin is one of two essential scaffolds in the canonical Wnt pathway that converts signals at the plasma membrane to signals inhibiting the degradation of ß-catenin, leading to its accumulation and specific gene activation. In vertebrates, there are two forms of Axin, Axin1 and Axin2, which are similar at the protein level and genetically redundant. We show here that differential regulation of the two genes on the transcriptional and proteostatic level confers differential responsiveness that can be used in tissue-specific regulation. Such subtle features may distinguish other redundant gene pairs that are commonly found in vertebrates through gene knockout experiments.


Asunto(s)
Proteína Axina/metabolismo , Vía de Señalización Wnt , Proteína Axina/genética , Línea Celular , Humanos , Proteostasis , Transcripción Genética/fisiología , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
6.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163183

RESUMEN

Aminoacridines, used for decades as antiseptic and antiparasitic agents, are prospective candidates for therapeutic repurposing and new drug development. Although the mechanisms behind their biological effects are not fully elucidated, they are most often attributed to the acridines' ability to intercalate into DNA. Here, we characterized the effects of 9-aminoacridine (9AA) on pre-rRNA metabolism in cultured mammalian cells. Our results demonstrate that 9AA inhibits both transcription of the ribosomal RNA precursors (pre-rRNA) and processing of the already synthesized pre-rRNAs, thereby rapidly abolishing ribosome biogenesis. Using a fluorescent intercalator displacement assay, we further show that 9AA can bind to RNA in vitro, which likely contributes to its ability to inhibit post-transcriptional steps in pre-rRNA maturation. These findings extend the arsenal of small-molecule compounds that can be used to block ribosome biogenesis in mammalian cells and have implications for the pharmacological development of new ribosome biogenesis inhibitors.


Asunto(s)
Aminacrina/farmacología , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Ribosómico/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Nucléolo Celular/metabolismo , Humanos , Ratones , Células 3T3 NIH , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN/fisiología , ARN Ribosómico/biosíntesis , ARN Ribosómico/efectos de los fármacos , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología
7.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163213

RESUMEN

The cyclin-dependent kinase Cdk1 is best known for its function as master regulator of the cell cycle. It phosphorylates several key proteins to control progression through the different phases of the cell cycle. However, studies conducted several decades ago with mammalian cells revealed that Cdk1 also directly regulates the basal transcription machinery, most notably RNA polymerase II. More recent studies in the budding yeast Saccharomyces cerevisiae have revisited this function of Cdk1 and also revealed that Cdk1 directly controls RNA polymerase III activity. These studies have also provided novel insight into the physiological relevance of this process. For instance, cell cycle-stage-dependent activity of these complexes may be important for meeting the increased demand for various proteins involved in housekeeping, metabolism, and protein synthesis. Recent work also indicates that direct regulation of the RNA polymerase II machinery promotes cell cycle entry. Here, we provide an overview of the regulation of basal transcription by Cdk1, and we hypothesize that the original function of the primordial cell-cycle CDK was to regulate RNAPII and that it later evolved into specialized kinases that govern various aspects of the transcription machinery and the cell cycle.


Asunto(s)
Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Transcripción Genética/fisiología , Animales , Proteína Quinasa CDC2/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Fosforilación , ARN Polimerasa II/metabolismo , Transcripción Genética/genética
8.
FASEB J ; 36(2): e22164, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35061292

RESUMEN

The human proton-coupled folate transporter (PCFT; SLC46A1) or hPCFT was identified in 2006 as the principal folate transporter involved in the intestinal absorption of dietary folates. A rare autosomal recessive hereditary folate malabsorption syndrome is attributable to human SLC46A1 variants. The recognition that hPCFT was highly expressed in many tumors stimulated substantial interest in its potential for cytotoxic drug targeting, taking advantage of its high-level transport activity under acidic pH conditions that characterize many tumors and its modest expression in most normal tissues. To better understand the basis for variations in hPCFT levels between tissues including human tumors, studies have examined the transcriptional regulation of hPCFT including the roles of CpG hypermethylation and critical transcription factors and cis elements. Additional focus involved identifying key structural and functional determinants of hPCFT transport that, combined with homology models based on structural homologies to the bacterial transporters GlpT and LacY, have enabled new structural and mechanistic insights. Recently, cryo-electron microscopy structures of chicken PCFT in a substrate-free state and in complex with the antifolate pemetrexed were reported, providing further structural insights into determinants of (anti)folate recognition and the mechanism of pH-regulated (anti)folate transport by PCFT. Like many major facilitator proteins, hPCFT exists as a homo-oligomer, and evidence suggests that homo-oligomerization of hPCFT monomeric proteins may be important for its intracellular trafficking and/or transport function. Better understanding of the structure, function and regulation of hPCFT should facilitate the rational development of new therapeutic strategies for conditions associated with folate deficiency, as well as cancer.


Asunto(s)
Ácido Fólico/metabolismo , Transportador de Folato Acoplado a Protón/metabolismo , Animales , Antagonistas del Ácido Fólico/metabolismo , Humanos , Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
9.
FASEB J ; 36(2): e22152, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35061305

RESUMEN

Catabolic conditions, such as starvation, inactivity, and cancer cachexia, induce Forkhead box O (FOXO) transcription factor(s) expression and severe muscle atrophy via the induction of ubiquitin-proteasome system-mediated muscle proteolysis, resulting in frailty and poor quality of life. Although FOXOs are clearly essential for the induction of muscle atrophy, it is unclear whether there are other factors involved in the FOXO-mediated transcriptional regulation. As such, we identified FOXO-CCAAT/enhancer-binding protein δ (C/EBPδ) signaling pathway as a novel proteolytic pathway. By comparing the gene expression profiles of FOXO1-transgenic (gain-of-function model) and FOXO1,3a,4-/- (loss-of-function model) mice, we identified several novel FOXO1-target genes in skeletal muscle including Redd1, Sestrin1, Castor2, Chac1, Depp1, Lat3, as well as C/EBPδ. During starvation, C/EBPδ abundance was increased in a FOXOs-dependent manner. Notably, knockdown of C/EBPδ prevented the induction of the ubiquitin-proteasome system and decrease of myofibers in FOXO1-activated myotubes. Conversely, C/EBPδ overexpression in primary myotubes induced myotube atrophy. Furthermore, we demonstrated that FOXO1 enhances the promoter activity of target genes in cooperation with C/EBPδ and ATF4. This research comprehensively identifies novel FOXO1 target genes in skeletal muscle and clarifies the pathophysiological role of FOXO1, a master regulator of skeletal muscle atrophy.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Ayuno/metabolismo , Proteína Forkhead Box O1/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transcripción Genética/fisiología , Animales , Línea Celular , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal/fisiología , Ubiquitina/metabolismo
10.
J Pharmacol Sci ; 148(2): 197-203, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35063134

RESUMEN

Prevention of atherosclerosis is important because it is a risk factor for cardiovascular diseases globally. One of the causes of atherosclerosis is accumulation of cholesterol and triglycerides in peripheral cells. ATP-binding cassette protein A1 (ABCA1) and G1 (ABCG1) are important in eliminating excess cholesterol from cells including macrophages and forming high-density lipoprotein, which contributes to the prevention and regression of atherosclerosis. Enhanced cholesterol efflux activities of ABCA1 and ABCG1 are expected to prevent the progression of atherosclerosis. ABCA1 and ABCG1 are induced by the LXR/RXR pathway and regulated transcriptionally, post-transcriptionally, and post-translationally. Their mRNAs are destabilized by microRNAs and their cellular localization and degradation are regulated by other proteins and phosphorylation. Furthermore, ABCA1 and ABCG1 suppress the inflammatory responses of macrophages. These proteins are effective targets because their increased activities can suppress cholesterol accumulation and inflammation in macrophages. Moreover, ABCA1 and ABCG1 prevent amyloid ß accumulation; therefore, their increased activity may prevent Alzheimer's disease. Because ABCA1 and ABCG1 are affected by transcriptional, post-transcriptional, and post-translational regulation, the regulatory factors involved could also serve as therapeutic targets. This review highlights that ABCA1 and ABCG1 could be potential therapeutic targets for preventing atherosclerosis by regulating their expression, degradation, and localization.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Aterosclerosis/genética , Aterosclerosis/prevención & control , Terapia Molecular Dirigida , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/fisiología , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/metabolismo , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Transporte Biológico/genética , Colesterol/metabolismo , Progresión de la Enfermedad , Humanos , Macrófagos/metabolismo , Receptores X Retinoide/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Triglicéridos/metabolismo
11.
PLoS Genet ; 18(1): e1010021, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100266

RESUMEN

The aging eye experiences physiological changes that include decreased visual function and increased risk of retinal degeneration. Although there are transcriptomic signatures in the aging retina that correlate with these physiological changes, the gene regulatory mechanisms that contribute to cellular homeostasis during aging remain to be determined. Here, we integrated ATAC-seq and RNA-seq data to identify 57 transcription factors that showed differential activity in aging Drosophila photoreceptors. These 57 age-regulated transcription factors include two circadian regulators, Clock and Cycle, that showed sustained increased activity during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15-20% of genes including key components of the phototransduction machinery and many eye-specific transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors leads to changes in activity of 37 transcription factors and causes a progressive decrease in global levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent retinal degeneration and increased oxidative stress, independent of light exposure. Together, our data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the aging eye by directing gene regulatory networks that maintain expression of the phototransduction machinery and counteract oxidative stress.


Asunto(s)
Proteínas CLOCK/fisiología , Proteínas de Drosophila/fisiología , Drosophila/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Degeneración Retiniana/prevención & control , Transcripción Genética/fisiología , Envejecimiento/genética , Animales , Relojes Circadianos , Oscuridad , Fototransducción/genética , Degeneración Retiniana/metabolismo , Transcriptoma
12.
Life Sci ; 293: 120336, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065166

RESUMEN

AIMS: Individuals with nonalcoholic hepatosteatosis (NAFLD) have a worse atherogenic lipoprotein profile and are susceptible to cardiovascular diseases. The MEK-ERK signaling cascades are central regulators of the levels of LDL receptor (LDLR), a major determinant of circulating cholesterol. It is elusive how hepatic steatosis contributes to dyslipidemia, especially hypercholesterolemia. MAIN METHODS: The effects of BChE on signaling pathways were determined by immunoblotting in a BChE knockout hepatocyte cell line. DiI-LDL probe was used to explore the effect of BChE expression on LDL internalization. Co-immunoprecipitation and LC-MS were used to explore the interacting proteins with BChE. Finally, a hepatocyte-restricted BChE silencing mouse model was established by AAV8-Tbg-shRNA, and the hypercholesterolemia was induced by 65% kcal% high-fat, high-sucrose diet feeding. MAIN FINDINGS: Here we demonstrate that butyrylcholinesterase (BChE) governs the LDL receptor levels and LDL uptake capacity through the MEK-ERK signaling cascades to promote Ldlr transcription. BChE interacts and co-localizes with PRMT5, a protein methylation modifier controlling the ERK signaling. PRMT5 regulates LDLR-dependent LDL uptake and is a substrate of chaperone-mediated autophagy (CMA). BChE deficiency induces the PRTM5 degradation dependent on CMA activity, possibly through facilitating the HSC70 (Heat shock cognate 71 kDa) recognition of PRMT5. Remarkably, in vivo hepatocyte-restricted BChE silencing reduces plasma cholesterol levels substantially. In contrast, the BChE knockout mice are predisposed to hypercholesterolemia. SIGNIFICANCE: Taken together, these findings outline a regulatory role for the BChE-PRMT5-ERK-LDLR axis in hepatocyte cholesterol metabolism, and suggest that targeting liver BChE is an effective therapeutic strategy to treat hypercholesterolemia.


Asunto(s)
Butirilcolinesterasa/deficiencia , Hepatocitos/metabolismo , Hipercolesterolemia/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Receptores de LDL/metabolismo , Transcripción Genética/fisiología , Secuencia de Aminoácidos , Animales , Butirilcolinesterasa/genética , Tetracloruro de Carbono/toxicidad , Células Hep G2 , Humanos , Hipercolesterolemia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Receptores de LDL/genética
13.
Cell Rep ; 38(4): 110292, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35081348

RESUMEN

The MYC oncogene has been studied for decades, yet there is still intense debate over how this transcription factor controls gene expression. Here, we seek to answer these questions with an in vivo readout of discrete events of gene expression in single cells. We engineered an optogenetic variant of MYC (Pi-MYC) and combined this tool with single-molecule RNA and protein imaging techniques to investigate the role of MYC in modulating transcriptional bursting and transcription factor binding dynamics in human cells. We find that the immediate consequence of MYC overexpression is an increase in the duration rather than in the frequency of bursts, a functional role that is different from the majority of human transcription factors. We further propose that the mechanism by which MYC exerts global effects on the active period of genes is by altering the binding dynamics of transcription factors involved in RNA polymerase II complex assembly and productive elongation.


Asunto(s)
Regulación de la Expresión Génica/genética , Genes myc/fisiología , Transcripción Genética/fisiología , Animales , Línea Celular , Humanos , Ratones , Factores de Transcripción/metabolismo
14.
Elife ; 112022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35080493

RESUMEN

Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , ARN sin Sentido/metabolismo , Transcripción Genética/fisiología , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Endopeptidasa Clp/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , ARN sin Sentido/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Factores de Transcripción/metabolismo , Virulencia
15.
Cell Rep ; 38(2): 110221, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021094

RESUMEN

Protein-coding genes in trypanosomes occur in polycistronic transcription units (PTUs). How RNA polymerase II (Pol II) initiates transcription of PTUs has not been resolved; the current model favors chromatin modifications inducing transcription rather than sequence-specific promoters. Here, we uncover core promoters by functional characterization of Pol II peaks identified by chromatin immunoprecipitation sequencing (ChIP-seq). Two distinct promoters are located between divergent PTUs, each driving unidirectional transcription. Detailed analysis identifies a 75-bp promoter that is necessary and sufficient to drive full reporter expression and contains functional motifs. Analysis of further promoters suggests transcription initiation is regulated and promoters are either focused or dispersed. In contrast to the previous model of unregulated and promoter-independent transcription initiation, we find that sequence-specific promoters determine the initiation of Pol II transcription of protein-coding genes PTUs. These findings in Trypanosoma brucei suggest that in addition of chromatin modifications, promoter motifs-based regulation of gene expression is deeply conserved among eukaryotes.


Asunto(s)
Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Iniciación de la Transcripción Genética/fisiología , Proteínas Protozoarias/metabolismo , ARN Polimerasa II/genética , Transcripción Genética/fisiología , Trypanosoma/metabolismo , Trypanosoma brucei brucei/patogenicidad
16.
Mol Biol Rep ; 49(2): 1303-1320, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34807377

RESUMEN

BACKGROUND: Transcription elongation is a dynamic and tightly regulated step of gene expression in eukaryotic cells. Eleven nineteen Lysine rich Leukemia (ELL) and ELL Associated Factors (EAF) family of conserved proteins are required for efficient RNA polymerase II-mediated transcription elongation. Orthologs of these proteins have been identified in different organisms, including fission yeast and humans. METHODS AND RESULTS: In the present study, we have examined the sequence, structural and functional conservation between the fission yeast and human ELL and EAF orthologs. Our computational analysis revealed that these proteins share some sequence characteristics, and were predominantly disordered in both organisms. Our functional complementation assays revealed that both human ELL and EAF proteins could complement the lack of ell1+ or eaf1+ in Schizosaccharomyces pombe respectively. Furthermore, our domain mapping experiments demonstrated that both the amino and carboxyl terminal domains of human EAF proteins could functionally complement the S. pombe eaf1 deletion phenotypes. However, only the carboxyl-terminus domain of human ELL was able to partially rescue the phenotypes associated with lack of ell1+ in S. pombe. CONCLUSIONS: Collectively, our work adds ELL-EAF to the increasing list of human-yeast complementation gene pairs, wherein the simpler fission yeast can be used to further enhance our understanding of the role of these proteins in transcription elongation and human disease.


Asunto(s)
Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Secuencia de Aminoácidos/genética , Humanos , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , ARN Polimerasa II/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia , Factores de Transcripción/genética , Transcripción Genética/genética , Transcripción Genética/fisiología , Factores de Elongación Transcripcional/fisiología
17.
Nat Immunol ; 23(1): 109-121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937919

RESUMEN

Anemia is a major comorbidity in aging, chronic kidney and inflammatory diseases, and hematologic malignancies. However, the transcriptomic networks governing hematopoietic differentiation in blood cell development remain incompletely defined. Here we report that the atypical kinase RIOK2 (right open reading frame kinase 2) is a master transcription factor (TF) that not only drives erythroid differentiation, but also simultaneously suppresses megakaryopoiesis and myelopoiesis in primary human stem and progenitor cells. Our study reveals the previously uncharacterized winged helix-turn-helix DNA-binding domain and two transactivation domains of RIOK2 that are critical to regulate key hematopoietic TFs GATA1, GATA2, SPI1, RUNX3 and KLF1. This establishes RIOK2 as an integral component of the transcriptional regulatory network governing human hematopoietic differentiation. Importantly, RIOK2 mRNA expression significantly correlates with these TFs and other hematopoietic genes in myelodysplastic syndromes, acute myeloid leukemia and chronic kidney disease. Further investigation of RIOK2-mediated transcriptional pathways should yield therapeutic approaches to correct defective hematopoiesis in hematologic disorders.


Asunto(s)
Células Sanguíneas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Eritropoyesis/fisiología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicos/metabolismo , Mielopoyesis/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
18.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34949717

RESUMEN

Airway remodeling and airway hyperresponsiveness are central drivers of asthma severity. Airway remodeling is a structural change involving the dedifferentiation of airway smooth muscle (ASM) cells from a quiescent to a proliferative and secretory phenotype. Here, we show up-regulation of the endoplasmic reticulum Ca2+ sensor stromal-interacting molecule 1 (STIM1) in ASM of asthmatic mice. STIM1 is required for metabolic and transcriptional reprogramming that supports airway remodeling, including ASM proliferation, migration, secretion of cytokines and extracellular matrix, enhanced mitochondrial mass, and increased oxidative phosphorylation and glycolytic flux. Mechanistically, STIM1-mediated Ca2+ influx is critical for the activation of nuclear factor of activated T cells 4 and subsequent interleukin-6 secretion and transcription of pro-remodeling transcription factors, growth factors, surface receptors, and asthma-associated proteins. STIM1 drives airway hyperresponsiveness in asthmatic mice through enhanced frequency and amplitude of ASM cytosolic Ca2+ oscillations. Our data advocates for ASM STIM1 as a target for asthma therapy.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/fisiopatología , Músculo Liso/fisiopatología , Hipersensibilidad Respiratoria , Molécula de Interacción Estromal 1/fisiología , Animales , Asma/patología , Calcio/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Reprogramación Celular/fisiología , Enfermedad Crónica , Transporte Iónico , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Liso/patología , Molécula de Interacción Estromal 1/genética , Transcripción Genética/fisiología
19.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948282

RESUMEN

Protein uL5 (formerly called L11) is an integral component of the large (60S) subunit of the human ribosome, and its deficiency in cells leads to the impaired biogenesis of 60S subunits. Using RNA interference, we reduced the level of uL5 in HEK293T cells by three times, which caused an almost proportional decrease in the content of the fraction corresponding to 80S ribosomes, without a noticeable diminution in the level of polysomes. By RNA sequencing of uL5-deficient and control cell samples, which were those of total mRNA and mRNA from the polysome fraction, we identified hundreds of differentially expressed genes (DEGs) at the transcriptome and translatome levels and revealed dozens of genes with altered translational efficiency (GATEs). Transcriptionally up-regulated DEGs were mainly associated with rRNA processing, pre-mRNA splicing, translation and DNA repair, while down-regulated DEGs were genes of membrane proteins; the type of regulation depended on the GC content in the 3' untranslated regions of DEG mRNAs. The belonging of GATEs to up-regulated and down-regulated ones was determined by the coding sequence length of their mRNAs. Our findings suggest that the effects observed in uL5-deficient cells result from an insufficiency of translationally active ribosomes caused by a deficiency of 60S subunits.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas Ribosómicas/deficiencia , Proteínas Ribosómicas/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Células HEK293 , Humanos , Biosíntesis de Proteínas/fisiología , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Transcripción Genética/fisiología , Transcriptoma/genética
20.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873054

RESUMEN

RNA velocity is a promising technique for quantifying cellular transitions from single-cell transcriptome experiments and revealing transient cellular dynamics among a heterogeneous cell population. However, the cell transitions estimated from high-dimensional RNA velocity are often unstable or inaccurate, partly due to the high technical noise and less informative projection. Here, we present Velocity Autoencoder (VeloAE), a tailored representation learning method, to learn a low-dimensional representation of RNA velocity on which cellular transitions can be robustly estimated. On various experimental datasets, we show that VeloAE can both accurately identify stimulation dynamics in time-series designs and effectively capture expected cellular differentiation in different biological systems. VeloAE, therefore, enhances the usefulness of RNA velocity for studying a wide range of biological processes.


Asunto(s)
Aprendizaje Automático , ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Transcripción Genética/fisiología , Algoritmos , Perfilación de la Expresión Génica/métodos , Técnicas Genéticas , ARN/química , Análisis de la Célula Individual , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...