Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.447
Filtrar
1.
Funct Plant Biol ; 512024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743837

RESUMEN

Cassava (Manihot esculenta Crantz), an important tropical crop, is affected by extreme climatic events, including rising CO2 levels. We evaluated the short-term effect of elevated CO2 concentration (ECO2 ) (600, 800 and 1000ppm) on the photosynthetic efficiency of 14 cassava genotypes. ECO2 significantly altered gaseous exchange parameters (net photosynthetic rate (P n ), stomatal conductance (g s ), intercellular CO2 (C i ) and transpiration (E )) in cassava leaves. There were significant but varying interactive effects between ECO2 and varieties on these physiological characteristics. ECO2 at 600 and 800ppm increased the P n rate in the range of 13-24% in comparison to 400ppm (ambient CO2 ), followed by acclimation at the highest concentration of 1000ppm. A similar trend was observed in g s and E . Conversely, C i increased significantly and linearly across increasing CO2 concentration. Along with C i , a steady increase in water use efficiency [WUEintrinsic (P n /g s ) and WUEinstantaneous (P n /E )] across various CO2 concentrations corresponded with the central role of restricted stomatal activity, a common response under ECO2 . Furthermore, P n had a significant quadratic relationship with the ECO2 (R 2 =0.489) and a significant and linear relationship with C i (R 2 =0.227). Relative humidity and vapour pressure deficit during the time of measurements remained at 70-85% and ~0.9-1.31kPa, respectively, at 26±2°C leaf temperature. Notably, not a single variety exhibited constant performance for any of the parameters across CO2 concentrations. Our results indicate that the potential photosynthesis can be increased up to 800ppm cassava varieties with high sink capacity can be cultivated under protected cultivation to attain higher productivity.


Asunto(s)
Dióxido de Carbono , Manihot , Fotosíntesis , Manihot/efectos de los fármacos , Manihot/fisiología , Fotosíntesis/efectos de los fármacos , Dióxido de Carbono/metabolismo , Hojas de la Planta/efectos de los fármacos , Transpiración de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de los fármacos , Genotipo , Agua
2.
Physiol Plant ; 176(3): e14326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708565

RESUMEN

Plants face a trade-off between hydraulic safety and growth, leading to a range of water-use strategies in different species. However, little is known about such strategies in tropical trees and whether different water-use traits can acclimate to warming. We studied five water-use traits in 20 tropical tree species grown at three different altitudes in Rwanda (RwandaTREE): stomatal conductance (gs), leaf minimum conductance (gmin), plant hydraulic conductance (Kplant), leaf osmotic potential (ψo) and net defoliation during drought. We also explored the links between these traits and growth and mortality data. Late successional (LS) species had low Kplant, gs and gmin and, thus, low water loss, while low ψo helped improve leaf water status during drought. Early successional (ES) species, on the contrary, used more water during both moist and dry conditions and exhibited pronounced drought defoliation. The ES strategy was associated with lower mortality and more pronounced growth enhancement at the warmer sites compared to LS species. While Kplant and gmin showed downward acclimation in warmer climates, ψo did not acclimate and gs measured at prevailing temperature did not change. Due to distinctly different water use strategies between successional groups, ES species may be better equipped for a warmer climate as long as defoliation can bridge drought periods.


Asunto(s)
Cambio Climático , Sequías , Hojas de la Planta , Árboles , Clima Tropical , Agua , Agua/metabolismo , Agua/fisiología , Árboles/fisiología , Árboles/crecimiento & desarrollo , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Aclimatación/fisiología , Transpiración de Plantas/fisiología , Temperatura
3.
Methods Mol Biol ; 2787: 55-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656481

RESUMEN

This chapter presents the application of Plantarray, a high-throughput platform commercially available for noninvasive monitoring of plant functional physiology phenotyping (FPP). The platform continuously measures water flux in the soil-plant-atmosphere for each plant in dynamic environments. To better interpret the massive phenotypic data acquired with FPP, several quantitative analysis methods were demonstrated for various types of data. Simple mathematical models were utilized to fit characteristic parameters of plant transpiration response to drought stress. Additionally, ecophysiological models were employed to quantify the sensitivity of transpiration to radiation and vapor pressure deficit (VPD) as component traits and predict more complex higher-order traits. The established protocols provide a tangible tool for integrating FPP and model analysis to address complex traits.


Asunto(s)
Fenotipo , Fenómenos Fisiológicos de las Plantas , Transpiración de Plantas/fisiología , Sequías , Agua , Estrés Fisiológico
4.
New Phytol ; 242(5): 1932-1943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641865

RESUMEN

Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.


Asunto(s)
Carbono , Eucalyptus , Fotosíntesis , Árboles , Agua , Madera , Eucalyptus/fisiología , Eucalyptus/metabolismo , Carbono/metabolismo , Árboles/fisiología , Árboles/metabolismo , Agua/metabolismo , Madera/fisiología , Transpiración de Plantas/fisiología , Modelos Biológicos
5.
Methods Mol Biol ; 2790: 213-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649573

RESUMEN

Canopy photosynthesis (Ac), rather than leaf photosynthesis, is critical to gaining higher biomass production in the field because the daily or seasonal integrals of Ac correlate with the daily or seasonal integrals of biomass production. The canopy photosynthesis and transpiration measurement system (CAPTS) was developed to enable measurement of canopy photosynthetic CO2 uptake, transpiration, and respiration rates. CAPTS continuously records the CO2 concentration, water vapor concentration, air temperature, air pressure, air relative humidity, and photosynthetic photon flux density (PPFD) inside the chamber, which can be used to derive CO2 and H2O fluxes of a canopy covered by the chamber. This system can also be used to measure the fluxes of greenhouse gases when integrating with CH4 and N2O analyzers. Here, we describe the protocol for using CAPTS to perform experiments on rice (Oryza sativa L.) in paddy field, wheat (Triticum aestivum L.) in upland field, and tobacco (Nicotiana tabacum L.) in pots.


Asunto(s)
Dióxido de Carbono , Oryza , Fotosíntesis , Hojas de la Planta , Transpiración de Plantas , Fotosíntesis/fisiología , Transpiración de Plantas/fisiología , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Oryza/crecimiento & desarrollo , Oryza/fisiología , Oryza/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Nicotiana/fisiología , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/metabolismo , Agua/metabolismo
6.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38606678

RESUMEN

Worldwide, forests are increasingly exposed to extreme droughts causing tree mortality. Because of the complex nature of the mechanisms involved, various traits have been linked to tree drought responses with contrasting results. This may be due to species-specific strategies in regulating water potential, a process that unfolds in two distinct phases: a first phase until stomatal closure, and a second phase until reaching lethal xylem hydraulic thresholds. We conducted dry-down experiments with five broadleaved temperate tree species differing in their degree of isohydry to estimate the time to stomatal closure (tsc) and subsequent time to critical hydraulic failure (tcrit). We measured various traits linked to tree drought responses, such as the water potentials at turgor loss point (Ptlp), stomatal closure (Pgs90), and 12%, 50% and 88% loss of xylem hydraulic conductance (P12, P50, P88), hydraulic capacitance (C), minimum leaf conductance (gmin), hydroscape area (HSA) and hydraulic safety margins (HSM). We found that Pgs90 followed previously recorded patterns of isohydry and was associated with HSA. Species ranked from more to less isohydric in the sequence Acer pseudoplatanus < Betula pendula < Tilia cordata < Sorbus aucuparia < Fagus sylvatica. Their degree of isohydry was associated with leaf safety (Ptlp and gmin), drought avoidance (C) and tsc, but decoupled from xylem safety (HSM and P88) and tcrit. Regardless of their stomatal stringency, species with wider HSM and lower P88 reached critical hydraulic failure later. We conclude that the duration of the first phase is determined by stomatal regulation, while the duration of the second phase is associated with xylem safety. Isohydry is thus linked to water use rather than to drought survival strategies, confirming the proposed use of HSA as a complement to HSM for describing plant drought responses before and after stomatal closure.


Asunto(s)
Estomas de Plantas , Árboles , Agua , Xilema , Estomas de Plantas/fisiología , Árboles/fisiología , Xilema/fisiología , Agua/metabolismo , Agua/fisiología , Sequías , Especificidad de la Especie , Transpiración de Plantas/fisiología
7.
Plant Physiol Biochem ; 208: 108534, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38507838

RESUMEN

Plants require potassium (K) to support growth and regulate hydraulics. Yet, K's effects on transpiration are still speculated. We hypothesized that K deficiency would limit grapevine water uptake by limiting canopy size and stomatal conductance (gs). Hence, we constructed large (2 m3) lysimeters and recorded vine transpiration for three years (2020-2022) under three fertilization application rates (8, 20, or 58 mg K L-1 in irrigation). Maximal K availability supported transpiration up to 75 L day-1, whereas K-deficient vines transpired only 60 L day-1 in midsummer. Limited vine growth and canopy size mainly accounted for reduced transpiration under low K conditions. Hence, considering K demand in addition to supply, we compared K deficiency effects on vines bearing 20 or 50 fruit clusters and found that reduced gs further limited transpiration when yields were high. Although fruits were strong K sinks, high yields did not alter K uptake because lower vegetative growth countered the additional K demands. Potassium deficiency leads to lower transpiration and productivity. Yet, internal mineral allocation compensates for fruit K uptake and masks biochemical indices or physiological proxies for K deficiency. Thus, decision support tools should integrate mineral availability, seasonal growth, and yield projections to determine grapevine water demands.


Asunto(s)
Deficiencia de Potasio , Hojas de la Planta/fisiología , Agua/fisiología , Potasio , Minerales , Transpiración de Plantas/fisiología
8.
Sci Total Environ ; 927: 171842, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513864

RESUMEN

Evapotranspiration (ET) is at the heart of the global water, energy, and carbon cycles. As ET is difficult and expensive to measure, it is crucial to develop estimation models that can be widely applied. Currently, an improved Priestley-Taylor (PT) model considers soil moisture stress, temperature constraints, and leaf senescence; however, its parameter (fs) for simulating crop senescence is based on empirical values, making it difficult to apply to different varieties and complex external conditions and thus challenging to generalize. We improved the parameters fs in the original model based on the chlorophyll decomposition that accompanies crop senescence through easily observable SPAD values (Soil-Plant Analysis Development readings) in the field. We validated the improved model by obtaining ET of different rice varieties in 2022 and 2023 using the energy balance residual method at the Free Air Concentration Enrichment Experimental (FACE) Facility located in Yangzhou City, China. The results showed that the simulation of leaf senescence using SPAD values was feasible and could be extended to different varieties. The new model using improved leaf senescence parameter for estimating ET and transpiration (T) in three plots (2022 and 2023) exhibited slightly enhanced accuracy, particularly at the later stages of crop growth. Moreover, the higher the T/ET ratio of the cropland, the more significant the improvement. This new development enhances the ability of PT models to estimate ET and T using readily available field observations and provides some suggestions for wider application in the field for other crop species.


Asunto(s)
Oryza , Hojas de la Planta , Transpiración de Plantas , Oryza/fisiología , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , China , Agua , Suelo/química
9.
Physiol Plant ; 176(2): e14245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450764

RESUMEN

Leaf dark respiratory CO2 -release (RD ) is, according to some literature, dependent on the rate of leaf transpiration. If this is true, then at a given vapor pressure deficit, the leaf stomatal conductance (gs ) will be expected to be a controlling factor of measured RD at any given time. We artificially lowered leaf gs by applying abscisic acid (ABA). Although leaf RD generally covaried temporally with gs , artificially lowering gs by applying ABA does not affect the measured leaf RD . These results indicate that observed diel fluctuations in gs are not directly influencing the measured leaf RD , thereby simplifying both future studies and the interpretation of past studies of the underlying environmental- and physiological drivers of temporal variation in leaf RD .


Asunto(s)
Ácido Abscísico , Dióxido de Carbono , Hojas de la Planta , Ácido Abscísico/farmacología , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas
10.
Tree Physiol ; 44(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38470306

RESUMEN

Drought is a major environmental stressor that limits seedling growth. Several studies have found that some ectomycorrhizal fungi may increase the drought tolerance of nursery-raised seedlings. However, the precise role that different ectomycorrhizal fungi species play in drought tolerance remains unclear. We evaluated the transpiration rate of Pinus sylvestris seedlings under drought stress in greenhouse conditions by exposing seedlings to 10 ectomycorrhizal fungi species, with different functional traits (exploration type and hydrophobicity), and to 3 natural soil inoculums. We measured the transpiration and water potential of the seedlings during a 10-day drought period and a 14-day recovery period. We then analyzed their root morphology, stem, needle, root biomass and needle chlorophyll fluorescence. We showed that exposing seedlings to ectomycorrhizal fungi or soil inoculum had a positive effect on their transpiration rate during the driest period and through the recovery phase, leading to 2- to 3-fold higher transpiration rates compared with the nonexposed control seedlings. Seedlings exposed to medium-distance ectomycorrhizal fungi performed better than other exploration types under drought conditions, but ectomycorrhizal fungi hydrophobicity did not seem to affect the seedlings response to drought. No significant differences were observed in biomass accumulation and root morphology between the seedlings exposed to different ectomycorrhizal fungi species and the control. Our results highlight the positive and species-specific effect of ectomycorrhizal fungi exposure on drought tolerance in nursery-raised Scots pine seedlings. The studied ectomycorrhizal fungi functional traits may not be sufficient to predict the seedling response to drought stress, thus physiological studies across multiple species are needed to draw the correct conclusion. Our findings have potential practical implications for enhancing seedling drought tolerance in nursery plant production.


Asunto(s)
Micorrizas , Pinus sylvestris , Pinus , Pinus sylvestris/fisiología , Plantones/fisiología , Biomasa , Raíces de Plantas/fisiología , Sequías , Transpiración de Plantas/fisiología , Suelo , Pinus/fisiología
11.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475147

RESUMEN

The safeguarding of plant health is vital for optimizing crop growth practices, especially in the face of the biggest challenges of our generation, namely the environmental crisis and the dramatic changes in the climate. Among the many innovative tools developed to address these issues, wearable sensors have recently been proposed for monitoring plant growth and microclimates in a sustainable manner. These systems are composed of flexible matrices with embedded sensing elements, showing promise in revolutionizing plant monitoring without being intrusive. Despite their potential benefits, concerns arise regarding the effects of the long-term coexistence of these devices with the plant surface. Surprisingly, a systematic analysis of their influence on plant physiology is lacking. This study aims to investigate the effect of the color and geometric features of flexible matrices on two key plant physiological functions: photosynthesis and transpiration. Our findings indicate that the negative effects associated with colored substrates, as identified in recent research, can be minimized by holing the matrix surface with a percentage of voids of 15.7%. This approach mitigates interference with light absorption and reduces water loss to a negligible extent, making our work one of the first pioneering efforts in understanding the intricate relationship between plant wearables' features and plant health.


Asunto(s)
Transpiración de Plantas , Dispositivos Electrónicos Vestibles , Transpiración de Plantas/fisiología , Fotosíntesis/fisiología , Fenómenos Fisiológicos de las Plantas , Transporte Biológico , Agua , Hojas de la Planta/fisiología
12.
Methods Mol Biol ; 2791: 127-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532100

RESUMEN

Ranges of portable systems to measure leaf gas-exchange parameters are available. They allow real-time measurements of the photosynthesis rate (A), transpiration rate (E), stomatal conductance (gs), and intercellular CO2 concentration (Ci). Photosynthetic CO2 uptake is one of the most frequently studied plant physiological processes. The measurement is precise, simple, and noninvasive to perform in vivo. We describe the use of this method in environmental-controlled plant production systems at different temperatures on the growth and development of common buckwheat.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Dióxido de Carbono , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Plantas
13.
Ann Bot ; 133(4): 605-620, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38362930

RESUMEN

BACKGROUND AND AIMS: Variation in architectural traits related to the spatial and angular distribution of leaf area can have considerable impacts on canopy-scale fluxes contributing to water-use efficiency (WUE). These architectural traits are frequent targets for crop improvement and for improving the understanding and predictions of net ecosystem carbon and water fluxes. METHODS: A three-dimensional, leaf-resolving model along with a range of virtually generated hypothetical canopies were used to quantify interactions between canopy structure and WUE by examining its response to variation of leaf inclination independent of leaf azimuth, canopy heterogeneity, vegetation density and physiological parameters. KEY RESULTS: Overall, increasing leaf area index (LAI), increasing the daily-averaged fraction of leaf area projected in the sun direction (Gavg) via the leaf inclination or azimuth distribution and increasing homogeneity had a similar effect on canopy-scale daily fluxes contributing to WUE. Increasing any of these parameters tended to increase daily light interception, increase daily net photosynthesis at low LAI and decrease it at high LAI, increase daily transpiration and decrease WUE. Isolated spherical crowns could decrease photosynthesis by ~60 % but increase daily WUE ≤130 % relative to a homogeneous canopy with equivalent leaf area density. There was no observed optimum in daily canopy WUE as LAI, leaf angle distribution or heterogeneity was varied. However, when the canopy was dense, a more vertical leaf angle distribution could increase both photosynthesis and WUE simultaneously. CONCLUSIONS: Variation in leaf angle and density distributions can have a substantial impact on canopy-level carbon and water fluxes, with potential trade-offs between the two. These traits might therefore be viable target traits for increasing or maintaining crop productivity while using less water, and for improvement of simplified models. Increasing canopy density or decreasing canopy heterogeneity increases the impact of leaf angle on WUE and its dependent processes.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Agua , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Agua/metabolismo , Agua/fisiología , Fotosíntesis/fisiología , Transpiración de Plantas/fisiología , Modelos Biológicos , Ecosistema , Luz
14.
Plant Cell Environ ; 47(5): 1769-1781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314642

RESUMEN

Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.


Asunto(s)
Estomas de Plantas , Rayos Ultravioleta , Estomas de Plantas/fisiología , Ecosistema , Hojas de la Planta/fisiología , Agua/fisiología , Plantas , Transpiración de Plantas/fisiología
15.
Plant Cell Environ ; 47(5): 1813-1833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321806

RESUMEN

Increasingly frequent and intense heatwaves threaten ecosystem health in a warming climate. However, plant responses to heatwaves are poorly understood. A key uncertainty concerns the intensification of transpiration when heatwaves suppress photosynthesis, known as transpiration-photosynthesis decoupling. Field observations of such decoupling are scarce, and the underlying physiological mechanisms remain elusive. Here, we use carbonyl sulphide (COS) as a leaf gas exchange tracer to examine potential mechanisms leading to transpiration-photosynthesis decoupling on a coast live oak in a southern California woodland in spring 2013. We found that heatwaves suppressed both photosynthesis and leaf COS uptake but increased transpiration or sustained it at non-heatwave levels throughout the day. Despite statistically significant decoupling between transpiration and photosynthesis, stomatal sensitivity to environmental factors did not change during heatwaves. Instead, midday photosynthesis during heatwaves was restricted by internal diffusion, as indicated by the lower internal conductance to COS. Thus, increased evaporative demand and nonstomatal limitation to photosynthesis act jointly to decouple transpiration from photosynthesis without altering stomatal sensitivity. Decoupling offered limited potential cooling benefits, questioning its effectiveness for leaf thermoregulation in xeric ecosystems. We suggest that adding COS to leaf and ecosystem flux measurements helps elucidate diverse physiological mechanisms underlying transpiration-photosynthesis decoupling.


Asunto(s)
Ecosistema , Transpiración de Plantas , Óxidos de Azufre , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , Fotosíntesis/fisiología , Agua/fisiología
16.
New Phytol ; 242(2): 444-452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396304

RESUMEN

Stomatal closure under high VPDL (leaf to air vapour pressure deficit) is a primary means by which plants prevent large excursions in transpiration rate and leaf water potential (Ψleaf) that could lead to tissue damage. Yet, the drivers of this response remain controversial. Changes in Ψleaf appear to drive stomatal VPDL response, but many argue that dynamic changes in soil-to-leaf hydraulic conductance (Ks-l) make an important contribution to this response pathway, even in well-hydrated soils. Here, we examined whether the regulation of whole plant stomatal conductance (gc) in response to typical changes in daytime VPDL is influenced by dynamic changes in Ks-l. We use well-watered plants of two species with contrasting ecological and physiological features: the herbaceous Arabidopsis thaliana (ecotype Columbia-0) and the dry forest conifer Callitris rhomboidea. The dynamics of Ks-l and gc were continuously monitored by combining concurrent in situ measurements of Ψleaf using an open optical dendrometer and whole plant transpiration using a balance. Large changes in VPDL were imposed to induce stomatal closure and observe the impact on Ks-l. In both species, gc was observed to decline substantially as VPDL increased, while Ks-l remained stable. Our finding suggests that stomatal regulation of transpiration is not contingent on a decrease in Ks-l. Static Ks-l provides a much simpler explanation for transpiration control in hydrated plants and enables simplified modelling and new methods for monitoring plant water use in the field.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Suelo , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Agua/metabolismo , Transpiración de Plantas/fisiología
17.
New Phytol ; 242(2): 466-478, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38406847

RESUMEN

A specific, robust threshold for drought-induced tree mortality is needed to improve the prediction of forest dieback. Here, we tested the relevance of continuous measurements of stem diameter variations for identifying such a threshold, their relationship with hydraulic and cellular damage mechanisms, and the influence of growth conditions on these relationships. Poplar saplings were grown under well-watered, water-limited, or light-limited conditions and then submitted to a drought followed by rewatering. Stem diameter was continuously measured to investigate two parameters: the percentage loss of diameter (PLD) and the percentage of diameter recovery (DR) following rewatering. Water potentials, stomatal conductance, embolism, and electrolyte leakage were also measured, and light microscopy allowed investigating cell collapse induced by drought. The water release observed through loss of diameter occurred throughout the drought, regardless of growth conditions. Poplars did not recover from drought when PLD reached a threshold and this differed according to growth conditions but remained linked to cell resistance to damage and collapse. Our findings shed new light on the mechanisms of drought-induced tree mortality and indicate that PLD could be a relevant indicator of drought-induced tree mortality, regardless of the growth conditions.


Asunto(s)
Hojas de la Planta , Populus , Sequías , Xilema , Transpiración de Plantas , Agua , Árboles
18.
New Phytol ; 242(2): 453-465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38413216

RESUMEN

The water status of the living tissue in leaves is critical in determining plant function and global exchange of water and CO2. Despite significant advances in the past two decades, persistent questions remain about the tissue-specific origins of leaf hydraulic properties and their dependence on water status. We use a fluorescent nanoparticle reporter that provides water potential in the mesophyll apoplast adjacent to the epidermis of intact leaves to complement existing methods based on the Scholander Pressure Chamber (SPC). Working in tomato leaves, this approach provides access to the hydraulic conductance of the whole leaf, xylem, and outside-xylem tissues. These measurements show that, as stem water potential decreases, the water potential in the mesophyll apoplast can drop below that assessed with the SPC and can fall significantly below the turgor loss point of the leaf. We find that this drop in potential, dominated by the large loss (10-fold) of hydraulic conductance of the outside-xylem tissue, is not however strong enough to significantly limit transpiration. These observations highlight the need to reassess models of water transfer through the outside-xylem tissues, the potential importance of this tissue in regulating transpiration, and the power of new approaches for probing leaf hydraulics.


Asunto(s)
Solanum lycopersicum , Hojas de la Planta/fisiología , Agua/fisiología , Xilema/fisiología , Transpiración de Plantas
20.
Ann Bot ; 133(7): 969-982, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38366557

RESUMEN

BACKGROUND AND AIMS: Plant water status is important for fruit development, because many fleshy fruits contain large amounts of water. However, there is no information on vascular flows of Persea americana 'Hass' avocado. The aims of this research were to explore the impact of drought stress on the water relationships of the 'Hass' avocado plant and its fruit growth. METHODS: Well-watered and water-stressed 'Hass' avocado plants were compared. Over 4 weeks, water flows through the shoot and fruit pedicel were monitored using external sap flow gauges. Fruit diameter was monitored using linear transducers, and stomatal conductance (gs), photosynthesis (A) and leaf and stem water potentials (Ñ°leaf and Ñ°stem) were measured to assess the response of the plants to water supply. KEY RESULTS: In well-watered conditions, the average water inflow to the shoot was 72 g day-1. Fruit water inflow was 2.72 g day-1, but there was water loss of 0.37 g day-1 caused by the outflow (loss back into the tree) through the vascular tissues and 1.06 g day-1 from the fruit skin. Overall, fruit volume increased by 1.4 cm3 day-1. In contrast, water flow into fruit of water-stressed plants decreased to 1.88 g day-1, with the outflow increasing to 0.61 g day-1. As a result, increases in fruit volume were reduced to 0.4 cm3 day-1. The values of A, gs and sap flow to shoots were also reduced during drought conditions. Changes in the hourly time-courses of pedicel sap flow, fruit volume and stem water potential during drought suggest that the stomatal response prevented larger increases in outflow from the fruit. Following re-watering, a substantial recovery in growth rate was observed. CONCLUSIONS: In summary, a reduction in growth of avocado fruit was observed with induced water deficit, but the isohydric stomatal behaviour of the leaves helped to minimize negative changes in water balance. Also, there was substantial recovery after re-watering, hence the short-term water stress did not decrease avocado fruit size. Negative impacts might appear if the drought treatment were prolonged.


Asunto(s)
Sequías , Frutas , Persea , Fotosíntesis , Estomas de Plantas , Agua , Persea/fisiología , Persea/crecimiento & desarrollo , Estomas de Plantas/fisiología , Frutas/fisiología , Frutas/crecimiento & desarrollo , Agua/fisiología , Agua/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Transpiración de Plantas/fisiología , Tallos de la Planta/fisiología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Brotes de la Planta/fisiología , Brotes de la Planta/crecimiento & desarrollo , Estrés Fisiológico/fisiología , Deshidratación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...