Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
2.
Microbiol Spectr ; 12(3): e0136523, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315030

RESUMEN

Hepatitis B virus (HBV) may directly infect human podocytes (HPCs). However, the mechanism of direct infection is unclear. We found that HPCs express sodium taurocholate cotransporting polypeptide (NTCP), a specific receptor for HBV entry into hepatocytes. Thus, we investigated whether NTCP mediates HBV infection and damage in HPCs and further clarified the specific mechanism. We constructed shRNA-NTCP1,2, shRNA-NC, WT-NTCP, and MUT-NTCP and transfected them into HPCs. HPCs were infected with HBV, and HBV infection markers were detected by enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR (RT-qPCR). The functional changes in HPCs were detected by Transwell migration and scratch assays, apoptosis was evaluated by flow cytometry (FCM), and podocytoskeletal proteins (nephrin, CD2AP, and synaptopodin) were determined by western blotting (WB). Compared with the control HPCs, HPCs infected with HBV showed increased levels of HBV infection markers and apoptosis along with decreased podocytoskeletal protein expressions, cell vitality, proliferation, and migration. Compared with the HPCs infected with HBV, the HPCs transfected with HBV + shRNA-NTCP, and HBV + MUT-NTCP showed decreased levels of HBV infection markers and apoptosis along with increased podocytoskeletal protein expressions, cell vitality, proliferation, and migration; the opposite effects were observed in the HPCs transfected with HBV + WT-NTCP. Overall, the changes to NTCP affected the susceptibility of HPCs to HBV and modulated HPC damage and repair. NTCP can mediate direct HBV infection and damage human podocytes, and the NTCP 157-165 locus is the main site of HBV entry. The findings provide a new target and theoretical basis for HBV-associated glomerulonephritis. IMPORTANCE: This study identified for the first time that sodium taurocholate cotransporting polypeptide (NTCP) can mediate HBV direct infection and damage to human podocytes, and the NTCP157-165 locus is the main HBV entry site. The findings provide theoretical support for the pathogenesis of direct infection of HBV with kidney tissue. The findings provide a new target and theoretical basis for the treatment of HBV-related glomerulonephritis (HBV-GN). Blocking NTCP is a new target for the treatment of HBV-GN. We found that tacrolimus, a calcineurin inhibitor that blocks NTCP, can effectively treat HBV-GN. This study also provides a theoretical basis for the effective and safe treatment of immunosuppressant tacrolimus for HBV-GN.


Asunto(s)
Glomerulonefritis , Hepatitis B , Podocitos , Simportadores , Humanos , Virus de la Hepatitis B/genética , Tacrolimus/metabolismo , Podocitos/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , ARN Interferente Pequeño
3.
J Med Virol ; 96(1): e29428, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38258306

RESUMEN

To investigate the relationship between the expression of hepatitis B virus (HBV) functional receptor sodium taurocholate cotransporting polypeptide (NTCP) with disease progression and gender-specific differences in chronic HBV-infected patients. Liver samples were collected from chronic HBV-infected patients who underwent percutaneous liver biopsy or liver surgery. HBV DNA levels and the mRNA and protein expression levels of NTCP in liver tissues were determined. The relationship between NTCP expression and HBV DNA levels, inflammatory activity, fibrosis, and gender-specific differences were analyzed. A total of 94 chronic HBV-infected patients were included. Compared with patients with a METAVIR score of A0-1 or F0-1, patients with score of A2 or F2/F3 had a relatively higher level of NTCP expression. NTCP levels were positively correlated with HBV DNA levels. The inflammatory activity scores and fibrosis scores of women <50 years were significantly lower than those of women ≥50 years and age-matched males. In patients with score A0-2 or F0-3, women <50 years have lower NTCP expression level compared to women ≥50 years and age-matched males. NTCP can promote the disease progression by affecting the viral load of HBV. The NTCP expression difference may be why male and postmenopausal women are more prone to disease progression than reproductive women.


Asunto(s)
Hepatitis B Crónica , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Femenino , Humanos , Masculino , Progresión de la Enfermedad , ADN Viral/genética , Fibrosis , Virus de la Hepatitis B , Hepatitis B Crónica/genética , Inflamación , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Persona de Mediana Edad
4.
Virus Genes ; 59(6): 823-830, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37728707

RESUMEN

Due to the limited host range of HBV, research progress has been hindered by the absence of a suitable animal model. The natural history of woodchuck hepatitis virus (WHV) infection in woodchuck closely mirrors that of HBV infection in human, making this species a promising candidate for establishing both in vivo and in vitro HBV infection models. Therefore, this animal may be a valuable species to evaluate HBV vaccines and anti-HBV drugs. A significant milestone in HBV and hepatitis D virus (HDV) infection is the discovery of sodium taurocholate cotransporting polypeptide (NTCP) as the functional receptor. In an effort to enhance susceptibility to HBV infection, we introduced hNTCP into the woodchuck hepatocytes by multiple approaches including transduction of vLentivirus-hNTCP in woodchuck hepatocytes, transfection of p-lentivirus-hNTCP-eGFP plasmids into these cells, as well as transduction of vAdenovirus-hNTCP-eGFP. Encouragingly, our findings demonstrated the successful introduction of hNTCP into woodchuck hepatocytes. However, it was observed that these hNTCP-expressing hepatocytes were only susceptible to HDV infection but not HBV. This suggests the presence of additional crucial factors mediating early-stage HBV infection that are subject to stringent species-specific restrictions.


Asunto(s)
Hepatitis B , Hepatitis D , Animales , Humanos , Virus de la Hepatitis B/genética , Marmota , Hepatocitos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Virus de la Hepatitis Delta/genética , Internalización del Virus
5.
Drug Metab Pharmacokinet ; 52: 100512, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37517353

RESUMEN

PURPOSE: Plant-derived extracellular vesicles (EVs) have been reported to exert biological activity on intestinal tissues by delivering their contents into intestinal cells. We previously reported that ASBT/SLC10A2 mRNA was downregulated by apple-derived extracellular vesicles (APEVs). ASBT downregulation is effective in the treatment of cholestasis and chronic constipation, similar to the beneficial effects of apples. Therefore, this study aimed to establish the mechanism of ASBT downregulation by APEVs, focusing on microRNAs present in APEVs. RESULTS: APEVs downregulated the expression of ASBT, but no significant effect on SLC10A2-3'UTR was observed. Proteomics revealed that APEVs decreased the expression of RARα/NR1B1. The binding of RARα to SLC10A2 promoter was also decreased by APEVs. The stability of NR1B1 mRNA was attenuated by APEVs and its 3'UTR was found to be a target for APEVs. Apple microRNAs that were predicted to interact with NR1B1-3'UTR were present in APEVs, and their mimics suppressed NR1B1 mRNA expression. CONCLUSIONS: Suppression of ASBT by APEVs was indirectly mediated by the downregulation of RARα, and its stability was lowered by microRNAs present in APEVs. This study suggested that macromolecules in food directly affect intestinal function by means of EVs that stabilize them and facilitate their cellular uptake.


Asunto(s)
Vesículas Extracelulares , Malus , MicroARNs , Simportadores , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Abajo , Malus/genética , Malus/metabolismo , Regiones no Traducidas 3' , Ácidos y Sales Biliares , MicroARNs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Simportadores/genética , Simportadores/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo
6.
J Biol Chem ; 299(8): 104976, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390985

RESUMEN

Urate transporters play a pivotal role in urate handling in the human body, but the urate transporters identified to date do not account for all known molecular processes of urate handling, suggesting the presence of latent machineries. We recently showed that a urate transporter SLC2A12 is also a physiologically important exporter of ascorbate (the main form of vitamin C in the body) that would cooperate with an ascorbate importer, sodium-dependent vitamin C transporter 2 (SVCT2). Based on the dual functions of SLC2A12 and cooperativity between SLC2A12 and SVCT2, we hypothesized that SVCT2 might be able to transport urate. To test this proposal, we conducted cell-based analyses using SVCT2-expressing mammalian cells. The results demonstrated that SVCT2 is a novel urate transporter. Vitamin C inhibited SVCT2-mediated urate transport with a half-maximal inhibitory concentration of 36.59 µM, suggesting that the urate transport activity may be sensitive to physiological ascorbate levels in blood. Similar results were obtained for mouse Svct2. Further, using SVCT2 as a sodium-dependent urate importer, we established a cell-based urate efflux assay that will be useful for identification of other novel urate exporters as well as functional characterization of nonsynonymous variants of already-identified urate exporters including ATP-binding cassette transporter G2. While more studies will be needed to elucidate the physiological impact of SVCT2-mediated urate transport, our findings deepen understanding of urate transport machineries.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Dependiente , Transportadores de Sodio Acoplados a la Vitamina C , Ácido Úrico , Animales , Humanos , Ratones , Ácido Ascórbico/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Sodio Acoplados a la Vitamina C/genética , Ácido Úrico/metabolismo
7.
Food Funct ; 14(10): 4836-4846, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37129213

RESUMEN

Apples are known to exhibit various beneficial effects on human health. In the present study, we investigated the effect of continuous intake of apple juice (AJ) on constipation status. A single dose of loperamide in rats as the constipation model markedly decreased the weight and number of fecal pellets compared to saline-administered rats as a control. After the administration of AJ twice a day for seven days, recovery of defecation close to that of the control was observed in loperamide-treated rats. In addition, the total bile acid content in the feces increased from day 4 after the administration of AJ. Among hepatic and intestinal transporters and enzymes that regulate bile acids, the mRNA expression of the apical sodium-dependent bile acid transporter (Asbt, slc10a2) was decreased by AJ in rats. Furthermore, the Asbt-mediated bile acid transport activity in the rat ileum decreased after AJ administration. Moreover, in human colonic cancer-derived Caco-2 cells, AJ exposure for 24 and 48 h decreased the expressions of ASBT mRNA and protein, and the uptake activity of taurocholic acid in both 7- and 21-d cultures. Several components of AJ, such as procyanidins, decreased the expression of ASBT in Caco-2 cells. In conclusion, ASBT downregulation is a possible mechanism responsible for the constipation-relieving effect of apples, and procyanidins may play a role in downregulating ASBT, which leads to the beneficial effects of apples against constipation. Although it is generally agreed that the common dietary compositions play a role in constipation relief, the novel specific mechanism of apples found in this study would facilitate understanding food functions.


Asunto(s)
Malus , Proantocianidinas , Simportadores , Ratas , Humanos , Animales , Malus/metabolismo , Loperamida/efectos adversos , Proantocianidinas/farmacología , Células CACO-2 , Simportadores/genética , Simportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Íleon/metabolismo , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Gene ; 853: 147068, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36427676

RESUMEN

Hepatitis B virus (HBV) infection is one of the most serious global health problems. Our previous data using an in vitro assay revealed that miR-6126 suppressed the extracellular HBs antigen level, suggesting that miR-6126 had potential to suppress viral activity of HBV. In the current study, we aimed to clarify whether miR-6126 downregulated the expression level of sodium taurocholate cotransporting polypeptide (NTCP), a host cell receptor required for HBV entry. In brief, HepG2-NTCP cells were utilized to evaluate the expression level of NTCP and the PreS1 attachment to NTCP after transfection with miR-6126. The protein expression level of NTCP was evaluated using Western blot analysis and immunostaining. In addition to HepG2-NTCP cells, PXB cells were also utilized to validate inhibitory effect of miR-6126 on PreS1 attachment. The HBs antigen level in the culture supernatant was measured to evaluate reduction of HBV entry into hepatocytes. The stability of NTCP mRNA was evaluated to ascertain the cause of the downregulation of NTCP mRNA. The expression profile of messenger RNAs was evaluated using next-generation sequencing to search for direct targets of miR-6126. Consequently, transfection of miR-6126 decreased the NTCP expression level in HepG2-NTCP cells. Attachment of the PreS1 probe on the cell surface decreased in HepG2-NTCP cells and PXB cells, primary human hepatocytes. HBs antigen level in the culture supernatant also declined in PXB cells. Stability of NTCP mRNA was reduced by miR-6126 transfection in HepG2 cells. In conclusion, miR-6126 downregulated the expression of NTCP mRNA, which contributed to the inhibition of HBV entry into hepatocytes exerted by miR-6126.


Asunto(s)
Hepatitis B , MicroARNs , Simportadores , Humanos , Hepatocitos/metabolismo , Virus de la Hepatitis B/genética , Hepatitis B/genética , Células Hep G2 , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/genética , Simportadores/metabolismo , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Interferones/farmacología , Polietilenglicoles/farmacología
9.
Cells ; 11(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36497071

RESUMEN

The liver is the most common site for colorectal cancer (CRC)-associated metastasis. There remain unsatisfactory medications in liver metastasis given the incomplete understanding of pathogenic mechanisms. Herein, with an orthotopic implantation model fed either regular or high-fat diets (HFD), more liver metastases were associated with an expansion of conjugated bile acids (BAs), particularly taurocholic acid (TCA) in the liver, and an increased gene expression of Na+-taurocholate cotransporting polypeptide (NTCP). Such hepatic BA change was more apparently shown in the HFD group. In the same model, TCA was proven to promote liver metastases and induce a tumor-favorable microenvironment in the liver, characterizing a high level of fibroblast activation and increased proportions of myeloid-derived immune cells. Hepatic stellate cells, a liver-residing source of fibroblasts, were dose-dependently activated by TCA, and their conditioned medium significantly enhanced the migration capability of CRC cells. Blocking hepatic BA uptake with NTCP neutralized antibody can effectively repress TCA-triggered liver metastases, with an evident suppression of tumor microenvironment niche formation. This study points to a new BA-driven mechanism of CRC-associated liver metastases, suggesting that a reduction of TCA overexposure by limiting liver uptake is a potential therapeutic option for CRC-associated liver metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Simportadores , Humanos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/genética , Simportadores/metabolismo , Ácido Taurocólico/farmacología , Ácido Taurocólico/metabolismo , Microambiente Tumoral
10.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076968

RESUMEN

Elucidation of the factors responsible for hepatitis B virus (HBV) is extremely important in order to understand the viral life cycle and pathogenesis, and thereby explore potential anti-HBV drugs. The recent determination that sodium taurocholate co-transporting peptide (NTCP) is an essential molecule for the HBV entry into cells led to the development of an HBV infection system in vitro using a human hepatocellular carcinoma (HCC) cell line expressing NTCP; however, the precise mechanism of HBV entry is still largely unknown, and thus it may be necessary to elucidate all the molecules involved. Here, we identified ATP5B as another essential factor for HBV entry. ATP5B was expressed on the cell surface of the HCC cell lines and bound with myristoylated but not with non-myristoylated preS1 2-47, which supported the notion that ATP5B is involved in the HBV entry process. Knockdown of ATP5B in NTCP-expressing HepG2 cells, which allowed HBV infection, reduced HBV infectivity with less cccDNA formation. Taken together, these results strongly suggested that ATP5B is an essential factor for HBV entry into the cells.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Simportadores , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Virus de la Hepatitis B/genética , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/genética , Simportadores/metabolismo , Internalización del Virus
11.
Tuberculosis (Edinb) ; 136: 102248, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36055153

RESUMEN

Rifampicin is one of the most important drugs for the treatment of tuberculosis (TB). Polymorphisms in SLCO1B1 and SLC10A1 genes are associated with impaired transporter function of drug compounds such as rifampicin. The relationship between genetic variation, clinical comorbidities, and rifampicin exposures in TB patients has not been completely elucidated. The aim of this study was to investigate the prevalence of SLCO1A1 and SLCO1B1 polymorphisms in TB and TB-DM patients and to determine their relationship with rifampicin pharmacokinetics on patients from México. Blood samples were collected in two hospitals in Baja California, Mexico from February through December 2017. Sampling included 19 patients with TB, 11 with T2DM and 17 healthy individuals. Polymorphisms genotype rs2306283, rs11045818, rs11045819, rs4149056, rs4149057, rs72559746,rs2291075 and rs4603354 of SLCO1B1 and rs4646285 and rs138880008 of SLC10A1 were analyzed by Sanger's sequencing. None of the SLCO1B1 and SLC10A1 variants were significantly associated with rifampicin Cmax. TB and T2DM patients with suboptimal Cmax rifampicin levels showed wild alleles in rs11045819 and rs2291075 in SLCO1B1 SLC10A1 and SLC10A1. This is the first study to analyze SLC10A1 and SLCO1B1 polymorphisms in TB and TB-T2DM patients and healthy individuals in Mexico. Further research to confirm and extend these findings is necessary.


Asunto(s)
Diabetes Mellitus Tipo 2 , Mycobacterium tuberculosis , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Tuberculosis , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Genotipo , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/genética , México/epidemiología , Morbilidad , Polimorfismo de Nucleótido Simple , Rifampin , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología
12.
Front Endocrinol (Lausanne) ; 13: 898750, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937832

RESUMEN

Background: The p.Ser267Phe mutation in the SLC10A1 gene can cause NTCP deficiency. However, the full clinical presentation of p.Ser267Phe homozygous individuals and its long-term consequences remain unclear. Hence, in the present study, we characterized the phenotypic characteristics of NTCP deficiency and evaluated its long-term prognosis. Methods: Ten NTCP p.Ser267Phe homozygous individuals were recruited and a comprehensive medical evaluation with a 5-year follow-up observation was performed. The phenotypic characteristics of NTCP deficiency were also demonstrated using an NTCP-global knockout mouse model. Results: During the 5-year follow-up observation of 10 NTCP p.Ser267Phe homozygous adults, we found that the most common phenotypic features of NTCP deficiency in adults were hypercholanemia, vitamin D deficiency, bone loss, and gallbladder abnormalities. The profile of bile acids (BAs) in the serum was significantly altered in these individuals and marked by both elevated proportion and concentration of primary and conjugated BAs. Moreover, the NTCP deficiency led to increased levels of serum BAs, decreased levels of vitamin D, and aggravated the osteoporotic phenotype induced by estrogen withdrawal in mice. Conclusions: Both mice and humans with NTCP deficiency presented hypercholanemia and were more prone to vitamin D deficiency and aggravated osteoporotic phenotype. Therefore, we recommend monitoring the levels of BAs and vitamin D, bone density, and abdominal ultrasounds in individuals with NTCP deficiency.


Asunto(s)
Osteoporosis , Simportadores , Deficiencia de Vitamina D , Adulto , Animales , Ácidos y Sales Biliares , Humanos , Ratones , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Osteoporosis/genética , Simportadores/genética , Vitamina D
13.
Viruses ; 14(8)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-36016422

RESUMEN

HepG2 cells reconstituted with Hepatitis B virus (HBV) entry receptor sodium taurocholate co-transporting polypeptide (NTCP) are widely used as a convenient in vitro cell culture infection model for HBV replication studies. As such, it is pertinent that HBV infectivity is maintained at steady-state levels for an accurate interpretation of in vitro data. However, variations in the HBV infection efficiency due to imbalanced NTCP expression levels in the HepG2 cell line may affect experimental results. In this study, we performed single cell-cloning of HepG2-NTCP-A3 parental cells via limiting dilution and obtained multiple subclones with increased permissiveness to HBV. Specifically, one subclone (HepG2-NTCP-A3/C2) yielded more than four-fold higher HBV infection compared to the HepG2-NTCP-A3 parental clone. In addition, though HBV infectivity was universally reduced in the absence of polyethylene glycol (PEG), subclone C2 maintained relatively greater permissiveness under PEG-free conditions, suggesting the functional heterogeneity within parental HepG2-NTCP-A3 may be exploitable in developing a PEG-free HBV infection model. The increased viral production correlated with increased intracellular viral antigen expression as evidenced through HBcAg immunofluorescence staining. Further, these subclones were found to express different levels of NTCP, albeit with no remarkable morphology or cell growth differences. In conclusion, we isolated the subclones of HepG2-NTCP-A3 which support efficient HBV production and thus provide an improved in vitro HBV infection model.


Asunto(s)
Hepatitis B , Simportadores , Células Hep G2 , Virus de la Hepatitis B/fisiología , Hepatocitos , Humanos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Receptores Virales/metabolismo , Simportadores/genética , Simportadores/metabolismo , Ácido Taurocólico , Internalización del Virus
14.
Sci Rep ; 12(1): 14333, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995956

RESUMEN

Hepatic cell lines serve as economical and reproducible alternatives for primary human hepatocytes. However, the utility of hepatic cell lines to examine bile acid homeostasis and cholestatic toxicity is limited due to abnormal expression and function of bile acid-metabolizing enzymes, transporters, and the absence of canalicular formation. We discovered that culturing HuH-7 human hepatoma cells with dexamethasone (DEX) and 0.5% dimethyl sulfoxide (DMSO) for two weeks, with Matrigel overlay after one week, resulted in a shorter and improved differentiation process. These culture conditions increased the expression and function of the major bile acid uptake and efflux transporters, sodium taurocholate co-transporting polypeptide (NTCP) and the bile salt export pump (BSEP), respectively, in two-week cultures of HuH-7 cells. This in vitro model was further characterized for expression and function of bile acid-metabolizing enzymes, transporters, and cellular bile acids. Differentiated HuH-7 cells displayed a marked shift in bile acid composition and induction of cytochrome P450 (CYP) 7A1, CYP8B1, CYP3A4, and bile acid-CoA: amino acid N-acyltransferase (BAAT) mRNAs compared to control. Inhibition of taurocholate uptake and excretion after a 24-h treatment with prototypical cholestatic drugs suggests that differentiated HuH-7 cells are a suitable model to examine cholestatic hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Colestasis , Simportadores , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Colestasis/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Ácido Taurocólico/metabolismo
15.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806468

RESUMEN

The hepatic Na+-taurocholate cotransporting polypeptide NTCP/SLC10A1 is important for the uptake of bile salts and selected drugs. Its inhibition results in increased systemic bile salt concentrations. NTCP is also the entry receptor for the hepatitis B/D virus. We investigated interindividual hepatic SLC10A1/NTCP expression using various omics technologies. SLC10A1/NTCP mRNA expression/protein abundance was quantified in well-characterized 143 human livers by real-time PCR and LC-MS/MS-based targeted proteomics. Genome-wide SNP arrays and SLC10A1 next-generation sequencing were used for genomic analyses. SLC10A1 DNA methylation was assessed through MALDI-TOF MS. Transcriptomics and untargeted metabolomics (UHPLC-Q-TOF-MS) were correlated to identify NTCP-related metabolic pathways. SLC10A1 mRNA and NTCP protein levels varied 44-fold and 10.4-fold, respectively. Non-genetic factors (e.g., smoking, alcohol consumption) influenced significantly NTCP expression. Genetic variants in SLC10A1 or other genes do not explain expression variability which was validated in livers (n = 50) from The Cancer Genome Atlas. The identified two missense SLC10A1 variants did not impair transport function in transfectants. Specific CpG sites in SLC10A1 as well as single metabolic alterations and pathways (e.g., peroxisomal and bile acid synthesis) were significantly associated with expression. Inter-individual variability of NTCP expression is multifactorial with the contribution of clinical factors, DNA methylation, transcriptional regulation as well as hepatic metabolism, but not genetic variation.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Ácidos y Sales Biliares/metabolismo , Cromatografía Liquida , Virus de la Hepatitis B/genética , Virus de la Hepatitis Delta/genética , Humanos , Hígado/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/biosíntesis , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simportadores/biosíntesis , Simportadores/genética , Simportadores/metabolismo , Espectrometría de Masas en Tándem , Ácido Taurocólico/metabolismo
16.
Nature ; 606(7916): 1021-1026, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35580629

RESUMEN

Chronic infection with hepatitis B virus (HBV) affects more than 290 million people worldwide, is a major cause of cirrhosis and hepatocellular carcinoma, and results in an estimated 820,000 deaths annually1,2. For HBV infection to be established, a molecular interaction is required between the large glycoproteins of the virus envelope (known as LHBs) and the host entry receptor sodium taurocholate co-transporting polypeptide (NTCP), a sodium-dependent bile acid transporter from the blood to hepatocytes3. However, the molecular basis for the virus-transporter interaction is poorly understood. Here we report the cryo-electron microscopy structures of human, bovine and rat NTCPs in the apo state, which reveal the presence of a tunnel across the membrane and a possible transport route for the substrate. Moreover, the cryo-electron microscopy structure of human NTCP in the presence of the myristoylated preS1 domain of LHBs, together with mutation and transport assays, suggest a binding mode in which preS1 and the substrate compete for the extracellular opening of the tunnel in NTCP. Our preS1 domain interaction analysis enables a mechanistic interpretation of naturally occurring HBV-insusceptible mutations in human NTCP. Together, our findings provide a structural framework for HBV recognition and a mechanistic understanding of sodium-dependent bile acid translocation by mammalian NTCPs.


Asunto(s)
Microscopía por Crioelectrón , Virus de la Hepatitis B , Transportadores de Anión Orgánico Sodio-Dependiente , Receptores Virales , Simportadores , Animales , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Bovinos , Virus de la Hepatitis B/metabolismo , Hepatocitos/metabolismo , Humanos , Mutación , Transportadores de Anión Orgánico Sodio-Dependiente/química , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/ultraestructura , Ratas , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Receptores Virales/ultraestructura , Sodio/metabolismo , Simportadores/química , Simportadores/genética , Simportadores/metabolismo , Simportadores/ultraestructura
17.
J Vis Exp ; (183)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35635460

RESUMEN

Hepatitis B virus (HBV) infection has been considered a crucial risk factor for hepatocellular carcinoma. Current treatment can only lessen the viral load but not result in complete remission. An efficient hepatocyte model for HBV infection would offer a true-to-life viral life cycle that would be crucial for the screening of therapeutic agents. Most available anti-HBV agents target lifecycle stages post viral entry but not before viral entry. This protocol details the generation of a competent hepatocyte model capable of screening for therapeutic agents targeting pre-viral entry and post viral entry lifecycle stages. This includes the targeting of sodium taurocholate cotransporting polypeptide (NTCP) binding, cccDNA formation, transcription, and viral assembly based on imHC or HepaRG as host cells. Here, the HBV entry inhibition assay used curcumin to inhibit HBV binding and transporting functions via NTCP. The inhibitors were evaluated for binding affinity (KD) with NTCP using isothermal titration calorimetry (ITC)-a universal tool for HBV drug screening based on thermodynamic parameters.


Asunto(s)
Hepatitis B , Simportadores , Hepatitis B/tratamiento farmacológico , Virus de la Hepatitis B/fisiología , Hepatocitos/metabolismo , Humanos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/uso terapéutico , Simportadores/genética , Simportadores/metabolismo , Simportadores/uso terapéutico
18.
Hepatol Int ; 16(4): 789-798, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35635688

RESUMEN

BACKGROUND AND AIMS: Hepatitis B virus (HBV) vaccine failure remains a hurdle to the global elimination of HBV infections in the vaccination era. We aimed to elucidate the relationships between HBV entry receptor sodium taurocholate co-transporting polypeptide (NTCP) and vaccine failure in children born to highly infectious mothers. METHODS: The genetic variants rs7154439, rs4646285, rs4646287, and rs2296651 were genotyped in 170 children with chronic HBV infections and 138 control children of mothers positive for hepatitis B e antigen (HBeAg). All children received hepatitis B immunoglobulin and complete HBV vaccination. Total RNAs from 82 adult non-tumor liver tissues were quantified for NTCP, type I interferons and interferon-induced transmembrane protein 3 (IFITM3) levels. RESULTS: A higher rate of the GA/AA genotype (28.3% vs. 15.3%, p = 0.006) of the genetic variant rs4646287 in intron 1 of the NTCP gene was detected in control children compared to the carrier children. The rs4646287 G > A genotype was associated with younger ages at which spontaneous HBeAg seroconversion occurred (10.8 ± 8.4 vs. 14.6 ± 8.7 years, p = 0.003) in chronic HBV-infected children. Unique correlation patterns of NTCP and innate immunity-related genes (type I interferons and IFITM3) were found in HBV-infected liver tissues with the rs4646287 G > A genotype. CONCLUSION: The rs4646287 G > A genotype of the NTCP gene may be associated with lower risk for HBV vaccine failure in children born to highly infectious mothers. The protective effect of rs4646287 G > A was also present in carrier children, evidenced by earlier spontaneous HBeAg seroconversion.


Asunto(s)
Vacunas contra Hepatitis B , Hepatitis B Crónica , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Adulto , Niño , Antígenos de Superficie de la Hepatitis B , Vacunas contra Hepatitis B/administración & dosificación , Antígenos e de la Hepatitis B , Hepatitis B Crónica/prevención & control , Humanos , Interferón Tipo I/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Proteínas de Unión al ARN , Simportadores/genética
19.
Viruses ; 14(4)2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35458456

RESUMEN

The Na+/taurocholate co-transporting polypeptide (NTCP, gene symbol SLC10A1) is both a physiological bile acid transporter and the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Virus entry via endocytosis of the virus/NTCP complex involves co-factors, but this process is not fully understood. As part of the innate immunity, interferon-induced transmembrane proteins (IFITM) 1-3 have been characterized as virus entry-restricting factors for many viruses. The present study identified IFITM3 as a novel protein-protein interaction (PPI) partner of NTCP based on membrane yeast-two hybrid and co-immunoprecipitation experiments. Surprisingly, IFITM3 knockdown significantly reduced in vitro HBV infection rates of NTCP-expressing HuH7 cells and primary human hepatocytes (PHHs). In addition, HuH7-NTCP cells showed significantly lower HDV infection rates, whereas infection with influenza A virus was increased. HBV-derived myr-preS1 peptide binding to HuH7-NTCP cells was intact even under IFITM3 knockdown, suggesting that IFITM3-mediated HBV/HDV infection enhancement occurs in a step subsequent to the viral attachment to NTCP. In conclusion, IFITM3 was identified as a novel NTCP co-factor that significantly affects in vitro infection with HBV and HDV in NTCP-expressing hepatoma cells and PHHs. While there is clear evidence for a direct PPI between IFITM3 and NTCP, the specific mechanism by which this PPI facilitates the infection process remains to be identified in future studies.


Asunto(s)
Hepatitis B , Simportadores , Células Hep G2 , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis Delta/genética , Hepatocitos , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Proteínas de Unión al ARN/metabolismo , Simportadores/genética , Simportadores/metabolismo , Internalización del Virus
20.
Am J Med Sci ; 364(2): 207-219, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35398032

RESUMEN

BACKGROUND: The aim of this study was to analyze the relationship between sodium taurocholate cotransporting polypeptide (NTCP) gene varieties and hepatitis B virus (HBV) infection and the progress of HBV-related liver disease. METHODS: PubMed, EMBASE, Web of Science and Cochrane library were used to search eligible studies. STATA software was performed to combine results. Pooled odds ratios (OR) was used to assess the potential genetic relationships. RESULTS: A total of 18 eligible case-control studies with 24960 cases and 28342 controls were included in this meta-analysis. The A allele of rs2296651 polymorphism was found to be significantly linked to a protection of HBV infection in the whole combined analysis (P = 0.000). Meanwhile, this allele was significantly associated with a decreased risk of hepatocellular carcinoma (HCC) (A vs. G: OR = 0.668, 95% CI: 0.571-0.782, P = 0.000), and was significantly associated with HBV nature clearance (A vs. G: OR = 0.744, 95% CI: 0.585-0.946, P = 0.016; AA+GA vs. GG: OR = 0.775, 95% CI: 0.613-0.980, P = 0.033; GA vs. GG: OR = 0.748, 95% CI: 0.588-0.952, P = 0.018). However, rs4646287 genetic varieties had no statistical differences in all models with HBV infection or HBV-related disease progress, liver cirrhosis, acute-on-chronic liver failure and HCC, as well as rs7154439, rs4646285, rs4646296. CONCLUSIONS: Rs2296651 polymorphism (A allele) may protect from HBV infection and the progress of HBV-related disease (HBV-related HCC). Future research about other single nucleotide polymorphisms (SNPs) (rs4646287, rs7154439, rs4646285, rs4646296) of NTCP may be needed to clarify the relationship of NTCP gene varieties with HBV infection and HBV-related disease.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Hepatitis B , Neoplasias Hepáticas , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Carcinoma Hepatocelular/genética , Predisposición Genética a la Enfermedad , Hepatitis B/complicaciones , Hepatitis B/genética , Virus de la Hepatitis B , Humanos , Neoplasias Hepáticas/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...