Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Intervalo de año de publicación
1.
Methods Mol Biol ; 2009: 307-315, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31152413

RESUMEN

G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors and are targets for over 30% of all drugs on the market. Structural information of GPCRs and more importantly that of the complex between GPCRs and their signaling partner heterotrimeric G proteins is of great importance. Here we present a method for the large-scale purification of the rhodopsin-transducin complex, the GPCR-G protein signaling complex in visual phototransduction, directly from their native retinal membrane using native proteins purified from bovine retinae. Formation of the complex on native membrane is orchestrated in part by the proper engagement of lipid-modified rhodopsin and transducin (i.e., palmitoylation of the rhodopsin C-terminus, myristoylation and farnesylation of the αT and γ1, respectively). The resulting complex is of high purity and stability and has proved suitable for further biophysical and structural studies. The methods described here should be applicable to other recombinantly expressed receptors from insect cells or mamalian cells by forming stable, functional complexes directly on purified cell membranes.


Asunto(s)
Membrana Celular/química , Complejos Multiproteicos , Retina/química , Rodopsina , Transducina , Animales , Bovinos , Complejos Multiproteicos/química , Complejos Multiproteicos/aislamiento & purificación , Estructura Cuaternaria de Proteína , Rodopsina/química , Rodopsina/aislamiento & purificación , Transducina/química , Transducina/aislamiento & purificación
2.
J Biol Chem ; 292(34): 14280-14289, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28655769

RESUMEN

The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (GT). This results in the dissociation of GT into its component αT-GTP and ß1γ1 subunit complex. Structural information for the Rho*-GT complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (GT*) comprising a GαT/Gαi1 chimera (αT*) and ß1γ1 The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to GαT* is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one GT*. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the ß2-adrenergic receptor-GS complex, including a flexible αT* helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex.


Asunto(s)
Proteínas del Ojo/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Modelos Moleculares , Rodopsina/metabolismo , Transducina/metabolismo , Animales , Bovinos , Cristalografía por Rayos X , Detergentes/química , Proteínas del Ojo/química , Proteínas del Ojo/genética , Proteínas del Ojo/aislamiento & purificación , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/aislamiento & purificación , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/aislamiento & purificación , Luz , Microscopía Electrónica , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Conformación Proteica/efectos de la radiación , Multimerización de Proteína/efectos de la radiación , Estabilidad Proteica/efectos de la radiación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Retina/enzimología , Retina/metabolismo , Retina/efectos de la radiación , Rodopsina/química , Rodopsina/aislamiento & purificación , Segmento Externo de la Célula en Bastón/enzimología , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/efectos de la radiación , Dispersión del Ángulo Pequeño , Solubilidad , Transducina/química , Transducina/genética , Transducina/aislamiento & purificación , Difracción de Rayos X
3.
Methods Mol Biol ; 884: 167-81, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22688705

RESUMEN

Rhodopsin is the dim-light photoreceptor responsible for initiation of the visual transduction cascade. In the dark its activity is very low, while light activation catalyzes the activation of its G-protein transducin. The first step in resetting rhodopsin and the phototransduction cascade involves the phosphorylation of light-active rhodopsin by rhodopsin kinase. Here, we describe assays to monitor the function of rhodopsin or rhodopsin mutants.


Asunto(s)
Rodopsina/metabolismo , Animales , Células COS , Bovinos , Chlorocebus aethiops , Activación Enzimática , Pruebas de Enzimas/métodos , Quinasa 1 del Receptor Acoplado a Proteína-G/metabolismo , Expresión Génica , Hibridación in Situ/métodos , Ratones , Rodopsina/aislamiento & purificación , Transducina/aislamiento & purificación , Transducina/metabolismo
4.
Biofizika ; 55(6): 986-9, 2010.
Artículo en Ruso | MEDLINE | ID: mdl-21268340

RESUMEN

A method for obtaining a free complex of transducin betagamma-subunits from bovine retinal rod outer segments in a highly purified state has been suggested.


Asunto(s)
Segmento Externo de la Célula en Bastón/química , Transducina/aislamiento & purificación , Animales , Bovinos , Complejos Multiproteicos/aislamiento & purificación , Subunidades de Proteína/aislamiento & purificación
5.
FASEB J ; 23(2): 371-81, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18827025

RESUMEN

Transitory binding between photoactivated rhodopsin (Rho* or Meta II) and the G protein transducin (Gt-GDP) is the first step in the visual signaling cascade. Light causes photoisomerization of the 11-cis-retinylidene chromophore in rhodopsin (Rho) to all-trans-retinylidene, which induces conformational changes that allow Gt-GDP to dock onto the Rho* surface. GDP then dissociates from Gt, leaving a transient nucleotide-empty Rho*-Gt(e) complex before GTP becomes bound, and Gt-GTP then dissociates from Rho*. Further biochemical advances are required before structural studies of the various Rho*-Gt complexes can be initiated. Here, we describe the isolation of n-dodecyl-beta-maltoside solubilized, stable, functionally active, Rho*-Gt(e), Rho(e)*-Gt(e), and 9-cis-retinal/11-cis-retinal regenerated Rho-Gt(e) complexes by sucrose gradient centrifugation. In these complexes, Rho* spectrally remained in its Meta II state, and Gt(e) retained its ability to interact with GTPgammaS. Removal of all-trans-retinylidene from Rho*-Gt(e) had no effect on the stability of the Rho(e)*-Gt(e) complex. Moreover, opsin in the Rho(e)*-Gt(e) complex with an empty nucleotide-binding pocket in Gt and an empty retinoid-binding pocket in Rho was regenerated up to 75% without complex dissociation. These results indicate that once Rho* couples with Gt, the chromophore plays a minor role in stabilizing this complex. Moreover, in complexes regenerated with 9-cis-retinal/11-cis-retinal, Rho retains a conformation similar to Rho* that is stabilized by Gt(e) apo-protein.


Asunto(s)
Rodopsina/aislamiento & purificación , Rodopsina/metabolismo , Transducina/aislamiento & purificación , Transducina/metabolismo , Animales , Bovinos , Microscopía Electrónica de Transmisión , Fotoquímica , Unión Proteica , Rodopsina/genética , Rodopsina/ultraestructura , Solubilidad , Transducina/ultraestructura
6.
Biochemistry ; 47(47): 12409-19, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-18975915

RESUMEN

Visual signal transduction serves as one of the best understood G protein-coupled receptor signaling systems. Signaling is initiated when a photon strikes rhodopsin (Rho) causing a conformational change leading to productive interaction of this G protein-coupled receptor with the heterotrimeric G protein, transducin (Gt). Here we describe a new method for Gt purification from native bovine rod photoreceptor membranes without subunit dissociation caused by exposure to photoactivated rhodopsin (Rho*). Native electrophoresis followed by immunoblotting revealed that Gt purified by this method formed more stable heterotrimers and interacted more efficiently with membranes containing Rho* or its target, phosphodiesterase 6, than did Gt purified by a traditional method involving subunit dissociation and reconstitution in solution without membranes. Because these differences could result from selective extraction, we characterized the type and amount of posttranslational modifications on both purified native and reconstituted Gt preparations. Similar N-terminal acylation of the Gtalpha subunit was observed for both proteins as was farnesylation and methylation of the terminal Gtgamma subunit Cys residue. However, hydrogen/deuterium exchange experiments revealed less incorporation of deuterium into the Gtalpha and Gtbeta subunits of native Gt as compared to reconstituted Gt. These findings may indicate differences in conformation and heterotrimer complex formation between the two preparations or altered stability of the reconstituted Gt that assembles differently than the native protein. Therefore, Gt extracted and purified without subunit dissociation appears to be more appropriate for future studies.


Asunto(s)
Transducina/química , Transducina/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Membrana Celular/química , Adaptación a la Oscuridad , Medición de Intercambio de Deuterio , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Segmento Externo de la Célula en Bastón/química , Segmento Externo de la Célula en Bastón/metabolismo , Transducina/aislamiento & purificación
8.
Protein Expr Purif ; 51(2): 187-97, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16938469

RESUMEN

Interactions between the transducin alpha-subunit (Galpha(t)) and the cGMP phosphodiesterase gamma-subunit (PDEgamma) are critical not only for turn-on but also turn-off of vertebrate visual signal transduction. Elucidation of the signaling mechanisms dominated by these interactions has been restrained by the lack of atomic structures for full-length Galpha(t)/PDEgamma complexes, in particular, the signaling-state complex represented by Galpha(t).GTPgammaS/PDEgamma. As a preliminary step in our effort for NMR structural analysis of Galpha(t)/PDEgamma interactions, we have developed efficient protocols for the large-scale production of recombinant Galpha(t) (rGalpha(t)) and homogeneous and functional isotopically labeled PDEgamma from Escherichia coli cells. One-step purification of rGalpha(t) was achieved through cobalt affinity chromatography in the presence of glycerol, which effectively removed the molecular chaperone DnaK that otherwise persistently co-purified with rGalpha(t). The purified rGalpha(t) was found to be functional in GTPgammaS/GDP exchange upon activation of rhodopsin and was used to form a signaling-state complex with labeled PDEgamma, rGalpha(t). GTPgammaS/[U-13C,15N]PDEgamma. The labeled PDEgamma sample yielded a well-resolved 1H-15N HSQC spectrum. The methods described here for large-scale production of homogeneous and functional rGalpha(t) and isotope-labeled PDEgamma should support further NMR structural analysis of the rGalpha(t)/PDEgamma complexes. In addition, our protocol for removing the co-purifying DnaK contaminant may be of general utility in purifying E. coli-expressed recombinant proteins.


Asunto(s)
Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Transducina/aislamiento & purificación , Secuencia de Aminoácidos , Isótopos de Carbono , Cromatografía de Afinidad , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Escherichia coli/metabolismo , Proteínas de Escherichia coli/aislamiento & purificación , Glicerol/farmacología , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Marcaje Isotópico , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transducina/metabolismo
9.
J Biochem Mol Biol ; 37(2): 260-7, 2004 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-15469705

RESUMEN

Transducin (T), the heterotrimeric guanine nucleotide binding protein in rod outer segments, serves as an intermediary between the receptor protein, rhodopsin, and the effector protein, cGMP phosphodiesterase. Labeling of T with dansyl chloride (DnsCl) inhibited its light-dependent guanine nucleotide binding activity. Conversely, DnsCl had no effect on the functionality of rhodopsin. Approximately 2-3 mol of DnsCl were incorporated per mole of T. Since fluoroaluminate was capable of activating DnsCl-modified T, this lysine-specific labeling compound did not affect the guanine nucleotide-binding pocket of T. However, the labeling of T with DnsCl hindered its binding to photoexcited rhodopsin, as shown by sedimentation experiments. Additionally, rhodopsin completely protected against the DnsCl inactivation of T. These results demonstrated the existence of functional lysines on T that are located in the proximity of the interaction site with the photoreceptor protein.


Asunto(s)
Compuestos de Dansilo/farmacología , Rodopsina/metabolismo , Transducina/efectos de los fármacos , Animales , Bovinos , Ojo/anatomía & histología , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Proteínas de Unión al GTP/metabolismo , Nucleótidos de Guanina/química , Nucleótidos de Guanina/metabolismo , Luz , Lisina/química , Unión Proteica/efectos de los fármacos , Segmento Externo de la Célula en Bastón/química , Coloración y Etiquetado , Transducina/química , Transducina/aislamiento & purificación , Transducina/metabolismo
10.
Proc Natl Acad Sci U S A ; 101(34): 12508-13, 2004 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-15306683

RESUMEN

The intramolecular interactions that stabilize the inactive conformation of rhodopsin are of primary importance in elucidating the mechanism of activation of this and other G protein-coupled receptors. In the present study, site-directed spin labeling is used to explore the role of a buried salt bridge between the protonated Schiff base at K296 in TM7 and its counterion at E113 in TM3. Spin-label sensors are placed at positions in the cytoplasmic surface of rhodopsin to monitor changes in the structure of the helix bundle caused by point mutations that disrupt the salt bridge. The single point mutations E113Q, G90D, and A292E, which were previously reported to cause constitutive activation of the apoprotein opsin, are found to cause profound movements of both TM3 and TM6 in the dark state, the latter of which is similar to that caused by light activation. The mutant M257Y, which constitutively activates opsin but does not disrupt the salt bridge, is shown to cause related but distinguishable structural changes. The double mutants E113Q/M257Y and G90D/M257Y produce strong activation of the receptor in the dark state. In the E113Q/M257Y mutant investigated with spin labeling, the movement of TM6 and other changes are exaggerated relative to either E113Q or M257Y alone. Collectively, the results provide structural evidence that the salt bridge is a key constraint maintaining the resting state of the receptor, and that the disruption of the salt bridge is the cause, rather than a consequence, of the TM6 motion that occurs upon activation.


Asunto(s)
Estructura Terciaria de Proteína , Rodopsina/química , Rodopsina/metabolismo , Animales , Espectroscopía de Resonancia por Spin del Electrón , Luz , Modelos Moleculares , Estructura Molecular , Mutación Puntual , Rodopsina/genética , Marcadores de Spin , Transducina/aislamiento & purificación , Transducina/metabolismo
11.
Electrophoresis ; 24(19-20): 3493-9, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14595696

RESUMEN

Partially purified transducin was resolved using two-dimensional gel electrophoresis (2-DE). Peptide mass fingerprinting of several different spots believed to correspond to the 37 kDa beta-subunit of transducin (T(beta)) was performed. Spots were excised and proteolyzed using modified trypsin. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was performed on the peptide mixture resulting from each spot. As many as six spots with different pI, ranging from 5.2 to 6.1, were observed when separated using 2-DE. MALDI peptide mass fingerprinting determined with high probability that all of the spots were the same gene product, guanine nucleotide-binding protein G(I)/G(S)/G(T) beta-subunit 1 (GNB1; T(beta1)). This suggested that post-translational modification was responsible for the differences in pI. Phosphorylation experiments showed that at least one T(beta1) spot was phosphorylated in vitro with [gamma-(32)P]ATP by an endogenous kinase. Treatment of T(beta) with alkaline phosphatase caused a large change in the spot pattern of T(beta), suggesting that phosphorylated T(beta) is a substrate for alkaline phosphatase. We conclude that T(beta1) constitutes over 99% of the T(beta) expressed in bovine rod outer segments and displays structural heterogeneity that is due to post-translational modification. We also conclude that some, but not all, of the heterogeneity observed is due to phosphorylation of Tb1.


Asunto(s)
Proteómica/métodos , Transducina/aislamiento & purificación , Animales , Bovinos , Electroforesis en Gel Bidimensional , Fosforilación , Procesamiento Proteico-Postraduccional , Segmento Externo de la Célula en Bastón/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transducina/análisis , Transducina/química
15.
Nat Genet ; 28(1): 58-63, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11326277

RESUMEN

The ability to taste the sweetness of carbohydrate-rich foodstuffs has a critical role in the nutritional status of humans. Although several components of bitter transduction pathways have been identified, the receptors and other sweet transduction elements remain unknown. The Sac locus in mouse, mapped to the distal end of chromosome 4 (refs. 7-9), is the major determinant of differences between sweet-sensitive and -insensitive strains of mice in their responsiveness to saccharin, sucrose and other sweeteners. To identify the human Sac locus, we searched for candidate genes within a region of approximately one million base pairs of the sequenced human genome syntenous to the region of Sac in mouse. From this search, we identified a likely candidate: T1R3, a previously unknown G protein-coupled receptor (GPCR) and the only GPCR in this region. Mouse Tas1r3 (encoding T1r3) maps to within 20,000 bp of the marker closest to Sac (ref. 9) and, like human TAS1R3, is expressed selectively in taste receptor cells. By comparing the sequence of Tas1r3 from several independently derived strains of mice, we identified a specific polymorphism that assorts between taster and non-taster strains. According to models of its structure, T1r3 from non-tasters is predicted to have an extra amino-terminal glycosylation site that, if used, would interfere with dimerization.


Asunto(s)
Receptores de Superficie Celular/genética , Receptores Acoplados a Proteínas G , Edulcorantes , Gusto/genética , Alelos , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Cromosomas/genética , Humanos , Isoenzimas/aislamiento & purificación , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Fosfolipasa C beta , Receptores AMPA , Receptores Sensibles al Calcio , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Papilas Gustativas/química , Papilas Gustativas/ultraestructura , Transducina/aislamiento & purificación , Fosfolipasas de Tipo C/aislamiento & purificación
16.
Methods Enzymol ; 315: 238-51, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10736706

RESUMEN

The data collected with the techniques discussed in this chapter suggest significant differences between the active conformation(s) of the opsin/atr complex, which are reversibly formed in the dark, and the active conformation (R*) of the meta-II photoproduct. First, there is good evidence for noncovalent opsin/atr complexes with considerable activity (although covalent binding of atr is found in mutant opsins. Even more intriguing, all-trans-retinal in an amount that saturates the activity of the opsin/atr complex toward Gt does not measurably inhibit the access of 11-cis-retinal to the light-sensitive binding site during regeneration (Fig. 2C). On the other hand, forced protonation at or near Glu-134 appears to be an integral mechanism for both the meta-II and the opsin-like activities (Fig. 4). Thus, it is not inconceivable that these two activities of the receptor arise from two fundamentally different conformations, one meta-II-like and one opsin-like. They would be similar with respect to the Gt (or RK) protein-protein interaction but different in their mode of retinal-protein interaction.


Asunto(s)
Proteínas del Ojo , Retinaldehído/metabolismo , Rodopsina/metabolismo , Opsinas de Bastones/metabolismo , Animales , Arrestina/aislamiento & purificación , Arrestina/metabolismo , Bovinos , Membrana Celular/química , Membrana Celular/metabolismo , Quinasa 1 del Receptor Acoplado a Proteína-G , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Fosforilación , Proteínas Quinasas/aislamiento & purificación , Proteínas Quinasas/metabolismo , Retina/metabolismo , Rodopsina/química , Rodopsina/aislamiento & purificación , Segmento Externo de la Célula en Bastón/química , Segmento Externo de la Célula en Bastón/metabolismo , Opsinas de Bastones/química , Opsinas de Bastones/aislamiento & purificación , Espectrofotometría/métodos , Transducina/aislamiento & purificación , Transducina/metabolismo
18.
Eur J Biochem ; 261(1): 72-80, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10103035

RESUMEN

Known nucleoside diphosphate kinases (NDPKs) are oligomers of 17-23-kDa subunits and catalyze the reaction N1TP + N2DP --> N1DP + N2TP via formation of a histidine-phosphorylated enzyme intermediate. NDPKs are involved in the activation of heterotrimeric GTP-binding proteins (G-proteins) by catalyzing the formation of GTP from GDP, but the properties of G-protein-associated NDPKs are still incompletely known. The aim of our present study was to characterize NDPK in soluble preparations of the retinal G-protein transducin. The NDPK is operationally referred to as transducin-NDPK. Like known NDPKs, transducin-NDPK utilizes NTPs and phosphorothioate analogs of NTPs as substrates. GDP was a more effective phosphoryl group acceptor at transducin-NDPK than ADP and CDP, and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) was a more effective thiophosphoryl group donor than adenosine 5'-[gamma-thio]triphosphate (ATP[S]). In contrast with their action on known NDPKs, mastoparan and mastoparan 7 had no stimulatory effect on transducin-NDPK. Guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) potentiated [3H]GTP[S] formation from [3H]GDP and ATP[S] but not [3H]GTP[S] formation from [3H]GDP and GTP[S]. Depending on the thiophosphoryl group acceptor and donor, [3H]NTP[S] formation was differentially regulated by Mg2+, Mn2+, Co2+, Ca2+ and Zn2+. [gamma-32P]ATP and [gamma-32P]GTP [32P]phosphorylated, and [35S]ATP[S] [35S]thiophosphorylated, a 36-kDa protein comigrating with transducin-beta. p[NH]ppG potentiated [35S]thiophosphorylation of the 36-kDa protein. 32P-labeling of the 36-kDa protein showed characteristics of histidine phosphorylation. There was no evidence for (thio)phosphorylation of 17-23-kDa proteins. Our data show the following: (a) soluble transducin preparations contain a GDP-prefering and guanine nucleotide-regulated NDPK; (b) transducin-beta may serve as a (thio)phosphorylated NDPK intermediate; (c) transducin-NDPK is distinct from known NDPKs and may consist of multiple kinases or a single kinase with multiple regulatory domains.


Asunto(s)
Nucleósido-Difosfato Quinasa/aislamiento & purificación , Transducina/aislamiento & purificación , Animales , Cationes Bivalentes , Bovinos , Ácido Edético , Guanosina Difosfato/metabolismo , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular , Cinética , Nucleósido-Difosfato Quinasa/metabolismo , Péptidos , Fosforilación , Conformación Proteica , Segmento Externo de la Célula en Bastón/química , Segmento Externo de la Célula en Bastón/enzimología , Solubilidad , Transducina/metabolismo , Venenos de Avispas/farmacología
19.
Proc Natl Acad Sci U S A ; 96(5): 1947-52, 1999 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-10051575

RESUMEN

Proteins of the regulators of G protein signaling (RGS) family modulate the duration of intracellular signaling by stimulating the GTPase activity of G protein alpha subunits. It has been established that the ninth member of the RGS family (RGS9) participates in accelerating the GTPase activity of the photoreceptor-specific G protein, transducin. This process is essential for timely inactivation of the phototransduction cascade during the recovery from a photoresponse. Here we report that functionally active RGS9 from vertebrate photoreceptors exists as a tight complex with the long splice variant of the G protein beta subunit (Gbeta5L). RGS9 and Gbeta5L also form a complex when coexpressed in cell culture. Our data are consistent with the recent observation that several RGS proteins, including RGS9, contain G protein gamma-subunit like domain that can mediate their association with Gbeta5 (Snow, B. E., Krumins, A. M., Brothers, G. M., Lee, S. F., Wall, M. A., Chung, S., Mangion, J., Arya, S., Gilman, A. G. & Siderovski, D. P. (1998) Proc. Natl. Acad. Sci. USA 95, 13307-13312). We report an example of such a complex whose cellular localization and function are clearly defined.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas/química , Proteínas/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Transducina/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos , Epítopos/química , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/aislamiento & purificación , Proteínas Activadoras de GTPasa , Sustancias Macromoleculares , Espectrometría de Masas , Datos de Secuencia Molecular , Unión Proteica , Proteínas/aislamiento & purificación , Rodopsina/metabolismo , Transducina/aislamiento & purificación , Vertebrados , Proteínas Activadoras de ras GTPasa , Proteínas ras/metabolismo
20.
Biol Res ; 31(1): 59-71, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-10347747

RESUMEN

Rhodopsin samples, isolated using four different extraction procedures, were used to investigate the photodependent activation of the GTPase activity of transducin. A complete inhibition of transducin light-dependent GTP hydrolytic activity was observed when rhodopsin purified in the presence of 1% digitonin, following rod outer segment (ROS) solubilization with 1% 3-[(3-cholamidopropyl) dimethylammonio]-1-propane-sulfonate (CHAPS), was used for its activation [0 pmol of inorganic phosphate (Pi) released/min/pmol of rhodopsin]. Rhodopsin, isolated in the presence of 1% digitonin following ROS solubilization with 1% digitonin, was capable of stimulating slightly transducin GTPase activity, with an initial rate of 1 pmol of GTP hydrolyzed/min/pmol of rhodopsin. However, rhodopsin purified in the presence of 0.2% n-dodecyl-beta-D-maltoside (DM), following ROS solubilization with either 1% CHAPS or 1% DM, stimulated the enzymatic activity of transducin in a light-dependent manner, with an initial rate of 5 pmol of Pi released/min/pmol of rhodopsin. Addition of 0.075% egg phosphatidylcholine (PC) to the four different solubilized rhodopsin samples significantly enhanced light-stimulated GTP hydrolysis by transducin, with initial rates increasing from 0 to 1, 1 to 2, and 5 to 30 pmol of Pi released/min/pmol of rhodopsin, respectively. Furthermore, DM-solubilized rhodopsin induced the hydrolysis of the maximum amount of GTP by transducin at 0.0075% PC, while digitonin-solubilized rhodopsin only stimulated the GTPase activity of transducin to a similar value, when the amount of the photoreceptor protein was increased 4-fold and 0.15% PC was added to the assay mixture. These results suggest that the effective photoactivation of transducin by rhodopsin requires phospholipids, which seem to be differentially eliminated with the detergent extraction procedure utilized during ROS membranes solubilization and photopigment isolation.


Asunto(s)
Detergentes/farmacología , Lípidos/farmacología , Estimulación Luminosa , Rodopsina/farmacología , Transducina , Animales , Bovinos , GTP Fosfohidrolasas/metabolismo , Retina , Transducina/aislamiento & purificación , Transducina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...