Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.435
Filtrar
1.
BMJ Case Rep ; 17(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719261

RESUMEN

Olmesartan is an angiotensin II receptor blocker licensed for the treatment of hypertension. It can cause a sprue-like enteropathy (SLE), characterised by chronic diarrhoea, weight loss and villous atrophy. Transiently raised anti-tissue transglutaminase (ATTG) antibody has also been rarely reported in the literature.We describe the case of a woman in her mid-50s, who presented with a history of intermittent loose stools over 1 year, associated with significant weight loss. She had two marginally raised serum ATTG antibody tests during her work-up.After extensive investigations, she was diagnosed with olmesartan-induced enteropathy. On subsequent follow-up, her symptoms had resolved with cessation of her olmesartan therapy.This case adds to existing literature, highlighting the importance of considering olmesartan as a possible differential diagnosis for SLE. It also reports the presence of a raised ATTG antibody which is infrequently reported in this context.


Asunto(s)
Diarrea , Imidazoles , Tetrazoles , Transglutaminasas , Pérdida de Peso , Humanos , Femenino , Imidazoles/efectos adversos , Diarrea/inducido químicamente , Tetrazoles/efectos adversos , Persona de Mediana Edad , Transglutaminasas/inmunología , Diagnóstico Diferencial , Bloqueadores del Receptor Tipo 1 de Angiotensina II/efectos adversos , Autoanticuerpos/sangre , Proteína Glutamina Gamma Glutamiltransferasa 2 , Enfermedad Crónica , Enfermedad Celíaca/diagnóstico , Proteínas de Unión al GTP/inmunología , Proteínas de Unión al GTP/antagonistas & inhibidores
2.
PLoS One ; 19(5): e0298864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753630

RESUMEN

Fibrotic remodeling is the primary driver of functional loss in chronic kidney disease, with no specific anti-fibrotic agent available for clinical use. Transglutaminase 2 (TG2), a wound response enzyme that irreversibly crosslinks extracellular matrix proteins causing dysregulation of extracellular matrix turnover, is a well-characterized anti-fibrotic target in the kidney. We describe the humanization and characterization of two anti-TG2 monoclonal antibodies (zampilimab [hDC1/UCB7858] and BB7) that inhibit crosslinking by TG2 in human in vitro and rabbit/cynomolgus monkey in vivo models of chronic kidney disease. Determination of zampilimab half-maximal inhibitory concentration (IC50) against recombinant human TG2 was undertaken using the KxD assay and determination of dissociation constant (Kd) by surface plasmon resonance. Efficacy in vitro was established using a primary human renal epithelial cell model of tubulointerstitial fibrosis, to assess mature deposited extracellular matrix proteins. Proof of concept in vivo used a cynomolgus monkey unilateral ureteral obstruction model of chronic kidney disease. Zampilimab inhibited TG2 crosslinking transamidation activity with an IC50 of 0.25 nM and Kd of <50 pM. In cell culture, zampilimab inhibited extracellular TG2 activity (IC50 119 nM) and dramatically reduced transforming growth factor-ß1-driven accumulation of multiple extracellular matrix proteins including collagens I, III, IV, V, and fibronectin. Intravenous administration of BB7 in rabbits resulted in a 68% reduction in fibrotic index at Day 25 post-unilateral ureteral obstruction. Weekly intravenous administration of zampilimab in cynomolgus monkeys with unilateral ureteral obstruction reduced fibrosis at 4 weeks by >50%, with no safety signals. Our data support the clinical investigation of zampilimab for the treatment of kidney fibrosis.


Asunto(s)
Modelos Animales de Enfermedad , Fibrosis , Proteínas de Unión al GTP , Macaca fascicularis , Proteína Glutamina Gamma Glutamiltransferasa 2 , Insuficiencia Renal Crónica , Transglutaminasas , Animales , Humanos , Fibrosis/tratamiento farmacológico , Conejos , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Transglutaminasas/antagonistas & inhibidores , Transglutaminasas/metabolismo , Proteínas de Unión al GTP/antagonistas & inhibidores , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacología , Masculino , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo
3.
Rev Assoc Med Bras (1992) ; 70(4): e20231120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716937

RESUMEN

OBJECTIVE: We aimed to examine the effect of remission status on thiol-disulfide homeostasis in celiac patients and thus to indirectly determine the effect of oxidative stress and inflammation caused by non-compliance with the diet. METHODS: Between February 2019 and December 2021, 117 patients diagnosed with celiac disease were included in this prospective randomized and controlled study. In addition to routine tests of celiac patients, thiol and disulfide measurements were made from the blood both at the beginning of the study and at the end of the first year. RESULTS: While 52 of the patients (44.4%) were in remission, 65 patients (55.6%) were not. There was an evident increase in native thiol levels of the patients who were initially not in remission but went into at the end of the first year (347.4±46.7 µmol/L vs. 365.3±44.0 µmol/L; p=0.001). Mean plasma disulfide levels of patients with celiac going into remission became reduced in the first year from the level of 14.5±5.1 µmol/L down to 8.9±4.2 µmol/L (p<0.001). In celiac patients who entered remission, disulfide and anti-tissue transglutaminase immunoglobulin A levels decreased in a correlation (r=0.526; p<0.001). CONCLUSION: Not being in remission in celiac disease leads to increased oxidative stress, and thiol-disulfide homeostasis is an indirect indicator of this. Additionally, providing remission in celiac patients reduces oxidative stress.


Asunto(s)
Enfermedad Celíaca , Dieta Sin Gluten , Disulfuros , Estrés Oxidativo , Cooperación del Paciente , Compuestos de Sulfhidrilo , Humanos , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/sangre , Estrés Oxidativo/fisiología , Femenino , Masculino , Disulfuros/sangre , Estudios Prospectivos , Compuestos de Sulfhidrilo/sangre , Adulto , Inducción de Remisión , Adulto Joven , Adolescente , Persona de Mediana Edad , Inmunoglobulina A/sangre , Transglutaminasas/sangre
4.
Soft Matter ; 20(16): 3508-3519, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38595302

RESUMEN

The decellularized tilapia skin (dTS) has gained significant attention as a promising material for tissue regeneration due to its ability to provide unique structural and functional components that support cell growth, adhesion, and proliferation. However, the clinical application of dTS is limited by its low mechanical strength and rapid biodegradability. Herein, we prepare a novel RGD (arginine-glycine-aspartic acid) functionalized dTS scaffold (dTS/RGD) by using transglutaminase (TGase) crosslinking. The developed dTS/RGD scaffold possesses excellent properties, including a medium porosity of ∼59.2%, a suitable degradation rate of approximately 80% over a period of two weeks, and appropriate mechanical strength with a maximum tensile stress of ∼46.36 MPa which is much higher than that of dTS (∼32.23 MPa). These properties make the dTS/RGD scaffold ideal for promoting cell adhesion and proliferation, thereby accelerating skin wound healing in a full-thickness skin defect model. Such an enzymatic cross-linking strategy provides a favorable microenvironment for wound healing and holds great potential for application in skin regeneration engineering.


Asunto(s)
Oligopéptidos , Regeneración , Piel , Tilapia , Andamios del Tejido , Transglutaminasas , Animales , Andamios del Tejido/química , Tilapia/metabolismo , Transglutaminasas/metabolismo , Transglutaminasas/química , Oligopéptidos/química , Oligopéptidos/metabolismo , Cicatrización de Heridas , Proliferación Celular , Ingeniería de Tejidos , Porosidad , Ratones , Adhesión Celular , Humanos
5.
Theranostics ; 14(6): 2329-2344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646650

RESUMEN

Diabetes, a severe metabolic disease characterized by chronic hypoglycemia, poses debilitating and life-threatening risks of microvascular and macrovascular complications, including blindness, kidney failure, heart attacks, and limb amputation. Addressing these complications is paramount, urging the development of interventions targeting diabetes-associated vascular dysfunctions. To effectively combat diabetes, a comprehensive understanding of the pathological mechanisms underlying complications and identification of precise therapeutic targets are imperative. Transglutaminase 2 (TGase2) is a multifunctional enzyme implicated in the pathogenesis of diverse diseases such as neurodegenerative disorders, fibrosis, and inflammatory conditions. TGase2 has recently emerged as a key player in both the pathogenesis and therapeutic intervention of diabetic complications. This review highlights TGase2 as a therapeutic target for diabetic complications and explores TGase2 inhibition as a promising therapeutic approach in their treatment.


Asunto(s)
Proteínas de Unión al GTP , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Animales , Humanos , Diabetes Mellitus , Angiopatías Diabéticas , Proteínas de Unión al GTP/metabolismo , Transglutaminasas/metabolismo , Transglutaminasas/antagonistas & inhibidores
6.
Cells ; 13(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38667282

RESUMEN

Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.


Asunto(s)
Proteínas de Unión al GTP , Neoplasias del Sistema Nervioso , Proteína Glutamina Gamma Glutamiltransferasa 2 , Animales , Humanos , Proteínas de Unión al GTP/metabolismo , Neoplasias del Sistema Nervioso/patología , Neoplasias del Sistema Nervioso/enzimología , Neoplasias del Sistema Nervioso/metabolismo , Transglutaminasas/metabolismo
7.
Arch Biochem Biophys ; 756: 109997, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621443

RESUMEN

The preservation of the native conformation and functionality of membrane proteins has posed considerable challenges. While detergents and liposome reconstitution have been traditional approaches, nanodiscs (NDs) offer a promising solution by embedding membrane proteins in phospholipids encircled by an amphipathic helical protein MSP belt. Nevertheless, a drawback of commonly used NDs is their limited homogeneity and stability. In this study, we present a novel approach to construct covalent annular nanodiscs (cNDs) by leveraging microbial transglutaminase (MTGase) to catalyze isopeptide bond formation between the side chains of terminal amino acids, specifically Lysine (K) and Glutamine (Q). This methodology significantly enhances the homogeneity and stability of NDs. Characterization of cNDs and the assembly of membrane proteins within them validate the successful reconstitution of membrane proteins with improved homogeneity and stability. Our findings suggest that cNDs represent a more suitable tool for investigating interactions between membrane proteins and lipids, as well as for analyzing membrane protein structures.


Asunto(s)
Proteínas de la Membrana , Nanoestructuras , Transglutaminasas , Nanoestructuras/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Transglutaminasas/química , Transglutaminasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
8.
J Mol Biol ; 436(10): 168569, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604527

RESUMEN

Transglutaminase 2 (TG2) performs many functions both under physiological and pathological conditions. In cancer, its expression is associated with aggressiveness, propensity to epithelial-mesenchymal transition, and metastasis. Since TG2 performs key functions both outside and inside the cell, using inhibitors with different membrane permeability we analyzed the changes in the transcriptome induced in two triple-negative cell lines (MDA-MB-436 and MDA-MB-231) with aggressive features. By characterizing pathways and gene networks, we were able to define the effects of TG2 inhibitors (AA9, membrane-permeable, and NCEG2, impermeable) in relation to the roles of the enzyme in the intra- and extracellular space within the context of breast cancer. The deregulated genes revealed p53 and integrin signaling to be the common pathways with some genes showing opposite changes in expression. In MDA-MB-436, AA9 induced apoptosis, modulated cadherin, Wnt, gastrin and cholecystokinin receptors (CCKR) mediated signaling, with RHOB and GNG2 playing significant roles, and affected the Warburg effect by decreasing glycolytic enzymes. In MDA-MB-231 cells, AA9 strongly impacted HIF-mediated hypoxia, including AKT and mTOR pathway. These effects suggest an anti-tumor activity by blocking intracellular TG2 functions. Conversely, the use of NCEG2 stimulated the expression of ATP synthase and proteins involved in DNA replication, indicating a potential promotion of cell proliferation through inhibition of extracellular TG2. To effectively utilize these molecules as an anti-tumor strategy, an appropriate delivery system should be evaluated to target specific functions and avoid adverse effects. Additionally, considering combinations with other pathway modulators is crucial.


Asunto(s)
Proteínas de Unión al GTP , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Humanos , Transglutaminasas/metabolismo , Transglutaminasas/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo
9.
Int Immunopharmacol ; 133: 112020, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38608449

RESUMEN

Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.


Asunto(s)
Enfermedad Celíaca , Dieta Sin Gluten , Humanos , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/terapia , Enfermedad Celíaca/inmunología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Inmunoterapia/métodos , Glútenes/inmunología , Transglutaminasas/inmunología , Transglutaminasas/metabolismo
10.
Biomolecules ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672511

RESUMEN

TG2 is a unique member of the transglutaminase family as it undergoes a dramatic conformational change, allowing its mutually exclusive function as either a cross-linking enzyme or a G-protein. The enzyme's dysregulated activity has been implicated in a variety of pathologies (e.g., celiac disease, fibrosis, cancer), leading to the development of a wide range of inhibitors. Our group has primarily focused on the development of peptidomimetic targeted covalent inhibitors, the nature and size of which were thought to be important features to abolish TG2's conformational dynamism and ultimately inhibit both its activities. However, we recently demonstrated that the enzyme was unable to bind guanosine triphosphate (GTP) when catalytically inactivated by small molecule inhibitors. In this study, we designed a library of models targeting covalent inhibitors of progressively smaller sizes (15 to 4 atoms in length). We evaluated their ability to inactivate TG2 by measuring their respective kinetic parameters kinact and KI. Their impact on the enzyme's ability to bind GTP was then evaluated and subsequently correlated to the conformational state of the enzyme, as determined via native PAGE and capillary electrophoresis. All irreversible inhibitors evaluated herein locked TG2 in its open conformation and precluded GTP binding. Therefore, we conclude that steric bulk and structural complexity are not necessary factors to consider when designing TG2 inhibitors to abolish G-protein activity.


Asunto(s)
Alquilantes , Dominio Catalítico , Proteínas de Unión al GTP , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Transglutaminasas/química , Transglutaminasas/metabolismo , Transglutaminasas/antagonistas & inhibidores , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Alquilantes/química , Alquilantes/farmacología , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Conformación Proteica , Cinética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología
11.
Cell Rep ; 43(4): 114045, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578826

RESUMEN

Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.


Asunto(s)
Linfocitos B , Enfermedad Celíaca , Proteínas de Unión al GTP , Inmunoglobulina A , Células Plasmáticas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/patología , Humanos , Transglutaminasas/inmunología , Transglutaminasas/metabolismo , Inmunoglobulina A/inmunología , Inmunoglobulina A/metabolismo , Inmunoglobulina A/sangre , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Proteínas de Unión al GTP/inmunología , Proteínas de Unión al GTP/metabolismo , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Adulto , Masculino , Femenino , Persona de Mediana Edad , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Glútenes/inmunología
12.
Cell Death Dis ; 15(4): 252, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589352

RESUMEN

Cutaneous squamous carcinoma is the second most common epithelial malignancy, associated with significant morbidity, mortality, and economic burden. However, the mechanisms underlying cSCC remain poorly understood. In this study, we identified TGM3 as a novel cSCC tumor suppressor that acts via the PI3K-AKT axis. RT-qPCR, IHC and western blotting were employed to assess TGM3 levels. TGM3-overexpression/knockdown cSCC cell lines were utilized to detect TGM3's impact on epithelial differentiation as well as tumor cell proliferation, migration, and invasion in vitro. Additionally, subcutaneous xenograft tumor models were employed to examine the effect of TGM3 knockdown on tumor growth in vivo. Finally, molecular and biochemical approaches were employed to gain insight into the tumor-suppressing mechanisms of TGM3. TGM3 expression was increased in well-differentiated cSCC tumors, whereas it was decreased in poor-differentiated cSCC tumors. Loss of TGM3 is associated with poor differentiation and a high recurrence rate in patients with cSCC. TGM3 exhibited tumor-suppressing activity by regulating cell proliferation, migration, and invasion both in vitro and in vivo. As a novel cSCC tumor differentiation marker, TGM3 expression was positively correlated with cell differentiation. In addition, our results demonstrated an interaction between TGM3 and KRT14 that aids in the degradation of KRT14. TGM3 deficiency disrupts keratinocytes differentiation, and ultimately leads to tumorigenesis. Furthermore, RNA-sequence analysis revealed that loss of TGM3 enhanced EMT via the PI3K-AKT signaling pathway. Deguelin, a PI3K-AKT inhibitor, blocked cSCC tumor growth induced by TGM3 knockdown in vivo. Taken together, TGM3 inhibits cSCC tumor growth via PI3K-AKT signaling, which could also serve as a tumor differentiation marker and a potential therapeutic target for cSCC. Proposed model depicted the mechanism by which TGM3 suppress cSCC development. TGM3 reduces the phosphorylation level of AKT and degrades KRT14. In the epithelial cell layer, TGM3 exhibits a characteristic pattern of increasing expression from bottom to top, while KRT14 and pAKT are the opposite. Loss of TGM3 leads to reduced degradation of KRT14 and activation of pAKT, disrupting keratinocyte differentiation, and eventually resulting in the occurrence of low-differentiated cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Cutáneas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Carcinoma de Células Escamosas/metabolismo , Transducción de Señal , Proliferación Celular/genética , Diferenciación Celular , Antígenos de Diferenciación , Transglutaminasas/genética , Transglutaminasas/metabolismo , Línea Celular Tumoral
13.
Front Immunol ; 15: 1371706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650935

RESUMEN

Pulmonary hypertension (PH) pathogenesis is driven by inflammatory and metabolic derangements as well as glycolytic reprogramming. Induction of both interleukin 6 (IL6) and transglutaminase 2 (TG2) expression participates in human and experimental cardiovascular diseases. However, little is known about the role of TG2 in these pathologic processes. The current study aimed to investigate the molecular interactions between TG2 and IL6 in mediation of tissue remodeling in PH. A lung-specific IL6 over-expressing transgenic mouse strain showed elevated right ventricular (RV) systolic pressure as well as increased wet and dry tissue weights and tissue fibrosis in both lungs and RVs compared to age-matched wild-type littermates. In addition, IL6 over-expression induced the glycolytic and fibrogenic markers, hypoxia-inducible factor 1α, pyruvate kinase M2 (PKM2), and TG2. Consistent with these findings, IL6 induced the expression of both glycolytic and pro-fibrogenic markers in cultured lung fibroblasts. IL6 also induced TG2 activation and the accumulation of TG2 in the extracellular matrix. Pharmacologic inhibition of the glycolytic enzyme, PKM2 significantly attenuated IL6-induced TG2 activity and fibrogenesis. Thus, we conclude that IL6-induced TG2 activity and cardiopulmonary remodeling associated with tissue fibrosis are under regulatory control of the glycolytic enzyme, PKM2.


Asunto(s)
Fibroblastos , Proteínas de Unión al GTP , Hipertensión Pulmonar , Interleucina-6 , Pulmón , Ratones Transgénicos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Piruvato Quinasa , Transglutaminasas , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibrosis , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/etiología , Interleucina-6/metabolismo , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Transglutaminasas/metabolismo , Transglutaminasas/genética
14.
Int J Biol Macromol ; 266(Pt 2): 131384, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580012

RESUMEN

One primary focus of skin tissue engineering has been the creation of innovative biomaterials to facilitate rapid wound healing. Extracellular matrix (ECM), an essential biofunctional substance, has recently been discovered to play a crucial role in wound healing. Consequently, we endeavored to decellularize ECM from pig achilles tendon and refine its mechanical and biological properties through modification by utilizing cross-linking agents. Glutaraldehyde (GA), 1-ethyl-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), double aldol starch (DAS), and microbial transglutaminase (MTG) were utilized to produce crosslinked ECM variants (GA-ECM, EDC/NHS-ECM, DAS-ECM, and MTG-ECM). Comprehensive assessments were conducted to evaluate the physical properties, biocompatibility, and wound healing efficacy of each material. The results indicated that MTG-ECM exhibited superior tensile strength, excellent hydrophilicity, minimal cytotoxicity, and the best pro-healing impact among the four modified scaffolds. Staining analysis of tissue sections further revealed that MTG-ECM impeded the transition from type III collagen to type I collagen in the wound area, potentially reducing the development of wound scar. Therefore, MTG-ECM is expected to be a potential pro-skin repair scaffold material to prevent scar formation.


Asunto(s)
Reactivos de Enlaces Cruzados , Matriz Extracelular , Transglutaminasas , Cicatrización de Heridas , Transglutaminasas/metabolismo , Transglutaminasas/química , Cicatrización de Heridas/efectos de los fármacos , Matriz Extracelular/metabolismo , Animales , Reactivos de Enlaces Cruzados/química , Porcinos , Andamios del Tejido/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Resistencia a la Tracción
15.
Food Chem ; 449: 139147, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581784

RESUMEN

Mung bean protein isolate (MBPI) has attracted much attention as an emerging plant protein. However, its application was limited by the poor gelling characteristics. Thus, the effect of sanxan (SAN) on the gelling behavior of MBPI under microbial transglutaminase (MTG)-induced condition were explored in this study. The results demonstrated that SAN remarkably enhanced the storage modulus, water-holding capacity and mechanical strength. Furthermore, SAN changed the microstructure of MBPI gels to become more dense and ordered. The results of zeta potential indicated the electrostatic interactions existed between SAN and MBPI. The incorporation of SAN altered the secondary structure and molecular conformation of MBPI, and hydrophobic interactions and hydrogen bonding were necessary to maintain the network structure. Additionally, in vitro digestion simulation results exhibited that SAN remarkably improved the capability of MBPI gels to deliver bioactive substances. These findings provided a practical strategy to use natural SAN to improve legume protein gels.


Asunto(s)
Geles , Proteínas de Plantas , Transglutaminasas , Vigna , Transglutaminasas/química , Transglutaminasas/metabolismo , Vigna/química , Geles/química , Proteínas de Plantas/química , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno
16.
ACS Appl Mater Interfaces ; 16(13): 15893-15906, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38512725

RESUMEN

Polymer-mediated cell surface engineering can be a powerful tool to modify the cell's biological behavior, but a simple ligation strategy must be identified. This manuscript assessed the use of transglutamination as a versatile and adaptable approach for cell surface engineering in various cellular models relevant to biomedical applications. This enzymatic approach was evaluated for its feasibility and potential for conjugating polymers to diverse cell surfaces and its biological effects. Transglutaminase-mediated ligation was successfully performed at temperatures ranging from 4 to 37 °C in as quickly as 30 min, while maintaining biocompatibility and preserving cell viability. This approach was successfully applied to nine different cell surfaces (including adherent cells and suspension cells) by optimizing the enzyme source (guinea pig liver vs microbial), buffer compositions, and incubation conditions. Finally, polymer-mediated cell surface engineering using transglutaminase exhibited immunocamouflage abilities for endothelial cells, T cells, and red blood cells by preventing the recognition of cell surface proteins by antibodies. Employing transglutaminase in polymer-mediated cell surface engineering is a promising approach to maximize its application in cell therapy and other biomedical applications.


Asunto(s)
Polímeros , Transglutaminasas , Animales , Cobayas , Polímeros/metabolismo , Transglutaminasas/metabolismo , Células Endoteliales/metabolismo , Membrana Celular/metabolismo , Ingeniería Celular
17.
J Cancer Res Clin Oncol ; 150(3): 123, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472489

RESUMEN

BACKGROUND: There is currently a limited number of studies on transglutaminase type 1 (TGM1) in tumors. The objective of this study is to perform a comprehensive analysis across various types of cancer to determine the prognostic significance of TGM1 in tumors and investigate its role in the immune environment. METHOD: Pan-cancer and mutational data were retrieved from the TCGA database and analyzed using R (version 3.6.4) and its associated software package. The expression difference and prognosis of TGM1 were examined, along with its correlation with tumor heterogeneity, stemness, mutation landscape, and RNA modification. Additionally, the relationship between TGM1 expression and tumor immunity was investigated using the TIMER method. RESULTS: TGM1 is expressed differently in various tumors and normal samples and is associated with the overall survival and progression-free time of KIRC, ACC, SKCM, LIHC, and STES. In LICH, we found a negative correlation between TGM1 expression and 6 indicators of tumor stemness. The mutation frequencies of BLCA, LIHC, and KIRC were 1.7%, 0.3%, and 0.3% respectively. In BLCA and BRCA, there was a significant correlation between TGM1 expression and the infiltration of CD4 + T cells, CD8 + T cells, neutrophils, and dendritic cells. CONCLUSION: TGM1 has the potential to serve as both a prognostic marker and a drug target.


Asunto(s)
Neoplasias , Humanos , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Transglutaminasas
18.
Clin Chim Acta ; 557: 117891, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38555049

RESUMEN

BACKGROUND: Laboratory testing for celiac disease in pediatric patients integrates serology, genetic susceptibility and duodenal biopsy examination. The 2023 American College of Gastroenterology guidelines recommend a biopsy-free approach in pediatric patients utilizing tissue transglutaminase antibody titers >10 times upper limit of normal and subsequent endomysial antibody seropositivity as sufficient for diagnosis. The objective of this study is to assess the diagnostic accuracy of biopsy-free approach at our pediatric hospital. METHODS: We conducted a retrospective study involving pediatric patients who underwent biopsy for diagnostic confirmation of celiac disease between May 2019 and May 2023. For these patients, the tissue transglutaminase and endomysial antibody test results were retrieved and performance of biopsy-free approach was assessed using the duodenal histology as the gold standard for celiac disease diagnosis. RESULTS: Tissue transglutaminase antibody titers >10 times upper limit of normal alone demonstrated a positive predictive value of 99% for identifying celiac disease in children. Although endomysial antibody testing is underutilized at our center, its inclusion further improved the predictability to 100 %. CONCLUSION: Positive predictive value of tissue transglutaminase antibody titers >10 times upper limit of normal is sufficiently high for celiac disease diagnosis in children and may allow for deferral of duodenal biopsy at diagnosis.


Asunto(s)
Enfermedad Celíaca , Proteína Glutamina Gamma Glutamiltransferasa 2 , Niño , Humanos , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/patología , Estudios Retrospectivos , Transglutaminasas , Proteínas de Unión al GTP , Inmunoglobulina A , Biopsia , Autoanticuerpos
19.
Biosci Biotechnol Biochem ; 88(6): 620-629, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38479783

RESUMEN

Human transglutaminase 1 (TG1) modulates skin development, while its involvement in diseases remains poorly understood, necessitating comprehensive exploration of its substrate interactions. To study the substrate profile of TG1, an in vitro selection system based on cDNA display technology was used to screen two peptide libraries with mutations at varying distance from the reactive glutamine. Next-generation sequencing and bioinformatics analysis of the selected DNA pools revealed a detailed TG1 substrate profile, indicating preferred and non-preferred amino acid sequences. The peptide sequence, AEQHKLPSKWPF, was identified showing high reactivity and specificity to TG1. The position weight matrix calculated from the per amino acid enrichment factors was employed to search human proteins using an in-house algorithm, revealing six known TG1 substrate proteins with high scores, alongside a list of candidate substrates currently under investigation. Our findings are expected to assist in future medical diagnoses and development of treatments for skin disorders.


Asunto(s)
ADN Complementario , Secuenciación de Nucleótidos de Alto Rendimiento , Transglutaminasas , Humanos , Transglutaminasas/genética , Transglutaminasas/metabolismo , Especificidad por Sustrato , ADN Complementario/genética , Secuencia de Aminoácidos , Biblioteca de Péptidos
20.
Bioconjug Chem ; 35(4): 465-471, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38499390

RESUMEN

A versatile chemo-enzymatic tool to site-specifically modify native (nonengineered) antibodies is using transglutaminase (TGase, E.C. 2.3.2.13). With various amines as cosubstrates, this enzyme converts the unsubstituted side chain amide of glutamine (Gln or Q) in peptides and proteins into substituted amides (i.e., conjugates). A pleasant surprise is that only a single conserved glutamine (Gln295) in the Fc region of IgG is modified by microbial TGase (mTGase, EC 2.3.2.13), thereby providing a highly specific and generally applicable conjugation method. However, prior to the transamidation (access to the glutamine residue by mTGase), the steric hindrance from the nearby conserved N-glycan (Asn297 in IgG1) must be reduced. In previous approaches, amidase (PNGase F, EC 3.5.1.52) was used to completely remove the N-glycan. However, PNGase F also converts a net neutral asparagine (Asn297) to a negatively charged aspartic acid (Asp297). This charge alteration may markedly change the structure, function, and immunogenicity of an IgG antibody. In contrast, in our new method presented herein, the N-glycan is trimmed by an endoglycosidase (EndoS2, EC 3.2.1.96), hence retaining both the core N-acetylglucosamine (GlcNAc) moiety and the neutral asparaginyl amide. The trimmed glycan also reduces or abolishes Fc receptor-mediated functions, which results in better imaging agents by decreasing nonspecific binding to other cells (e.g., immune cells). Moreover, the remaining core glycan allows further derivatization such as glycan remodeling and dual conjugation. Practical and robust, our method generates conjugates in near quantitative yields, and both enzymes are commercially available.


Asunto(s)
Glutamina , Glicósido Hidrolasas , Glutamina/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Transglutaminasas/metabolismo , Inmunoglobulina G/química , Polisacáridos/química , Amidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...