Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 3336, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620782

RESUMEN

We describe theory, experiments, and analyses of three-color Förster resonance energy transfer (FRET) spectroscopy for probing sub-millisecond conformational dynamics of protein folding and binding of disordered proteins. We devise a scheme that uses single continuous-wave laser excitation of the donor instead of alternating excitation of the donor and one of the acceptors. This scheme alleviates photophysical problems of acceptors such as rapid photobleaching, which is crucial for high time resolution experiments with elevated illumination intensity. Our method exploits the molecular species with one of the acceptors absent or photobleached, from which two-color FRET data is collected in the same experiment. We show that three FRET efficiencies and kinetic parameters can be determined without alternating excitation from a global maximum likelihood analysis of two-color and three-color photon trajectories. We implement co-parallelization of CPU-GPU processing, which leads to a significant reduction of the likelihood calculation time for efficient parameter determination.


Asunto(s)
Algoritmos , Transferencia Resonante de Energía de Fluorescencia/métodos , Modelos Teóricos , Conformación Proteica , Pliegue de Proteína , Proteínas/química , Color , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Microscopía Confocal , Fotoblanqueo , Fotones , Unión Proteica , Proteínas/metabolismo , Factores de Tiempo
2.
J Phys Chem B ; 123(3): 675-688, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30571128

RESUMEN

We develop a Bayesian nonparametric framework to analyze single molecule FRET (smFRET) data. This framework, a variation on infinite hidden Markov models, goes beyond traditional hidden Markov analysis, which already treats photon shot noise, in three critical ways: (1) it learns the number of molecular states present in a smFRET time trace (a hallmark of nonparametric approaches), (2) it accounts, simultaneously and self-consistently, for photophysical features of donor and acceptor fluorophores (blinking kinetics, spectral cross-talk, detector quantum efficiency), and (3) it treats background photons. Point 2 is essential in reducing the tendency of nonparametric approaches to overinterpret noisy single molecule time traces and so to estimate states and transition kinetics robust to photophysical artifacts. As a result, with the proposed framework, we obtain accurate estimates of single molecule properties even when the supplied traces are excessively noisy, subject to photoartifacts, and of short duration. We validate our method using synthetic data sets and demonstrate its applicability to real data sets from single molecule experiments on Holliday junctions labeled with conventional fluorescent dyes.


Asunto(s)
ADN/química , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Teorema de Bayes , ADN Cruciforme , Colorantes Fluorescentes/química , Cinética , Cadenas de Markov
3.
ACS Synth Biol ; 7(6): 1528-1537, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29799736

RESUMEN

The measurement of noise is critical when assessing the design and function of synthetic biological systems. Cell-to-cell variability can be quantified experimentally using single-cell measurement techniques such as flow cytometry and fluorescent microscopy. However, these approaches are costly and impractical for high-throughput parallelized experiments, which are frequently conducted using plate-reader devices. In this paper we describe reporter systems that allow estimation of the cell-to-cell variability in a biological system's output using only measurements of a cell culture's bulk properties. We analyze one potential implementation of such a system that is based upon a fluorescent protein FRET reporter pair, finding that with typical parameters from the literature it is able to reliably estimate variability. We also briefly describe an alternate implementation based upon an activating sRNA circuit. The feasible region of parameter values for which the reporter system can function is assessed, and the dependence of its performance on both extrinsic and intrinsic noise is investigated. Experimental realization of these constructs can yield novel reporter systems that allow measurement of a synthetic gene circuit's output, as well as the intrapopulation variability of this output, at little added cost.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Redes Reguladoras de Genes , Biología Sintética/métodos , Técnicas de Cultivo de Célula , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Regulación de la Expresión Génica , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , ARN de Transferencia/genética , Sensibilidad y Especificidad
4.
Curr Opin Struct Biol ; 48: 40-48, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29080468

RESUMEN

Intrinsically disordered proteins (IDPs) play important roles in many physiological processes such as signal transduction and transcriptional regulation. Computer simulations that are based on empirical force fields have been increasingly used to understand the biophysics of disordered proteins. In this review, we focus on recent improvement of protein force fields, including polarizable force fields, concerning their accuracy in modeling intrinsically disordered proteins. Some recent benchmarks and applications of these force fields are also overviewed.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Agua/química , Animales , Teorema de Bayes , Benchmarking , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Método de Montecarlo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Pliegue de Proteína , Dispersión del Ángulo Pequeño , Termodinámica , Agua/metabolismo , Difracción de Rayos X/estadística & datos numéricos
5.
Curr Opin Struct Biol ; 48: 30-39, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29080467

RESUMEN

The transition path is the tiny segment of a single molecule trajectory when the free energy barrier between states is crossed and for protein folding contains all of the information about the self-assembly mechanism. As a first step toward obtaining structural information during the transition path from experiments, single molecule FRET spectroscopy has been used to determine average transition path times from a photon-by-photon analysis of fluorescence trajectories. These results, obtained for several different proteins, have already provided new and demanding tests that support both the accuracy of all-atom molecular dynamics simulations and the basic postulates of energy landscape theory of protein folding.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Simulación de Dinámica Molecular , Fotones , Proteínas/química , Imagen Individual de Molécula/métodos , Animales , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Humanos , Cinética , Pliegue de Proteína , Proteínas/metabolismo , Espectrometría de Fluorescencia , Termodinámica
6.
PLoS One ; 11(8): e0160716, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27532626

RESUMEN

Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to customize the analysis for their own needs. By bundling analysis description, code and results in a single document, FRETBursts allows to seamless share analysis workflows and results, encourages reproducibility and facilitates collaboration among researchers in the single-molecule community.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Programas Informáticos , Algoritmos , Análisis de Varianza , Fotones , Reproducibilidad de los Resultados
7.
Opt Express ; 23(3): 3353-72, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836193

RESUMEN

Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Animales , Células COS , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Rayos Láser , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/efectos de la radiación , Microscopía de Fluorescencia por Excitación Multifotónica , Modelos Teóricos , Fenómenos Ópticos , Fotones , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efectos de la radiación , Transfección
8.
Bull Math Biol ; 76(10): 2596-626, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25253276

RESUMEN

Analysis of fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET) experiments in living cells is usually based on mean lifetimes computations. However, these mean lifetimes can induce misinterpretations. We propose in this work the implementation of the transportation distance for FLIM and FRET experiments in vivo. This non-fitting indicator, which is easy to compute, reflects the similarity between two distributions and can be used for pixels clustering to improve the estimation of the FRET parameters. We study the robustness and the discriminating power of this transportation distance, both theoretically and numerically. In addition, a comparison study with the largely used mean lifetime differences is performed. We finally demonstrate practically the benefits of the transportation distance over the usual mean lifetime differences for both FLIM and FRET experiments in living cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Microscopía Fluorescente/estadística & datos numéricos , Línea Celular , Células/metabolismo , Células/ultraestructura , Simulación por Computador , Colorantes Fluorescentes , Células HEK293 , Humanos , Conceptos Matemáticos , Modelos Estadísticos , Método de Montecarlo , Factores de Tiempo
9.
Cytometry A ; 83(4): 375-85, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23504771

RESUMEN

A frequently used method for viewing protein interactions and conformation, Förster (fluorescence) resonance energy transfer (FRET), has traditionally been restricted to two fluorophores. Lately, several methods have been introduced to expand FRET methods to three species. We present a method that allows the determination of FRET efficiency in three-dye systems on a flow cytometer. TripleFRET accurately reproduces energy transfer efficiency values measured in two-dye systems, and it can indicate the presence of trimeric complexes, which is not possible with conventional FRET methods. We also discuss the interpretation of energy transfer values obtained with tripleFRET in relation to spatial distribution of labeled molecules, specifically addressing the limitations of using total energy transfer to determine molecular distance.


Asunto(s)
Anticuerpos/química , Citometría de Flujo/estadística & datos numéricos , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Colorantes Fluorescentes/análisis , Anticuerpos/inmunología , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/inmunología , Línea Celular , Citometría de Flujo/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Unión Proteica , Coloración y Etiquetado , Trastuzumab
10.
J Biomed Opt ; 18(2): 26024, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23423332

RESUMEN

Accurate quantification of Förster resonance energy transfer (FRET) using intensity-based methods is difficult due to the overlap of fluorophore excitation and emission spectra. Consequently, mechanisms are required to remove bleedthrough of the donor emission into the acceptor channel and direct excitation of the acceptor when aiming to excite only the donor fluorophores. Methods to circumvent donor bleedthrough using the unmixing of emission spectra have been reported, but these require additional corrections to account for direct excitation of the acceptor. Here we present an alternative method for robust quantification of FRET efficiencies based upon the simultaneous spectral unmixing of both excitation and emission spectra. This has the benefit over existing methodologies in circumventing the issue of donor bleedthrough and acceptor cross excitation without the need for additional corrections. Furthermore, we show that it is applicable with as few as two excitation wavelengths and so can be used for quantifying FRET efficiency in microscope images as easily as for data collected on a spectrofluorometer. We demonstrate the accuracy of the approach by reproducing efficiency values in well characterized FRET standards: HEK cells expressing a variety of linked cerulean and venus fluorescent proteins. Finally we describe simple ImageJ plugins that can be used to calculate and create images of FRET efficiencies from microscope images.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Algoritmos , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/estadística & datos numéricos , Fenómenos Ópticos
11.
J Periodontal Res ; 47(5): 616-25, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22458637

RESUMEN

BACKGROUND AND OBJECTIVE: The aim of the study was to compare the detection of Porphyromonas gingivalis using a fluorescence resonance energy transfer (FRET) technology with commonly used diagnostic methods in salivary and subgingival plaque samples from subjects with dental implants. P. gingivalis was considered as a marker for a pathogenic microbiota. MATERIAL AND METHODS: Ninety-seven adult subjects were recruited, including periodontally healthy controls with no dental implants, implant controls with no peri-implant disease and patients with peri-implant disease. Saliva and subgingival/submucosal plaque samples were collected from all subjects and were analyzed using culture, real-time PCR and FRET technology employing P. gingivalis-specific substrates. RESULTS: It was found that the P. gingivalis-specific substrates were highly suitable for detecting the presence of P. gingivalis in saliva and in subgingival plaque samples, showing comparable specificity to culture and real-time PCR. CONCLUSION: We applied the FRET technology to detect P. gingivalis in implant patients with or without an implant condition and in controls without implants. The technique seems suitable for detection of P. gingivalis in both plaque and saliva samples. However, with all three techniques, P. gingivalis was not very specific for peri-implantitis cases. Future work includes fine-tuning the FRET technology and also includes the development of a chair-side application.


Asunto(s)
Infecciones por Bacteroidaceae/microbiología , Implantes Dentales/microbiología , Transferencia Resonante de Energía de Fluorescencia/métodos , Periimplantitis/microbiología , Porphyromonas gingivalis/aislamiento & purificación , Adulto , Anciano , Anciano de 80 o más Años , Carga Bacteriana , Técnicas Bacteriológicas/estadística & datos numéricos , Compuestos Cromogénicos , Placa Dental/microbiología , Estudios de Factibilidad , Femenino , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Hemorragia Gingival/microbiología , Recesión Gingival/microbiología , Humanos , Masculino , Persona de Mediana Edad , Bolsa Periodontal/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/estadística & datos numéricos , Saliva/microbiología , Sensibilidad y Especificidad , Estomatitis/microbiología
12.
Biosens Bioelectron ; 26(11): 4497-502, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21621405

RESUMEN

In this work, we proposed a novel biosensor to homogeneously detect concanavalin A (ConA) using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer (FRET). Maltose-grafted-aminopyrene (Mal-Apy) was synthesized and characterized by mass spectra, UV-vis and fluorescence spectra. The Mal-Apy was further employed for fluorescence switch and ConA recognition. When Mal-Apy was self-assembled on the surface of graphene by means of π-stacking interaction, its fluorescence was adequately quenched because the graphene acted as a "nanoquencher" of the pyrene rings due to FRET. As a result, in the presence of ConA, competitive binding of ConA with glucose destroyed the π-stacking interaction between the pyrene and graphene, thereby causing the fluorescence recovery. This method was demonstrated the selective sensing of ConA, and the linear range is 2.0 × 10⁻² to 1.0 µM with the linear equation y=1.029x + 0.284 (R = 0.996). The limit of detection for ConA was low to 0.8 nM, and the detection of ConA could be performed in 5 min, indicating that this method could be used for fast, sensitive, and selective sensing of ConA. Such data suggests that the graphene FRET platform is a great potential application for protein-carbohydrate studies, and would be widely applied in drug screening, bimolecular recognition and disease diagnosis.


Asunto(s)
Técnicas Biosensibles/métodos , Concanavalina A/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas Biosensibles/estadística & datos numéricos , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Grafito , Límite de Detección , Maltosa , Microscopía de Fuerza Atómica , Pirenos
13.
Biophys J ; 99(9): 3102-11, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21044609

RESUMEN

Single-molecule FRET (smFRET) has long been used as a molecular ruler for the study of biology on the nanoscale (∼2-10 nm); smFRET in total-internal reflection fluorescence (TIRF) Förster resonance energy transfer (TIRF-FRET) microscopy allows multiple biomolecules to be simultaneously studied with high temporal and spatial resolution. To operate at the limits of resolution of the technique, it is essential to investigate and rigorously quantify the major sources of noise and error; we used theoretical predictions, simulations, advanced image analysis, and detailed characterization of DNA standards to quantify the limits of TIRF-FRET resolution. We present a theoretical description of the major sources of noise, which was in excellent agreement with results for short-timescale smFRET measurements (<200 ms) on individual molecules (as opposed to measurements on an ensemble of single molecules). For longer timescales (>200 ms) on individual molecules, and for FRET distributions obtained from an ensemble of single molecules, we observed significant broadening beyond theoretical predictions; we investigated the causes of this broadening. For measurements on individual molecules, analysis of the experimental noise allows us to predict a maximum resolution of a FRET change of 0.08 with 20-ms temporal resolution, sufficient to directly resolve distance differences equivalent to one DNA basepair separation (0.34 nm). For measurements on ensembles of single molecules, we demonstrate resolution of distance differences of one basepair with 1000-ms temporal resolution, and differences of two basepairs with 80-ms temporal resolution. Our work paves the way for ultra-high-resolution TIRF-FRET studies on many biomolecules, including DNA processing machinery (DNA and RNA polymerases, helicases, etc.), the mechanisms of which are often characterized by distance changes on the scale of one DNA basepair.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Emparejamiento Base , Fenómenos Biofísicos , ADN/química , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia/normas , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos , Método de Montecarlo , Nanotecnología
14.
J Phys Chem B ; 114(16): 5386-403, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20361785

RESUMEN

We compare two different types of hidden Markov modeling (HMM) algorithms, e.g., multivariate HMM (MHMM) and univariate HMM (UHMM), for the analysis of time-binned single-molecule fluorescence energy transfer (smFRET) data. In MHMM, the original two channel signals, i.e., the donor fluorescence intensity (I(D)) and acceptor fluorescence intensity (I(A)), are simultaneously analyzed. However, in UHMM, only the calculated FRET trajectory is analyzed. On the basis of the analysis of both synthetic and experimental data, we find that, if the noise in the signal is described with a proper probability distribution, MHMM generally outperforms UHMM. We also show that, in the case of multiple trajectories, analyzing them simultaneously gives better results than averaging over individual analysis results.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Cadenas de Markov , Algoritmos , Secuencia de Bases , ADN/genética , ADN/metabolismo , Análisis Multivariante , Rec A Recombinasas/metabolismo , Factores de Tiempo
16.
J Phys Chem B ; 112(24): 7308-14, 2008 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-18491936

RESUMEN

A new numerical analysis method for experimental single-pair fluorescence resonance energy transfer (sp-FRET) data is proposed. In this method, every single data point was plotted in a style of a cumulative distribution function and dedicated to curve-fitting analysis, so that the analysis does not depend on bin size. A series of numerical simulations showed that this analysis has a more efficient and accurate resolvability of components than a fitting method based on Gaussian functions to a histogram plot. A simulated data based on experimental FRET distributions were also used to discuss the fitting errors of this method. The proposed method was applied to sp-FRET experiments of doubly dye-labeled double-strand DNA with a short sequence. Mixtures of up to three species were analyzed, and the contributions up to four subpopulations were successfully resolved.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Distribuciones Estadísticas , Algoritmos , Biotina/química , Carbocianinas/química , Simulación por Computador , ADN/química , Colorantes Fluorescentes/química , Microscopía Confocal , Polidesoxirribonucleótidos/química , Rodaminas/química
17.
Cytometry A ; 73(5): 442-50, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18340643

RESUMEN

Monitoring protein function with high throughput at individual cell level is of high interest both for basic research and diagnostic applications. For this, following the changes in fluorescence resonance energy transfer (FRET) between a donor/acceptor pair, genetically encoded in the proteins of interest, is a frequently used tool. As proteins attached to or located in the plasma membrane represent a considerable fraction of total proteins, there is a need for high throughput imaging techniques suited for observation of proteins in the cell membrane only. A system is presented, which allows rapid imaging of large areas via total internal reflection fluorescence microscopy (TIRFM) conditions, using a focus-hold system, multiwavelength excitation and dual color detection. The developed imaging system enables screening of large numbers of cells under TIRFM illumination combined with FRET imaging, thereby providing the means to record, e.g., FRET-efficiency of a membrane-associated protein labeled with a donor-acceptor pair. The capability of the system to perform live-FRET scanning with TIRFM on stoichiometric FRET constructs, reaching throughput of up to 1,000 cells/s at the optical resolution limit is demonstrated. A comparison with confocal microscopy shows that TIRFM offers a 4.2-fold advantage in our conditions over confocal microscopy in detecting contributions from membrane-localized proteins.


Asunto(s)
Membrana Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Humanos , Canales Iónicos/metabolismo , Células Jurkat , Microscopía Confocal/métodos , Receptores de Superficie Celular/metabolismo
18.
Langmuir ; 24(3): 921-6, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18154312

RESUMEN

We report on the determination of fluorescence resonance energy transfer (FRET) efficiency, which is dependent on the donor-to-acceptor (D-A) ratio, by using a new type of microchannel device called a "lipid-flow chip". The chip comprises two supported lipid bilayers (SLBs) that self-spread from either side of 10 microm wide straight lines and carry molecules embedded in them. We first show that the diffusion process that occurs when the two SLBs collide with each other in the channel and form a unified SLB can be expressed by a one-dimensional diffusion equation. Next we describe a method for determining the FRET efficiency between NBD (donor) and Texas Red (acceptor) from observations using the lipid-flow chip by employing a one-dimensional diffusion model. The advantages of our method are that all the D-A ratios are achieved in one chip, and a large number of data are recorded in one chip. The FRET efficiency varies depending on the D-A ratio under conditions whereby the concentration of the sum of the donors and acceptors is constant. The Förster radius is also estimated from our results using a known model describing two-dimensional FRET systems, which yields a radius consistent with the previously reported value for NBD and Texas Red.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/instrumentación , Membrana Dobles de Lípidos/química , Difusión , Transferencia Resonante de Energía de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Colorantes Fluorescentes , Técnicas Analíticas Microfluídicas , Microscopía Confocal , Oxadiazoles , Xantenos
19.
J Biochem Biophys Methods ; 70(3): 471-9, 2007 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-17239954

RESUMEN

The kinetic data obtained from the action of a cathepsin D-like enzyme from Biomphalaria glabrata hepatopancreas (digestive gland) on MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNp)-D-Arg-NH(2), was studied as a data prototype, generated by means of a fluorogenic substrate. An initial fluorescence, due to incomplete energy transfer, of about 8% of the values attained after complete substrate hydrolysis; a non-linear standard curve even at microM concentrations and an exponential decay of the steady state fluorescence of reaction product of the order of 10(-4) x s(-1) were the main analytical problems encountered. The standard curves for fluorescence of the substrate reaction product after 48 h of hydrolysis, and the reference compound MOCAc-Pro-Leu-Gly-NH(2), were fitted by polynomial approximation and the point derivates used as calibration factors. Time dependence of the calibration factor for the reaction product was -2.96 x 10(-4) a.u microM(-1) x s(-1) that is, in the same order of observed enzymic reaction rates. A mathematical treatment was devised for obtaining rates corrected for errors derived from the three analytical problems indicated. The method is of general application in continuous fluorometric assays, irrespective of the particular enzyme used, but of special value for substrates that present significant initial fluorescence. The reaction rates were 11% higher; as calculated by means of the calibration factor [substrate]/(final-initial fluorescence intensities), which is the prevalent procedure in the literature; leading to underestimation of K(m) and overestimation of V(max).


Asunto(s)
Enzimas/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Animales , Ácido Aspártico Endopeptidasas/análisis , Ácido Aspártico Endopeptidasas/metabolismo , Biomphalaria/enzimología , Catepsina D/análisis , Catepsina D/metabolismo , Enzimas/metabolismo , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Colorantes Fluorescentes , Hepatopáncreas/enzimología , Cinética , Oligopéptidos/química , Especificidad por Sustrato
20.
J Biomol Screen ; 11(4): 439-43, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16751339

RESUMEN

Lanthanide-based resonance energy transfer (LRET) is an established method for measuring or detecting proximity between a luminescent lanthanide (energy donor) and an organic fluorophore (energy acceptor). Because resonance energy transfer is a distance-dependent phenomenon that increases in efficiency to the 6th power of the distance between the donor and the acceptor, assay systems are often designed to minimize donor-acceptor distances. However, the authors show that because of the R(6) relationship between transfer efficiency and sensitized emission lifetime, energy transfer can be difficult to measure in a time-gated manner when the donor-acceptor distance is small relative to the Förster radius. In such systems, the advantages inherent in time-resolved, ratiometric measurements are lost but can be regained by designing the system such that the average donor-acceptor distance is increased.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Elementos de la Serie de los Lantanoides , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Endopeptidasas/análisis , Transferencia de Energía , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Colorantes Fluorescentes , Humanos , Técnicas In Vitro , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...