Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.422
Filtrar
1.
J Immunother Cancer ; 12(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724463

RESUMEN

BACKGROUND: Adoptive cell therapy, such as chimeric antigen receptor (CAR)-T cell therapy, has improved patient outcomes for hematological malignancies. Currently, four of the six FDA-approved CAR-T cell products use the FMC63-based αCD19 single-chain variable fragment, derived from a murine monoclonal antibody, as the extracellular binding domain. Clinical studies demonstrate that patients develop humoral and cellular immune responses to the non-self CAR components of autologous CAR-T cells or donor-specific antigens of allogeneic CAR-T cells, which is thought to potentially limit CAR-T cell persistence and the success of repeated dosing. METHODS: In this study, we implemented a one-shot approach to prevent rejection of engineered T cells by simultaneously reducing antigen presentation and the surface expression of both Classes of the major histocompatibility complex (MHC) via expression of the viral inhibitors of transporter associated with antigen processing (TAPi) in combination with a transgene coding for shRNA targeting class II MHC transactivator (CIITA). The optimal combination was screened in vitro by flow cytometric analysis and mixed lymphocyte reaction assays and was validated in vivo in mouse models of leukemia and lymphoma. Functionality was assessed in an autologous setting using patient samples and in an allogeneic setting using an allogeneic mouse model. RESULTS: The combination of the Epstein-Barr virus TAPi and an shRNA targeting CIITA was efficient and effective at reducing cell surface MHC classes I and II in αCD19 'stealth' CAR-T cells while retaining in vitro and in vivo antitumor functionality. Mixed lymphocyte reaction assays and IFNγ ELISpot assays performed with T cells from patients previously treated with autologous αCD19 CAR-T cells confirm that CAR T cells expressing the stealth transgenes evade allogeneic and autologous anti-CAR responses, which was further validated in vivo. Importantly, we noted anti-CAR-T cell responses in patients who had received multiple CAR-T cell infusions, and this response was reduced on in vitro restimulation with autologous CARs containing the stealth transgenes. CONCLUSIONS: Together, these data suggest that the proposed stealth transgenes may reduce the immunogenicity of autologous and allogeneic cellular therapeutics. Moreover, patient data indicate that repeated doses of autologous FMC63-based αCD19 CAR-T cells significantly increased the anti-CAR T cell responses in these patients.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Transgenes , Linfocitos T/inmunología
2.
Curr Protoc ; 4(5): e1012, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712688

RESUMEN

Although protocols to generate authentic transgene-free mouse and human induced pluripotent stem cells (iPSCs) are now well established, standard methods for reprogramming porcine somatic cells still suffer from low efficiency and transgene retention. The Basic Protocol describes reprogramming procedures to establish transgene-free porcine iPSCs (PiPSCs) from porcine fibroblasts. This method uses episomal plasmids encoding POU5F1, SOX2, NANOG, KLF4, SV40LT, c-MYC, LIN28A, and microRNA-302/367, combined with an optimized medium, to establish PiPSC lines. Support protocols describe the establishment and characterization of clonal PiPSC lines, as well as the preparation of feeder cells and EBNA1 mRNA. This optimized, step-by-step approach tailored to this species enables the efficient derivation of PiPSCs in ∼4 weeks. The establishment of transgene-free PiPSCs provides a new and valuable model for studies of larger mammalian species' development, disease, and regenerative biology. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Reprogramming of porcine fibroblasts with episomal plasmids Support Protocol 1: Preparation of mouse embryonic fibroblasts for feeder layer Support Protocol 2: Preparation of in vitro-transcribed EBNA1 mRNA Support Protocol 3: Establishment of clonal porcine induced pluripotent stem cell (PiPSC) lines Support Protocol 4: PiPSC characterization: Genomic DNA PCR and RT-PCR Support Protocol 5: PiPSC characterization: Immunostaining.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factor 4 Similar a Kruppel , Transgenes , Animales , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Porcinos , Ratones , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Cultivo de Célula/métodos , Reprogramación Celular/genética
3.
Methods Mol Biol ; 2788: 227-241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656517

RESUMEN

The Coffea spp. plant is a significant crop in Latin America, Africa, and Asia, and recent advances in genomics and transcriptomics have opened possibilities for studying candidate genes and introducing new desirable traits through genetic engineering. While stable transformation of coffee plants has been reported using various techniques, it is a time-consuming and laborious process. To overcome this, transient transformation methods have been developed, which avoid the limitations of stable transformation. This chapter describes an ex vitro protocol for transient expression using A. tumefaciens-mediated infiltration of coffee leaves, which could be used to produce coffee plants expressing desirable traits against biotic and abiotic stresses, genes controlling biochemical and physiological traits, as well as for gene editing through CRISPR/Cas9.


Asunto(s)
Agrobacterium tumefaciens , Coffea , Edición Génica , Hojas de la Planta , Plantas Modificadas Genéticamente , Transgenes , Coffea/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Agrobacterium tumefaciens/genética , Edición Génica/métodos , Transformación Genética , Sistemas CRISPR-Cas , Regulación de la Expresión Génica de las Plantas
4.
Genesis ; 62(2): e23600, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665068

RESUMEN

Transgenic tools such as the GAL4/UAS system in Drosophila have been used extensively to induce spatiotemporally controlled changes in gene expression and tissue-specific expression of a range of transgenes. We previously discovered unexpected expression of the commonly used dilp2-GAL4 line in tracheal tissue which significantly impacted growth phenotypes. We realized that few GAL4 lines have been thoroughly characterized, particularly when considering transient activity that may have significant impact on phenotypic readouts. Here, we characterized a further subset of 12 reportedly tissue-specific GAL4 lines commonly used in genetic studies of development, growth, endocrine regulation, and metabolism. Ten out of 12 GAL4 lines exhibited ectopic activity in other larval tissues, with seven being active in the larval trachea. Since this ectopic activity may result in phenotypes that do not depend on the manipulation in the intended target tissue, it is recommended to carefully analyze the outcome while taking this aspect into consideration.


Asunto(s)
Animales Modificados Genéticamente , Proteínas de Drosophila , Expresión Génica Ectópica , Factores de Transcripción , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Expresión Génica Ectópica/genética , Drosophila melanogaster/genética , Transgenes , Larva/genética , Larva/metabolismo , Larva/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Tráquea/metabolismo , Drosophila/genética , Drosophila/metabolismo
5.
BMC Plant Biol ; 24(1): 329, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664610

RESUMEN

BACKGROUND: Advancement in agricultural biotechnology has resulted in increasing numbers of commercial varieties of genetically modified (GM) crops worldwide. Though several databases on GM crops are available, these databases generally focus on collecting and providing information on transgenic crops rather than on screening strategies. To overcome this, we constructed a novel tool named, Genetically Modified Organisms Identification Tool (GMOIT), designed to integrate basic and genetic information on genetic modification events and detection methods. RESULTS: At present, data for each element from 118 independent genetic modification events in soybean, maize, canola, and rice were included in the database. Particularly, GMOIT allows users to customize assay ranges and thus obtain the corresponding optimized screening strategies using common elements or specific locations as the detection targets with high flexibility. Using the 118 genetic modification events currently included in GMOIT as the range and algorithm selection results, a "6 + 4" protocol (six exogenous elements and four endogenous reference genes as the detection targets) covering 108 events for the four crops was established. Plasmids pGMOIT-1 and pGMOIT-2 were constructed as positive controls or calibrators in qualitative and quantitative transgene detection. CONCLUSIONS: Our study provides a simple, practical tool for selecting, detecting, and screening strategies for a sustainable and efficient application of genetic modification.


Asunto(s)
Productos Agrícolas , Glycine max , Oryza , Plantas Modificadas Genéticamente , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética , Oryza/genética , Glycine max/genética , Zea mays/genética , Transgenes , Brassica napus/genética
6.
PLoS One ; 19(4): e0299215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626093

RESUMEN

Non-replicating adenovirus-based vectors have been broadly used for the development of prophylactic vaccines in humans and are licensed for COVID-19 and Ebola virus disease prevention. Adenovirus-based vectored vaccines encode for one or more disease specific transgenes with the aim to induce protective immunity against the target disease. The magnitude and duration of transgene expression of adenovirus 5- based vectors (human type C) in the host are key factors influencing antigen presentation and adaptive immune responses. Here we characterize the magnitude, duration, and organ biodistribution of transgene expression after single intramuscular administration of adenovirus 26-based vector vaccines in mice and evaluate the differences with adenovirus 5-based vector vaccine to understand if this is universally applicable across serotypes. We demonstrate a correlation between peak transgene expression early after adenovirus 26-based vaccination and transgene-specific cellular and humoral immune responses for a model antigen and SARS-CoV-2 spike protein, independent of innate immune activation. Notably, the memory immune response was similar in mice immunized with adenovirus 26-based vaccine and adenovirus 5-based vaccine, despite the latter inducing a higher peak of transgene expression early after immunization and a longer duration of transgene expression. Together these results provide further insights into the mode of action of adenovirus 26-based vector vaccines.


Asunto(s)
Vacunas contra el Adenovirus , Glicoproteína de la Espiga del Coronavirus , Vacunas , Animales , Ratones , Humanos , Inmunidad Humoral , Distribución Tisular , Inmunización , Vacunación , Adenoviridae/genética , Transgenes , Vectores Genéticos/genética , Anticuerpos Antivirales
7.
Viruses ; 16(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38675893

RESUMEN

The administration route affects the biodistribution of a gene transfer vector and the expression of a transgene. A simian adenovirus 1 vector carrying firefly luciferase and GFP reporter genes (SAdV1-GFluc) were constructed, and its biodistribution was investigated in a mouse model by bioluminescence imaging and virus DNA tracking with real-time PCR. Luciferase activity and virus DNA were mainly found in the liver and spleen after the intravenous administration of SAdV1-GFluc. The results of flow cytometry illustrated that macrophages in the liver and spleen as well as hepatocytes were the target cells. Repeated inoculation was noneffective because of the stimulated serum neutralizing antibodies (NAbs) against SAdV-1. A transient, local expression of low-level luciferase was detected after intragastric administration, and the administration could be repeated without compromising the expression of the reporter gene. Intranasal administration led to a moderate, constant expression of a transgene in the whole respiratory tract and could be repeated one more time without a significant increase in the NAb titer. An immunohistochemistry assay showed that respiratory epithelial cells and macrophages in the lungs were transduced. High luciferase activity was restricted at the injection site and sustained for a week after intramuscular administration. A compromised transgene expression was observed after a repeated injection. When these mice were intramuscularly injected for a third time with the human adenovirus 5 (HAdV-5) vector carrying a luciferase gene, the luciferase activity recovered and reached the initial level, suggesting that the sequential use of SAdV-1 and HAdV-5 vectors was practicable. In short, the intranasal inoculation or intramuscular injection may be the preferred administration routes for the novel SAdV-1 vector in vaccine development.


Asunto(s)
Adenovirus de los Simios , Genes Reporteros , Vectores Genéticos , Animales , Vectores Genéticos/genética , Ratones , Adenovirus de los Simios/genética , Distribución Tisular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Transgenes , Replicación Viral , Luciferasas de Luciérnaga/genética , Ratones Endogámicos BALB C , Femenino , Transducción Genética , Modelos Animales , Bazo/metabolismo , Bazo/virología , Hígado/metabolismo , Hígado/virología , Anticuerpos Neutralizantes/inmunología , Expresión Génica , Inyecciones Intramusculares , Administración Intranasal
8.
Methods Mol Biol ; 2801: 147-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578420

RESUMEN

Stable cell pools have the advantage of providing a definite, consistent, and reproducible transmission of a transgene of interest, compared to transient expression from a plasmid transfection. Stably expressing a transgene of interest in cells under induction is a powerful way to (switch on and) study a gene function in both in vitro and in vivo assays. Taking advantage of the ability of lentivirus (LV) to promote transgene delivery, and genomic integration and expression in both dividing and nondividing cells, a doxycycline-inducible transfer vector expressing a bicistronic transgene was developed to study the function of connexins in HeLa DH cells. Here, delving on connexin 32 (Cx32), we report how to use the backbone of this vector as a tool to generate stable pools to study the function of a gene of interest (GOI), especially with assays involving Ca2+ imaging, employing the GCaMP6s indicator. We describe a step-by-step protocol to produce the LV particle by transient transfection and the direct use of the harvested LV stock to generate stable cell pools. We further present step-by-step immunolabeling protocols to characterize the transgene protein expression by confocal microscopy using an antibody that targets an extracellular domain epitope of Cx32 in living cells, and in fixed permeabilized cells using high affinity anti-Cx32 antibodies. Using common molecular biology laboratory techniques, this protocol can be adapted to generate stable pools expressing any transgene of interest, for both in vitro and in vivo functional assays, including molecular, immune, and optical assays.


Asunto(s)
Conexinas , Proteína beta1 de Unión Comunicante , Humanos , Conexinas/genética , Conexinas/metabolismo , Transfección , Células HeLa , Transgenes
9.
Mol Ther ; 32(5): 1311-1327, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38449314

RESUMEN

While studying transgene expression after systemic administration of lentiviral vectors, we found that splenic B cells are robustly transduced, regardless of the types of pseudotyped envelope proteins. However, the administration of two different pseudotypes resulted in transduction of two distinct B cell populations, suggesting that each pseudotype uses unique and specific receptors for its attachment and entry into splenic B cells. Single-cell RNA sequencing analysis of the transduced cells demonstrated that different pseudotypes transduce distinct B cell subpopulations characterized by specific B cell receptor (BCR) genotypes. Functional analysis of the BCRs of the transduced cells demonstrated that BCRs specific to the pseudotyping envelope proteins mediate viral entry, enabling the vectors to selectively transduce the B cell populations that are capable of producing antibodies specific to their envelope proteins. Lentiviral vector entry via the BCR activated the transduced B cells and induced proliferation and differentiation into mature effectors, such as memory B and plasma cells. BCR-mediated viral entry into clonally specific B cell subpopulations raises new concepts for understanding the biodistribution of transgene expression after systemic administration of lentiviral vectors and offers new opportunities for BCR-targeted gene delivery by pseudotyped lentiviral vectors.


Asunto(s)
Linfocitos B , Vectores Genéticos , Lentivirus , Receptores de Antígenos de Linfocitos B , Transducción Genética , Transgenes , Proteínas del Envoltorio Viral , Lentivirus/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Animales , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Tropismo Viral , Humanos , Internalización del Virus
10.
Plant Physiol Biochem ; 210: 108575, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554536

RESUMEN

As natural dominant pigments, carotenoids and their derivatives not only contribute to fruit color and flavor quality but are regarded as phytochemicals beneficial to human health because of various bioactivities. Tomato is one of the most important vegetables as well as a main dietary source of carotenoids. So, it's of great importance to generate carotenoid-biofortified tomatoes. The carotenoid biosynthesis pathway is a network co-regulated by multiple enzymes and regulatory genes. Here, we assembled four binary constructs containing different combinations of four endogenous carotenoids metabolic-related genes, including SlORHis, SlDXS, SlPSY, and SlBHY by using a high efficiency multi-transgene stacking system and a series of fruit-specific promotors. Transgenic lines overexpression SlORHis alone, three genes (SlORHis/SlDXS/SlPSY), two genes (SlORHis/SlBHY), and all these four genes (SlORHis/SlDXS/SlPSY/SlBHY) were enriched with carotenoids to varying degrees. Notably, overexpressing SlORHis alone showed comparable effects with simultaneous overexpression of the key regulatory enzyme coding genes SlDXS, SlPSY, and SlORHis in promoting carotenoid accumulation. Downstream carotenoid derivatives zeaxanthin and violaxanthin were detected only in lines containing SlBHY. In addition, the sugar content and total antioxidant capacity of these carotenoids-enhanced tomatoes was also increased. These data provided useful information for the future developing of biofortified tomatoes with different carotenoid profiles, and confirmed a promising system for generation of nutrients biofortified tomatoes by multiple engineering genes stacking strategy.


Asunto(s)
Carotenoides , Frutas , Plantas Modificadas Genéticamente , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Carotenoides/metabolismo , Plantas Modificadas Genéticamente/genética , Frutas/genética , Frutas/metabolismo , Transgenes , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
11.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38531838

RESUMEN

Transgene silencing is a common phenomenon observed in Caenorhabditis elegans, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of C. elegans, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of C. elegans. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed in vivo, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, mut-2 and mut-16, are significantly enriched in the intestine. Additionally, histone modification factors, such as met-2, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Interferencia de ARN , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , ARN Bicatenario/metabolismo , Transgenes , Animales Modificados Genéticamente/metabolismo , ARN Interferente Pequeño/genética
12.
J Biomed Sci ; 31(1): 32, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532479

RESUMEN

BACKGROUND: The field of genome editing has been revolutionized by the development of an easily programmable editing tool, the CRISPR-Cas9. Despite its promise, off-target activity of Cas9 posed a great disadvantage for genome editing purposes by causing DNA double strand breaks at off-target locations and causing unwanted editing outcomes. Furthermore, for gene integration applications, which introduce transgene sequences, integration of transgenes to off-target sites could be harmful, hard to detect, and reduce faithful genome editing efficiency. METHOD: Here we report the development of a multicolour fluorescence assay for studying CRISPR-Cas9-directed gene integration at an endogenous locus in human cell lines. We examine genetic integration of reporter genes in transiently transfected cells as well as puromycin-selected stable cell lines to determine the fidelity of multiple CRISPR-Cas9 strategies. RESULT: We found that there is a high occurrence of unwanted DNA integration which tarnished faithful knock-in efficiency. Integration outcomes are influenced by the type of DNA DSBs, donor design, the use of enhanced specificity Cas9 variants, with S-phase regulated Cas9 activity. Moreover, restricting Cas9 expression with a self-cleaving system greatly improves knock-in outcomes by substantially reducing the percentage of cells with unwanted DNA integration. CONCLUSION: Our results highlight the need for a more stringent assessment of CRISPR-Cas9-mediated knock-in outcomes, and the importance of careful strategy design to maximise efficient and faithful transgene integration.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Edición Génica/métodos , Roturas del ADN de Doble Cadena , Transgenes , ADN
13.
Cells ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534402

RESUMEN

Non-human primates (NHPs) are pivotal animal models for translating novel cell replacement therapies into clinical applications, including validating the safety and efficacy of induced pluripotent stem cell (iPSC)-derived products. Preclinical development and the testing of cell-based therapies ideally comprise xenogeneic (human stem cells into NHPs) and allogenic (NHP stem cells into NHPs) transplantation studies. For the allogeneic approach, it is necessary to generate NHP-iPSCs with generally equivalent quality to the human counterparts that will be used later on in patients. Here, we report the generation and characterization of transgene- and feeder-free cynomolgus monkey (Macaca fascicularis) iPSCs (Cyno-iPSCs). These novel cell lines have been generated according to a previously developed protocol for the generation of rhesus macaque, baboon, and human iPSC lines. Beyond their generation, we demonstrate the potential of the novel Cyno-iPSCs to differentiate into two clinically relevant cell types, i.e., cardiomyocytes and neurons. Overall, we provide a resource of novel iPSCs from the most frequently used NHP species in the regulatory testing of biologics and classical pharmaceutics to expand our panel of iPSC lines from NHP species with high relevance in preclinical testing and translational research.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Macaca fascicularis , Diferenciación Celular/fisiología , Macaca mulatta , Transgenes
14.
Haemophilia ; 30 Suppl 3: 12-20, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528615

RESUMEN

INTRODUCTION: After decades of stumbling clinical development, the first gene therapies for haemophilia A and B have been commercialized and have normalized factor (F)VIII and factor (F)IX levels in some individuals in the long term. Several other clinical programs testing adeno-associated viral (AAV) vector gene therapy are at various stages of clinical testing. DISCUSSION: Multiyear follow-up in phase 1/2 and 3 studies showed long-term and sometimes curative but widely variable and unpredictable efficacy. Liver toxicities, mostly low-grade, occur in the 1st year in at least some individuals in all haemophilia A and B trials and are poorly understood. Wide variability and unpredictability of outcome and slow decline of FVIII levels are a major disadvantage because immune responses to AAV vectors preclude repeat dosing, which otherwise could improve suboptimal or restore declining expression, while overexpression may predispose to thrombosis. Long-term safety outcomes will need lifelong monitoring because AAV vectors infused at high doses integrate into chromosomes at rates that raise questions about potential oncogenicity and necessitate vigilance. Alternative gene transfer systems employing gene editing and/or non-viral vectors are under development and promise to overcome some limitations of the current state of the art for both haemophilia A and B. CONCLUSIONS: AAV gene therapies for haemophilia have now become new treatment options but not universal cures. AAV is a powerful but imperfect gene transfer platform. Biobetter FVIII transgenes may help solve some problems plaguing gene therapy for haemophilia A. Addressing variability and unpredictability of efficacy, and delivery of gene therapy to ineligible patient subgroups may require different gene transfer systems, most of which are not ready for clinical translation yet but bring innovations needed to overcome the current limitations of gene therapy.


Asunto(s)
Hemofilia A , Humanos , Hemofilia A/genética , Hemofilia A/terapia , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Terapia Genética , Edición Génica , Transgenes , Dependovirus/genética
15.
Cell Reprogram ; 26(2): 43-45, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38530081

RESUMEN

Creating hematopoietic stem cells (HSCs) capable of multilineage engraft while possessing the ability to self-renew stands as a pivotal achievement within the field of regenerative medicine. However, achieving the generation of these cells without transgene expression or teratoma formation has not been fully accomplished. In a recent publication featured in Cell Stem Cell, Piau et al. document the production of functional HSCs derived from human-induced pluripotent stem cells (hiPSCs). They achieved this through a one-step differentiation protocol that notably does not require any transgene expression. hiPSCs-derived HSCs can engraft and self-renew upon serial transplantation and they are able to reconstitute lymphoid, myeloid, and erythroid compartments. This study presents a promising system to further study human HSC ontogeny, and it might represent a crucial step to obtain HSCs.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular , Transgenes , Medicina Regenerativa
16.
Clin Transl Med ; 14(3): e1607, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488469

RESUMEN

Adeno-associated virus (AAV)-based therapies are recognized as one of the most potent next-generation treatments for inherited and genetic diseases. However, several biological and technological aspects of AAV vectors remain a critical issue for their widespread clinical application. Among them, the limited capacity of the AAV genome significantly hinders the development of AAV-based gene therapy. In this context, genetically modified transgenes compatible with AAV are opening up new opportunities for unlimited gene therapies for many genetic disorders. Recent advances in de novo protein design and remodelling are paving the way for new, more efficient and targeted gene therapeutics. Using computational and genetic tools, AAV expression cassette and transgenic DNA can be split, miniaturized, shuffled or created from scratch to mediate efficient gene transfer into targeted cells. In this review, we highlight recent advances in AAV-based gene therapy with a focus on its use in translational research. We summarize recent research and development in gene therapy, with an emphasis on large transgenes (>4.8 kb) and optimizing strategies applied by biomedical companies in the research pipeline. We critically discuss the prospects for AAV-based treatment and some emerging challenges. We anticipate that the continued development of novel computational tools will lead to rapid advances in basic gene therapy research and translational studies.


Asunto(s)
Dependovirus , Terapia Genética , Dependovirus/genética , Dependovirus/metabolismo , Transgenes/genética , Vectores Genéticos/genética
17.
Anal Chem ; 96(13): 5307-5314, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38504497

RESUMEN

Gene doping involves the misuse of genetic materials to alter an athlete's performance, which is banned at all times in both human and equine sports. Quantitative polymerase chain reaction (qPCR) assays have been used to control the misuse of transgenes in equine sports. Our laboratory recently developed and implemented duplex as well as multiplex qPCR assays for transgenes detection. To further advance gene doping control, we have developed for the first time a sensitive and definitive PCR-liquid chromatography high-resolution tandem mass spectrometry (PCR-LC-HRMS/MS) method for transgene detection with an estimated limit of detection of below 100 copies/mL for the human erythropoietin (hEPO) transgene in equine plasma. The method involved magnetic-glass-particle-based extraction of DNA from equine plasma prior to PCR amplification with 2'-deoxyuridine 5'-triphosphate (dUTP) followed by treatments with uracil DNA glycosylase and hot piperidine for selective cleavage to give small oligonucleotide fragments. The resulting DNA fragments were then analyzed by LC-HRMS/MS. The applicability of this method has been demonstrated by the successful detection of hEPO transgene in a blood sample collected from a gelding (castrated male horse) that had been administered the transgene. This novel approach not only serves as a complementary method for transgene detection but also paves the way for developing a generic PCR-LC-HRMS/MS method for the detection of multiple transgenes.


Asunto(s)
Doping en los Deportes , Eritropoyetina , Caballos , Animales , Humanos , Masculino , Espectrometría de Masas en Tándem/métodos , Doping en los Deportes/prevención & control , Cromatografía Liquida/métodos , Eritropoyetina/genética , Transgenes , ADN , Reacción en Cadena de la Polimerasa
18.
N Engl J Med ; 390(12): 1092-1104, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38507752

RESUMEN

BACKGROUND: Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS: We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS: One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS: Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Neuropatía Axonal Gigante , Niño , Humanos , Proteínas del Citoesqueleto/genética , Terapia Genética/efectos adversos , Terapia Genética/métodos , Neuropatía Axonal Gigante/genética , Neuropatía Axonal Gigante/terapia , Transgenes , Inyecciones Espinales
19.
J Vis Exp ; (204)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38436377

RESUMEN

The field of plant biotechnology has witnessed remarkable advancements in recent years, revolutionizing the ability to manipulate and engineer plants for various purposes. However, as research in this field increases in diversity and becomes increasingly sophisticated, the need for early, efficient, dependable, and high-throughput transient screening solutions to narrow down strategies proceeding to stable transformation is more apparent. One method that has re-emerged in recent years is the utilization of plant protoplast, for which methods of isolation and transfection are available in numerous species, tissues, and developmental stages. This work describes a simple automated protocol for the randomized preparation of plasmid within a 96-well plate, a method for the isolation of etiolated maize leaf protoplast, and an automated transfection procedure. The adoption of automated solutions in plant biotechnology, exemplified by these novel liquid handling protocols for plant protoplast transfection, represents a significant advancement over manual methods. By leveraging automation, researchers can easily overcome the limitations of traditional methods, enhance efficiency, and accelerate scientific progress.


Asunto(s)
Protoplastos , Zea mays , Zea mays/genética , Transgenes , Transfección , Hojas de la Planta/genética
20.
Genes (Basel) ; 15(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540320

RESUMEN

Until very recently, the major use, for gene therapy, specifically of linear or circular DNA, such as plasmids, was as ancillary products for viral vectors' production or as a genetic template for mRNA production. Thanks to targeted and more efficient physical or chemical delivery techniques and to the refinement of their structure, non-viral plasmid DNA are now under intensive consideration as pharmaceutical drugs. Plasmids traditionally carry an antibiotic resistance gene for providing the selection pressure necessary for maintenance in a bacterial host. Nearly a dozen different antibiotic-free gene vectors have now been developed and are currently assessed in preclinical assays and phase I/II clinical trials. Their reduced size leads to increased transfection efficiency and prolonged transgene expression. In addition, associating non-viral gene vectors and DNA transposons, which mediate transgene integration into the host genome, circumvents plasmid dilution in dividing eukaryotic cells which generate a loss of the therapeutic gene. Combining these novel molecular tools allowed a significantly higher yield of genetically engineered T and Natural Killer cells for adoptive immunotherapies due to a reduced cytotoxicity and increased transposition rate. This review describes the main progresses accomplished for safer, more efficient and cost-effective gene and cell therapies using non-viral approaches and antibiotic-free gene vectors.


Asunto(s)
Antibacterianos , Vectores Genéticos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Vectores Genéticos/genética , Plásmidos , Transfección , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...