Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 803
Filtrar
1.
Neurosci Lett ; 825: 137711, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38432356

RESUMEN

The gut microbiota is associated with memory; however, the relationship between dysbiosis-induced memory deficits and hippocampal glutamatergic neurons remains unclear. In our study, a mouse dysbiosis model showed impaired memory-related behavior in the passive avoidance test; decreased expression levels of glutaminase, excitatory amino acid transporter (EAAT)1, EAAT2, vesicular glutamate transporter 2, synaptophysin, brain-derived neurotrophic factor, doublecortin, neuronal nuclear protein, glial fibrillary acidic protein, and S100ß; and decreased phosphorylation of N-methyl-D-aspartate receptor subunit 1, calmodulin-dependent protein kinase II, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit 1, and cAMP response element-binding protein in the hippocampus. This suggests that dysbiosis-induced memory dysfunction is associated with the hippocampal glutamatergic nervous system.


Asunto(s)
Antibacterianos , Disbiosis , Ratones , Animales , Disbiosis/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo
2.
J Ethnopharmacol ; 325: 117857, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38350506

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Zhichan decoction (BSZCF) is derived from Liuwei Dihuang Pill, a famous Chinese herbal formula recorded in the book Key to Therapeutics of Children's Diseases. It has been widely used as a basic prescription for nourishing and tonifying the liver and kidneys to treat Parkinson's disease (PD), but its mechanism remains to be explored. AIM OF THE STUDY: BSZCF, a Chinese herbal formula comprising five herbs: Rehmannia glutinosa (Gaertn.) DC., Dioscorea oppositifolia L., Cornus officinalis Siebold & Zucc., Fallopia multiflora (Thunb.) Haraldson and Cistanche tubulosa (Schenk) Wight, is used clinically to treat PD. In vivo and in vitro experiments were designed to elucidate the mechanism of BSZCF in the protection of dopamine (DA) neurons and the treatment of PD. The toxicity of excitatory amino acids (EAA) may be attenuated by inhibiting the transcription factor Yin Yang 1 (YY1) and up-regulating the expression of excitatory amino acid transporter 1 (EAAT1). MATERIALS AND METHODS: IN VIVO: After 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was intraperitoneally injected into specific pathogen free (SPF) C57BL/6J mice, model mice were intragastrically given adamantane hydrochloride tablets (AHT) or different doses of BSZCF for 14 days. Both open field and pole-climbing tests were conducted to assess behavioral changes. In vitro: 1-Methyl-4-phe-nylpyridiniumiodide (MPP+)-injured human neuroblastoma cells (SH-SY5Y) were utilized to construct PD cell models. Primary astrocytes were transfected with EAAT1 and YY1 lentiviruses for EAAT1 gene knockout and YY1 gene knockout astrocytes, respectively. The high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis of BSZCF was performed to control the quality of blood drugs. The optimal concentration and time of PD cell models treated by BSZCF were determined by the use of Cell Counting Kit-8 (CCK8). Enzyme-linked immunosorbent assay (ELISA) was used for measuring glutamate (Glu) in the peripheral blood and cells of each group. Western blotting (WB) and real-time quantitative polymerase chain reaction (qPCR) were used to detect tyrosine hydroxylase (TH), dopamine transporters (DAT), EAAT1 and YY1 protein and mRNA. After the blockade of EAAT1, immunofluorescence (IF) assay was used to detect the TH protein in each group. RESULTS: In vivo research showed that BSZCF improved the behavioral symptoms of PD mice, and reduced the death of DA neurons and the level of Glu. The mechanism may be related to the decrease of YY1 expression and the increase of EAAT1 levels. In vitro experiments showed that the anti-excitatory amino acid toxicity of BSZCF was achieved by inhibiting YY1 expression and regulating EAAT1. CONCLUSIONS: By inhibiting YY1 to increase the expression of EAAT1 and attenuating the toxicity of Glu, BSZCF exerts the effect of protecting DA neurons and treating PD-like symptoms in mice.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Niño , Humanos , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Dopamina , Ratones Endogámicos C57BL , Aminoácidos Excitadores/uso terapéutico , Modelos Animales de Enfermedad , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/uso terapéutico
3.
Cells ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38334617

RESUMEN

We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.


Asunto(s)
Nanotubos de Carbono , Ratones , Animales , Humanos , Astrocitos/metabolismo , Citocinas/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo
4.
Science ; 383(6683): eade8064, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330107

RESUMEN

Penile erection is mediated by the corpora cavernosa, a trabecular-like vascular bed that enlarges upon vasodilation, but its regulation is not completely understood. Here, we show that perivascular fibroblasts in the corpora cavernosa support vasodilation by reducing norepinephrine availability. The effect on penile blood flow depends on the number of fibroblasts, which is regulated by erectile activity. Erection dynamically alters the positional arrangement of fibroblasts, temporarily down-regulating Notch signaling. Inhibition of Notch increases fibroblast numbers and consequently raises penile blood flow. Continuous Notch activation lowers fibroblast numbers and reduces penile blood perfusion. Recurrent erections stimulate fibroblast proliferation and limit vasoconstriction, whereas aging reduces the number of fibroblasts and lowers penile blood flow. Our findings reveal adaptive, erectile activity-dependent modulation of penile blood flow by fibroblasts.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores , Fibroblastos , Erección Peniana , Pene , Receptores Notch , Animales , Masculino , Ratones , Circulación Sanguínea , Transportador 1 de Aminoácidos Excitadores/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Erección Peniana/fisiología , Pene/irrigación sanguínea , Pene/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Vasoconstricción , Vasodilatación
5.
Science ; 383(6683): 588-589, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330119
6.
Neurochem Int ; 173: 105658, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135159

RESUMEN

The successful implementation of remote ischaemic conditioning as a clinical neuroprotective strategy requires a thorough understanding of its basic principles, which can be modified for each patient. The mechanisms of glutamate homeostasis appear to be a key component. In the current study, we focused on the brain-to-blood glutamate shift mediated by glutamate transporters (excitatory amino acid transports [EAATs]) and the effect of remote ischaemic preconditioning (RIPC) as a mediator of ischaemic tolerance. We used model mimicking ischaemia-mediated excitotoxicity (intracerebroventricular administration of glutamate) to avoid the indirect effect of ischaemia-triggered mechanisms. We found quantitative changes in EAAT2 and EAAT3 and altered membrane trafficking of EAAT1 on the cells of the choroid plexus. These changes could underlie the beneficial effects of ischaemic tolerance. There was reduced oxidative stress and increased glutathione level after RIPC treatment. Moreover, we determined the stimulus-specific response on EAATs. While glutamate overdose stimulated EAAT2 and EAAT3 overexpression, RIPC induced membrane trafficking of EAAT1 and EAAT2 rather than a change in their expression. Taken together, mechanisms related to glutamate homeostasis, especially EAAT-mediated transport, represents a powerful tool of ischaemic tolerance and allow a certain amount of flexibility based on the stimulus used.


Asunto(s)
Proteínas de Transporte de Glutamato en la Membrana Plasmática , Precondicionamiento Isquémico , Humanos , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Ácido Glutámico/toxicidad , Ácido Glutámico/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Aminoácidos Excitadores , Isquemia
7.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37628787

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived neural cells have started to be used in safety/toxicity tests at the preclinical stage of drug development. As previously reported, hiPSC-derived neurons exhibit greater tolerance to excitotoxicity than those of primary cultures of rodent neurons; however, the underlying mechanisms remain unknown. We here investigated the functions of L-glutamate (L-Glu) transporters, the most important machinery to maintain low extracellular L-Glu concentrations, in hiPSC-derived neural cells. We also clarified the contribution of respective L-Glu transporter subtypes. At 63 days in vitro (DIV), we detected neuronal circuit functions in hiPSC-derived neural cells by a microelectrode array system (MEA). At 63 DIV, exposure to 100 µM L-Glu for 24 h did not affect the viability of neural cells. 100 µM L-Glu in the medium decreased to almost 0 µM in 60 min. Pharmacological inhibition of excitatory amino acid transporter 1 (EAAT1) and EAAT2 suppressed almost 100% of L-Glu decrease. In the presence of this inhibitor, 100 µM L-Glu dramatically decreased cell viability. These results suggest that in hiPSC-derived neural cells, EAAT1 and EAAT2 are the predominant L-Glu transporters, and their uptake potentials are the reasons for the tolerance of hiPSC-derived neurons to excitotoxicity.


Asunto(s)
Ácido Glutámico , Células Madre Pluripotentes Inducidas , Humanos , Ácido Glutámico/toxicidad , Neuronas , Sistema de Transporte de Aminoácidos X-AG , Transporte Biológico , Transportador 1 de Aminoácidos Excitadores
8.
Elife ; 122023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856089

RESUMEN

Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter belonging to the SLC1 family of solute carriers. It plays a key role in the regulation of the extracellular glutamate concentration in the mammalian brain. The structure of EAAT1 was determined in complex with UCPH-101, apotent, non-competitive inhibitor of EAAT1. Alanine serine cysteine transporter 2 (ASCT2) is a neutral amino acid transporter, which regulates pools of amino acids such as glutamine between intracellular and extracellular compartments . ASCT2 also belongs to the SLC1 family and shares 58% sequence similarity with EAAT1. However, allosteric modulation of ASCT2 via non-competitive inhibitors is unknown. Here, we explore the UCPH-101 inhibitory mechanisms of EAAT1 and ASCT2 by using rapid kinetic experiments. Our results show that UCPH-101 slows substrate translocation rather than substrate or Na+ binding, confirming a non-competitive inhibitory mechanism, but only partially inhibits wild-type ASCT2. Guided by computational modeling using ligand docking and molecular dynamics simulations, we selected two residues involved in UCPH-101/EAAT1 interaction, which were mutated in ASCT2 (F136Y, I237M, F136Y/I237M) in the corresponding positions. We show that in the F136Y/I237M double-mutant transporter, 100% of the inhibitory effect of UCPH-101 could be restored, and the apparent affinity was increased (Ki = 4.3 µM), much closer to the EAAT1 value of 0.6 µM. Finally, we identify a novel non-competitive ASCT2 inhibitor, through virtual screening and experimental testing against the allosteric site, further supporting its localization. Together, these data indicate that the mechanism of allosteric modulation is conserved between EAAT1 and ASCT2. Due to the difference in binding site residues between ASCT2 and EAAT1, these results raise the possibility that more potent, and potentially selective ASCT2 allosteric inhibitors can be designed .


Asunto(s)
Aminoácidos , Glutamina , Animales , Glutamina/metabolismo , Ácido Glutámico , Sitios de Unión , Alanina , Transportador 1 de Aminoácidos Excitadores/metabolismo , Serina , Antígenos de Histocompatibilidad Menor/genética , Mamíferos/metabolismo
9.
Nat Commun ; 14(1): 1799, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002226

RESUMEN

Episodic ataxias (EAs) are rare neurological conditions affecting the nervous system and typically leading to motor impairment. EA6 is linked to the mutation of a highly conserved proline into an arginine in the glutamate transporter EAAT1. In vitro studies showed that this mutation leads to a reduction in the substrates transport and an increase in the anion conductance. It was hypothesised that the structural basis of these opposed functional effects might be the straightening of transmembrane helix 5, which is kinked in the wild-type protein. In this study, we present the functional and structural implications of the mutation P208R in the archaeal homologue of glutamate transporters GltTk. We show that also in GltTk the P208R mutation leads to reduced aspartate transport activity and increased anion conductance, however a cryo-EM structure reveals that the kink is preserved. The arginine side chain of the mutant points towards the lipidic environment, where it may engage in interactions with the phospholipids, thereby potentially interfering with the transport cycle and contributing to stabilisation of an anion conducting state.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Proteínas Arqueales , Ataxia , Humanos , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Arginina/genética , Ataxia/genética , Transportador 1 de Aminoácidos Excitadores/genética , Mutación , Archaea/genética , Archaea/fisiología , Proteínas Arqueales/genética , Proteínas Arqueales/fisiología
10.
Glia ; 71(5): 1197-1216, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36617748

RESUMEN

The homeostasis of glutamate is mainly regulated by the excitatory amino acid transporters (EAATs), especially by EAAT2 in astrocytes. Excessive glutamate in the synaptic cleft caused by dysfunction or dysregulation of EAAT2 can lead to excitotoxicity, neuronal death and cognitive dysfunction. However, it remains unclear about the detailed regulation mechanism of expression and function of astrocytic EAAT2. In this study, first, we found increased neuronal death and impairment of cognitive function in YAPGFAP -CKO mice (conditionally knock out Yes-associated protein [YAP] in astrocytes), and identified EAAT2 as a downstream target of YAP through RNA sequencing. Second, the expression of EAAT2 was decreased in cultured YAP-/- astrocytes and the hippocampus of YAPGFAP -CKO mice, and glutamate uptake was reduced in YAP-/- astrocytes, but increased in YAP-upregulated astrocytes. Third, further investigation of the mechanism showed that the mRNA and protein levels of ß-catenin were decreased in YAP-/- astrocytes and increased in YAP-upregulated astrocytes. Wnt3a activated YAP signaling and up-regulated EAAT2 through ß-catenin. Furthermore, over-expression or activation of ß-catenin partially restored the downregulation of EAAT2, the impairment of glutamate uptake, neuronal death and cognitive decline that caused by YAP deletion. Finally, activation of EAAT2 also rescued neuronal death and cognitive decline in YAPGFAP -CKO mice. Taken together, our study identifies an unrecognized role of YAP signaling in the regulation of glutamate homeostasis through the ß-catenin/EAAT2 pathway in astrocytes, which may provide novel insights into the pathogenesis of brain diseases that closely related to the dysfunction or dysregulation of EAAT2, and promote the development of clinical strategy.


Asunto(s)
Astrocitos , Proteínas Señalizadoras YAP , Animales , Ratones , Astrocitos/metabolismo , beta Catenina/metabolismo , Ácido Glutámico/metabolismo , Homeostasis , Sistemas de Transporte de Aminoácidos/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo
11.
Antioxid Redox Signal ; 39(4-6): 262-277, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36601724

RESUMEN

Aims: This study aimed at exploring the mechanism of ferroptosis (an iron-dependent form of nonapoptotic cell death) resistance in senescent chondrocytes (SenChos). Results: In this study, by utilizing metabolomics and single-cell RNA sequencing, we found that hyperactivation of ferroptosis metabolism was one of the most prominent metabolic features in SenChos. Interestingly, however, SenChos were able to survive in this state and were resistant to ferroptosis-induced cell death. Next, we elucidated that this survival mechanism of SenChos could be primarily attributed to overexpression of the membrane protein excitatory amino acid transporter protein 1 (EAAT1), which can increase intracellular glutamate (Glu) levels and activate the glutathione system to counteract ferroptosis. In addition, 2-amino-5,6,7,8-tetrahydro-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-4H-chromene-3-carbonitrile (UCPH-101) (a specific inhibitor of EAAT1) and siRNA-EAAT1 were able to substantially increase the sensitivity of SenChos to ferroptosis and to induce cell death, with no apparent effects on the normal cells. Administration of an intraarticular injection of UCPH-101 caused inhibition of EAAT1 selectively, cleared SenChos from cartilage, improved the cartilage homeostasis, and significantly delayed the progression of osteoarthritis (OA). Innovation: This work supports a relevant role for EAAT1 in ferroptosis resistance mechanism for SenChos, revealing a potential therapeutic target of OA. Conclusions: EAAT1-Glu-glutathione peroxidase 4 anti-ferroptosis axis is a key survival mechanism for SenChos, and EAAT1 is an effective and specific target for anti-senescence therapy in OA. Antioxid. Redox Signal. 39, 262-277.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores , Osteoartritis , Humanos , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Condrocitos/metabolismo , Cinética
12.
Glia ; 71(3): 720-741, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36416239

RESUMEN

Deficiency of glutamate transporter GLAST in Müller cells may be culpable for excessive extracellular glutamate, which involves in retinal ganglion cell (RGC) damage in glaucoma. We elucidated how GLAST was regulated in rat chronic ocular hypertension (COH) model. Western blot and whole-cell patch-clamp recordings showed that GLAST proteins and GLAST-mediated current densities in Müller cells were downregulated at the early stages of COH. In normal rats, intravitreal injection of the ephrinA3 activator EphA4-Fc mimicked the changes of GLAST in COH retinas. In purified cultured Müller cells, EphA4-Fc treatment reduced GLAST expression at mRNA and protein levels, which was reversed by the tyrosine kinase inhibitor PP2 or transfection with ephrinA3-siRNA (Si-EFNA3), suggesting that EphA4/ephrinA3 reverse signaling mediated GLAST downregulation. EphA4/ephrinA3 reverse signaling-induced GLAST downregulation was mediated by inhibiting PI3K/Akt/NF-κB pathways since EphA4-Fc treatment of cultured Müller cells reduced the levels of p-Akt/Akt and NF-κB p65, which were reversed by transfecting Si-EFNA3. In Müller cells with ephrinA3 knockdown, the PI3K inhibitor LY294002 still decreased the protein levels of NF-κB p65 in the presence of EphA4-Fc, and the mRNA levels of GLAST were reduced by LY294002 and the NF-κB inhibitor SN50, respectively. Pre-injection of the PI3K/Akt pathway activator 740 Y-P reversed the GLAST downregulation in COH retinas. Western blot and TUNEL staining showed that transfecting of Si-EFNA3 reduced Müller cell gliosis and RGC apoptosis in COH retinas. Our results suggest that activated EphA4/ephrinA3 reverse signaling induces GLAST downregulation in Müller cells via inhibiting PI3K/Akt/NF-κB pathways, thus contributing to RGC damage in glaucoma.


Asunto(s)
Efrina-A3 , Transportador 1 de Aminoácidos Excitadores , Glaucoma , Hipertensión Ocular , Receptor EphA4 , Animales , Ratas , Sistema de Transporte de Aminoácidos X-AG , Regulación hacia Abajo , Células Ependimogliales , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Retina , Transportador 1 de Aminoácidos Excitadores/metabolismo , Receptor EphA4/metabolismo , Efrina-A3/metabolismo
13.
ASN Neuro ; 14: 17590914221116574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903937

RESUMEN

SUMMARY STATEMENT: EAAT1/GLAST down-regulates its expression and function at the transcriptional level by activating a signaling pathway that includes PI3K, PKC and NF-κB, favoring the notion of an activity-dependent fine-tuning of glutamate recycling and its synaptic transactions through glial cells.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores , Regulación de la Expresión Génica , Células Cultivadas , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica/genética , Ácido Glutámico/metabolismo , Neuroglía/metabolismo
14.
Cell Cycle ; 21(20): 2206-2221, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35815665

RESUMEN

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have distinct origins: ESCs are derived from pre-implanted embryos while iPSCs are reprogrammed somatic cells. Both have their own characteristics and lineage specificity, and both are valuable tools for studying human neurological development and disease. Thus far, few studies have analyzed how differences between stem cell types influence mitochondrial function and mitochondrial DNA (mtDNA) homeostasis during differentiation into neural and glial lineages. In this study, we compared mitochondrial function and mtDNA replication in human ESCs and iPSCs at three different stages - pluripotent, neural progenitor and astrocyte. We found that while ESCs and iPSCs have a similar mitochondrial signature, neural and astrocyte derivations manifested differences. At the neural stem cell (NSC) stage, iPSC-NSCs displayed decreased ATP production and a reduction in mitochondrial respiratory chain (MRC) complex IV expression compared to ESC-NSCs. IPSC-astrocytes showed increased mitochondrial activity including elevated ATP production, MRC complex IV expression, mtDNA copy number and mitochondrial biogenesis relative to those derived from ESCs. These findings show that while ESCs and iPSCs are similar at the pluripotent stage, differences in mitochondrial function may develop during differentiation and must be taken into account when extrapolating results from different cell types.Abbreviation: BSA: Bovine serum albumin; DCFDA: 2',7'-dichlorodihydrofluorescein diacetate; DCX: Doublecortin; EAAT-1: Excitatory amino acid transporter 1; ESCs: Embryonic stem cells; GFAP: Glial fibrillary acidic protein; GS: Glutamine synthetase; iPSCs: Induced pluripotent stem cells; LC3B: Microtubule-associated protein 1 light chain 3ß; LC-MS: Liquid chromatography-mass spectrometry; mito-ROS: Mitochondrial ROS; MMP: Mitochondrial membrane potential; MRC: Mitochondrial respiratory chain; mtDNA: Mitochondrial DNA; MTDR: MitoTracker Deep Red; MTG: MitoTracker Green; NSCs: Neural stem cells; PDL: Poly-D-lysine; PFA: Paraformaldehyde; PGC-1α: PPAR-γ coactivator-1 alpha; PPAR-γ: Peroxisome proliferator-activated receptor-gamma; p-SIRT1: Phosphorylated sirtuin 1; p-ULK1: Phosphorylated unc-51 like autophagy activating kinase 1; qPCR: Quantitative PCR; RT: Room temperature; RT-qPCR: Quantitative reverse transcription PCR; SEM: Standard error of the mean; TFAM: Mitochondrial transcription factor A; TMRE: Tetramethylrhodamine ethyl ester; TOMM20: Translocase of outer mitochondrial membrane 20.


Asunto(s)
Células Madre Pluripotentes Inducidas , Adenosina Trifosfato/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Diferenciación Celular , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Dominio Doblecortina , Células Madre Embrionarias/metabolismo , Ésteres/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lisina/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina , Sirtuina 1/metabolismo
15.
J Cell Physiol ; 237(7): 3044-3056, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35551669

RESUMEN

Ischemic stroke is a common cerebral disease. However, the treatment for the disease is limited. Daurian ground squirrel (GS; Spermophilus dauricus), a hibernating mammalian species, is highly tolerant to ischemia. In the present study, GS neurons in a non-hibernating state were found to be more resistant to oxygen-glucose deprivation (OGD), an ischemic model in vitro. We leveraged the differences in the endurance capacity of GS and rats to investigate the mechanisms of resistance to ischemia in GS neurons. We first identified glutamate-aspartate transporter 1 (GLAST) as a cytoprotective factor that contributed to tolerance against OGD injury of GS neurons. The expression of GLAST in GS neurons was much higher than that in rat neurons. Overexpression of GLAST rescued viability in rat neurons, and GS neurons exhibited decreased viability following GLAST knockdown under OGD conditions. Mechanistically, more glutamate was transported into neurons after GLAST overexpression and served as substrates for ATP production. Furthermore, eukaryotic transcription initiation factor 4E binding protein 1 was downregulated by GLAST to rescue neuronal viability. Our findings not only revealed an important molecular mechanism underlying the survival of hibernating mammals but also suggested that neuronal GLAST may be a potential target for ischemic stroke therapy.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Glucosa/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Oxígeno/metabolismo , Ratas , Sciuridae/fisiología
16.
Genes (Basel) ; 13(3)2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35328060

RESUMEN

Hypoxic ischemic injury to the fetal and neonatal brain is a leading cause of death and disability worldwide. Although animal and culture studies suggest that glutamate excitotoxicity is a primary contributor to neuronal death following hypoxia, the molecular mechanisms, and roles of various neural cells in the development of glutamate excitotoxicity in humans, is not fully understood. In this study, we developed a culture model of human fetal neural stem cell (FNSC)-derived astrocytes and examined their glutamate uptake in response to hypoxia. We isolated, established, and characterized cultures of FNSCs from aborted fetal brains and differentiated them into astrocytes, characterized by increased expression of the astrocyte markers glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1) and EAAT2, and decreased expression of neural stem cell marker Nestin. Differentiated astrocytes were exposed to various oxygen concentrations mimicking normoxia (20% and 6%), moderate and severe hypoxia (2% and 0.2%, respectively). Interestingly, no change was observed in the expression of the glutamate transporter EAAT2 or glutamate uptake by astrocytes, even after exposure to severe hypoxia for 48 h. These results together suggest that human FNSC-derived astrocytes can maintain glutamate uptake after hypoxic injury and thus provide evidence for the possible neuroprotective role of astrocytes in hypoxic conditions.


Asunto(s)
Astrocitos , Ácido Glutámico , Células-Madre Neurales , Astrocitos/metabolismo , Hipoxia de la Célula , Células Cultivadas , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Humanos , Células-Madre Neurales/metabolismo
17.
ACS Chem Neurosci ; 13(6): 776-785, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35192345

RESUMEN

Excitatory amino acid transporters (EAATs) are glutamate transporters that belong to the solute carrier 1A (SLC1A) family. They couple glutamate transport to the cotransport of three sodium (Na+) ions and one proton (H+) and the counter-transport of one potassium (K+) ion. In addition to this coupled transport, binding of cotransported species to EAATs activates a thermodynamically uncoupled chloride (Cl-) conductance. Structures of SLC1A family members have revealed that these transporters use a twisting elevator mechanism of transport, where a mobile transport domain carries substrate and coupled ions across the membrane, while a static scaffold domain anchors the transporter in the membrane. We recently demonstrated that the uncoupled Cl- conductance is activated by the formation of an aqueous pore at the domain interface during the transport cycle in archaeal GltPh. However, a pathway for the uncoupled Cl- conductance has not been reported for the EAATs, and it is unclear if such a pathway is conserved. Here, we employ all-atom molecular dynamics (MD) simulations combined with enhanced sampling, free-energy calculations, and experimental mutagenesis to approximate large-scale conformational changes during the transport process and identified a Cl--conducting conformation in human EAAT1 (hEAAT1). Sampling the large-scale structural transitions in hEAAT1 allowed us to capture an intermediate conformation formed during the transport cycle with a continuous aqueous pore at the domain interface. The free-energy calculations performed for the conduction of Cl- and Na+ ions through the captured conformation highlight the presence of two hydrophobic gates that control low-barrier movement of Cl- through the aqueous pathway. Overall, our findings provide insights into the mechanism by which a human neurotransmitter transporter supports functional duality of active transport and passive Cl- permeation and confirm the commonality of this mechanism in different members of the SLC1A family.


Asunto(s)
Cloruros , Transportador 1 de Aminoácidos Excitadores , Cloruros/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores , Transportador 3 de Aminoácidos Excitadores , Ácido Glutámico/metabolismo , Humanos , Sodio/metabolismo
18.
J Clin Invest ; 132(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35167492

RESUMEN

Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). Excitatory amino acid transporters (EAATs) regulate extracellular glutamate by transporting it into cells, mostly glia, to terminate neurotransmission and to avoid neurotoxicity. EAATs are also chloride (Cl-) channels, but the physiological role of Cl- conductance through EAATs is poorly understood. Mutations of human EAAT1 (hEAAT1) have been identified in patients with episodic ataxia type 6 (EA6). One mutation showed increased Cl- channel activity and decreased glutamate transport, but the relative contributions of each function of hEAAT1 to mechanisms underlying the pathology of EA6 remain unclear. Here we investigated the effects of 5 additional EA6-related mutations on hEAAT1 function in Xenopus laevis oocytes, and on CNS function in a Drosophila melanogaster model of locomotor behavior. Our results indicate that mutations resulting in decreased hEAAT1 Cl- channel activity but with functional glutamate transport can also contribute to the pathology of EA6, highlighting the importance of Cl- homeostasis in glial cells for proper CNS function. We also identified what we believe is a novel mechanism involving an ectopic sodium (Na+) leak conductance in glial cells. Together, these results strongly support the idea that EA6 is primarily an ion channelopathy of CNS glia.


Asunto(s)
Ataxia , Drosophila melanogaster , Animales , Ataxia/genética , Ataxia/metabolismo , Canales de Cloruro/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Transportador 1 de Aminoácidos Excitadores , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Mamíferos/metabolismo , Mutación , Neuroglía/metabolismo
19.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 491-496, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37088758

RESUMEN

OBJECTIVE: To investigate the effects of glutamate aspartate transporter (GLAST)deletion on the normal auditory function of mice. METHODS: We hybridized GLAST+/- mice with C57BL/6J background and identified the genotypes of their offspring by agarose gel electrophoresis. 9-10-week-old mice were selected to detect the expression of GLAST protein in the cochlea by immunofluorescence staining and to verify the knockout results(n=3). The changes in weight from 7 days to 30 days after birth and the 30-day body length of male and female mice were compared(n=8). The auditory brainstem response(ABR) was used to detect the auditory threshold and the amplitude of wave I in 9-10-week-old male and female mice(n=5). RESULTS: Male GLAST-/- mice had shown significantly lower weight and body length compared to male GLAST+/+ and GLAST+/- mice(P<0.01), and male GLAST-/- mice showed significant differences compared to GLAST+/+ from P7 to P30 statistical time. Male GLAST-/- mice exhibited a significant reduction in weight after P15 compared to male GLAST+/- mice. In contrast, no significant differences in weight and body length were observed in female GLAST-/- mice compared with female GLAST+/+ and GLAST+/- mice. There was no difference in the hearing threshold detected by ABR between the three genotypes in both male and female mice, but the amplitude of wave I in GLAST-/- mice was significantly lower than that in male GLAST+/+ mice(P<0.01). In contrast, the amplitude of wave I in females was reduced throughout the stimulus intensity but was most significant only at high-intensity stimulation (e.g.80 dB, 90 dB) (P<0.05). CONCLUSION: GLAST knockout affects the normal growth and development of male mice, and decreases the amplitude of wave I, but do not change the threshold, suggesting that GLAST knockout may lead to synaptic pathological changes, and there are gender differences in this effect.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores , Audición , Animales , Femenino , Masculino , Ratones , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Transportador 1 de Aminoácidos Excitadores/genética , Audición/genética , Audición/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
20.
Neurochem Res ; 47(1): 61-84, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33893911

RESUMEN

Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Ácido Glutámico , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores , Ácido Glutámico/metabolismo , Humanos , Mamíferos/metabolismo , Sodio , Sinaptosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...