Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 12: 771065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938291

RESUMEN

Unlike animals, plants do not have specialized immune cells and lack an adaptive immune system. Instead, plant cells rely on their unique innate immune system to defend against pathogens and coordinate beneficial interactions with commensal and symbiotic microbes. One of the major convergent points for plant immune signaling is the nucleus, where transcriptome reprogramming is initiated to orchestrate defense responses. Mechanisms that regulate selective transport of nuclear signaling cargo and chromatin activity at the nuclear boundary play a pivotal role in immune activation. This review summarizes the current knowledge of how nuclear membrane-associated core protein and protein complexes, including the nuclear pore complex, nuclear transport receptors, and the nucleoskeleton participate in plant innate immune activation and pathogen resistance. We also discuss the role of their functional counterparts in regulating innate immunity in animals and highlight potential common mechanisms that contribute to nuclear membrane-centered immune regulation in higher eukaryotes.


Asunto(s)
Inmunidad Innata/inmunología , Membrana Nuclear/inmunología , Proteínas de Complejo Poro Nuclear/inmunología , Inmunidad de la Planta/inmunología , Proteínas de Plantas/inmunología , Plantas/inmunología , Transporte Activo de Núcleo Celular/inmunología , Núcleo Celular/inmunología , Núcleo Celular/metabolismo , Modelos Inmunológicos , Poro Nuclear/inmunología , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal/inmunología
2.
Front Immunol ; 12: 755512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804040

RESUMEN

Non-coding RNAs represent a class of important regulators in immune response. Previously, LINC02605 was identified as a candidate regulator in innate immune response by lncRNA microarray assays. In this study, we systematically analyzed the functions and the acting mechanisms of LINC02605 in antiviral innate immune response. LINC02605 was up-regulated by RNA virus, DNA virus, and type I IFNs in NF-κB and Jak-stat dependent manner. Overexpression of LINC02605 promotes RNA virus-induced type I interferon production and inhibited viral replication. Consistently, knockdown of LINC02605 resulted in reduced antiviral immune response and increased viral replication. Mechanistically, LINC02605 released the inhibition of hsa-miR-107 on the expression of phosphatase and tensin homolog (PTEN). By microRNA mimics and inhibitors, hsa-miR-107 was demonstrated to not only inhibit PTEN's expression but also negatively regulate the antiviral immune response. Knockdown of LINC02605 led to the reduction of PTEN expression both in mRNA and protein levels. Overexpression of LINC02605 had an opposite impact. Moreover, LINC02605 attenuated the serine 97 phosphorylation level of interferon regulatory factor 3 (IRF3) by promoting PTEN expression. Nucleoplasmic fragmentation assay showed that knocking down LINC02605 inhibited the nuclear translocation of IRF3, rendering the host cells more susceptible to viral invasion, while overexpression showed opposite effects. Therefore, LINC02605 is an induced lncRNA by viral infection and plays a positive feedback in antiviral immune response through modulating the nuclear translocation of IRF3.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/inmunología , Factor 3 Regulador del Interferón/metabolismo , ARN Largo no Codificante/inmunología , Transporte Activo de Núcleo Celular/inmunología , Línea Celular , Humanos , Factor 3 Regulador del Interferón/inmunología , Interferón Tipo I/inmunología , MicroARNs/inmunología , Virosis/inmunología
3.
J Biol Chem ; 297(1): 100856, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34097873

RESUMEN

The nuclear pore complex is the sole gateway connecting the nucleoplasm and cytoplasm. In humans, the nuclear pore complex is one of the largest multiprotein assemblies in the cell, with a molecular mass of ∼110 MDa and consisting of 8 to 64 copies of about 34 different nuclear pore proteins, termed nucleoporins, for a total of 1000 subunits per pore. Trafficking events across the nuclear pore are mediated by nuclear transport receptors and are highly regulated. The nuclear pore complex is also used by several RNA viruses and almost all DNA viruses to access the host cell nucleoplasm for replication. Viruses hijack the nuclear pore complex, and nuclear transport receptors, to access the nucleoplasm where they replicate. In addition, the nuclear pore complex is used by the cell innate immune system, a network of signal transduction pathways that coordinates the first response to foreign invaders, including viruses and other pathogens. Several branches of this response depend on dynamic signaling events that involve the nuclear translocation of downstream signal transducers. Mounting evidence has shown that these signaling cascades, especially those steps that involve nucleocytoplasmic trafficking events, are targeted by viruses so that they can evade the innate immune system. This review summarizes how nuclear pore proteins and nuclear transport receptors contribute to the innate immune response and highlights how viruses manipulate this cellular machinery to favor infection. A comprehensive understanding of nuclear pore proteins in antiviral innate immunity will likely contribute to the development of new antiviral therapeutic strategies.


Asunto(s)
Inmunidad Innata/genética , Proteínas de Complejo Poro Nuclear/genética , Poro Nuclear/genética , Virosis/genética , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Virus ADN/genética , Virus ADN/patogenicidad , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , FN-kappa B/genética , Poro Nuclear/inmunología , Proteínas de Complejo Poro Nuclear/inmunología , Virus ARN/genética , Virus ARN/patogenicidad , Proteínas no Estructurales Virales/genética , Virosis/inmunología , Virosis/virología , Replicación Viral/genética , Replicación Viral/inmunología
4.
PLoS One ; 16(6): e0253089, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34166398

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, infecting over 43 million people and claiming over 1 million lives, with these numbers increasing daily. Therefore, there is urgent need to understand the molecular mechanisms governing SARS-CoV-2 pathogenesis, immune evasion, and disease progression. Here, we show that SARS-CoV-2 can block IRF3 and NF-κB activation early during virus infection. We also identify that the SARS-CoV-2 viral proteins NSP1 and NSP13 can block interferon activation via distinct mechanisms. NSP1 antagonizes interferon signaling by suppressing host mRNA translation, while NSP13 downregulates interferon and NF-κB promoter signaling by limiting TBK1 and IRF3 activation, as phospho-TBK1 and phospho-IRF3 protein levels are reduced with increasing levels of NSP13 protein expression. NSP13 can also reduce NF-κB activation by both limiting NF-κB phosphorylation and nuclear translocation. Last, we also show that NSP13 binds to TBK1 and downregulates IFIT1 protein expression. Collectively, these data illustrate that SARS-CoV-2 bypasses multiple innate immune activation pathways through distinct mechanisms.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , COVID-19/inmunología , Núcleo Celular/inmunología , Factor 3 Regulador del Interferón/inmunología , Proteínas de Unión al ARN/inmunología , SARS-CoV-2/inmunología , Transducción de Señal/inmunología , Proteínas no Estructurales Virales/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , COVID-19/genética , Núcleo Celular/genética , Células HeLa , Humanos , Factor 3 Regulador del Interferón/genética , FN-kappa B/genética , FN-kappa B/inmunología , Fosforilación/genética , Fosforilación/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas de Unión al ARN/genética , SARS-CoV-2/genética , Transducción de Señal/genética , Proteínas no Estructurales Virales/genética
5.
FEBS J ; 288(2): 640-662, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32386462

RESUMEN

Nuclear factor 'κ-light-chain-enhancer' of activated B cells (NF-κB) signaling is a signaling pathway used by most immune cells to promote immunostimulatory functions. Recent studies have indicated that regulatory T cells (Treg) differentially integrate TCR-derived signals, thereby maintaining their suppressive features. However, the role of NF-κB signaling in the activation of human peripheral blood (PB) Treg has not been fully elucidated so far. We show that the activity of the master transcription factor forkhead box protein 3 (FOXP3) attenuates p65 phosphorylation and nuclear translocation of the NF-κB proteins p50, p65, and c-Rel following activation in human Treg. Using pharmacological and genetic inhibition of canonical NF-κB signaling in FOXP3-transgenic T cells and PB Treg from healthy donors as well as Treg from a patient with a primary NFKB1 haploinsufficiency, we validate that Treg activation and suppressive capacity is independent of NF-κB signaling. Additionally, repression of residual NF-κB signaling in Treg further enhances interleukin-10 (IL-10) production. Blockade of NF-κB signaling can be exploited for the generation of in vitro induced Treg (iTreg) with enhanced suppressive capacity and functional stability. In this respect, dual blockade of mammalian target of rapamycin (mTOR) and NF-κB signaling was accompanied by enhanced expression of the transcription factors FOXP1 and FOXP3 and demethylation of the Treg-specific demethylated region compared to iTreg generated under mTOR blockade alone. Thus, we provide first insights into the role of NF-κB signaling in human Treg. These findings could lead to strategies for the selective manipulation of Treg and the generation of improved iTreg for cellular therapy.


Asunto(s)
Factores de Transcripción Forkhead/inmunología , Haploinsuficiencia/inmunología , Subunidad p50 de NF-kappa B/inmunología , Linfocitos T Reguladores/inmunología , Serina-Treonina Quinasas TOR/inmunología , Factor de Transcripción ReIA/inmunología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/inmunología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/inmunología , Núcleo Celular/metabolismo , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Activación de Linfocitos , Subunidad p50 de NF-kappa B/deficiencia , Subunidad p50 de NF-kappa B/genética , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Transducción de Señal , Sirolimus/farmacología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Tiazoles/farmacología , Factor de Transcripción ReIA/antagonistas & inhibidores , Factor de Transcripción ReIA/genética
6.
Exp Hematol ; 90: 30-38, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32827560

RESUMEN

Germinal center-associated nuclear protein (GANP) is a unique and multifunctional protein that plays a critical role in cell biology, neurodegenerative disorders, immunohematology, and oncogenesis. GANP is an orthologue of Saccharomyces Sac3, one of the components of the transcription export 2 (TREX-2) complex and a messenger RNA (mRNA) nuclear export factor. GANP is widely conserved in all mammals, including humans. Although GANP was originally discovered as a molecule upregulated in the germinal centers of secondary lymphoid follicles in peripheral lymphoid organs, it is expressed ubiquitously in many tissues. It serves numerous functions, including making up part of the mammalian TREX-2 complex; mRNA nuclear export via nuclear pores; prevention of R-loop formation, genomic instability, and hyper-recombination; and B-cell affinity maturation. In this review, we first overview the extensive analyses that have revealed the basic functions of GANP and its ancestor molecule Sac3, including mRNA nuclear export and regulation of R-loop formation. We then describe how aberrant expression of GANP is significantly associated with cancer development. Moreover, we discuss a crucial role for GANP in B-cell development, especially affinity maturation in germinal centers. Finally, we illustrate that overexpression of GANP in B cells leads to lymphomagenesis resembling Hodgkin lymphoma derived from germinal center B cells, and that GANP may be involved in transdifferentiation of B cells to macrophages, which strongly affects Hodgkin lymphomagenesis.


Asunto(s)
Acetiltransferasas/inmunología , Carcinogénesis/inmunología , Neoplasias Hematológicas/inmunología , Enfermedad de Hodgkin/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteínas de Neoplasias/inmunología , Transporte Activo de Núcleo Celular/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Carcinogénesis/patología , Transdiferenciación Celular/inmunología , Centro Germinal/inmunología , Centro Germinal/patología , Neoplasias Hematológicas/patología , Enfermedad de Hodgkin/patología , Humanos , Macrófagos/inmunología , Macrófagos/patología , ARN Mensajero/inmunología , ARN Neoplásico/inmunología
7.
Cells ; 9(8)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824665

RESUMEN

Nipah and Hendra viruses are highly pathogenic, zoonotic henipaviruses that encode proteins that inhibit the host's innate immune response. The W protein is one of four products encoded from the P gene and binds a number of host proteins to regulate signalling pathways. The W protein is intrinsically disordered, a structural attribute that contributes to its diverse host protein interactions. Here, we review the role of W in innate immune suppression through inhibition of both pattern recognition receptor (PRR) pathways and interferon (IFN)-responsive signalling. PRR stimulation leading to activation of IRF-3 and IFN release is blocked by henipavirus W, and unphosphorylated STAT proteins are sequestered within the nucleus of host cells by W, thereby inhibiting the induction of IFN stimulated genes. We examine the critical role of nuclear transport in multiple functions of W and how specific binding of importin-alpha (Impα) isoforms, and the 14-3-3 group of regulatory proteins suggests further modulation of these processes. Overall, the disordered nature and multiple functions of W warrant further investigation to understand henipavirus pathogenesis and may reveal insights aiding the development of novel therapeutics.


Asunto(s)
Transporte Activo de Núcleo Celular/inmunología , Virus Hendra/metabolismo , Infecciones por Henipavirus/inmunología , Proteínas Intrínsecamente Desordenadas/metabolismo , Virus Nipah/metabolismo , Membrana Nuclear/metabolismo , Transducción de Señal/inmunología , Proteínas Virales/metabolismo , Infecciones por Henipavirus/metabolismo , Infecciones por Henipavirus/virología , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad Innata , Interferones/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Receptores de Reconocimiento de Patrones/metabolismo , Proteínas Virales/química
8.
J Exp Med ; 217(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32484502

RESUMEN

Upon immunogenic challenge, lymph nodes become mechanically stiff as immune cells activate and proliferate within their encapsulated environments, and with resolution, they reestablish a soft baseline state. Here we show that sensing these mechanical changes in the microenvironment requires the mechanosensor YAP. YAP is induced upon activation and suppresses metabolic reprogramming of effector T cells. Unlike in other cell types in which YAP promotes proliferation, YAP in T cells suppresses proliferation in a stiffness-dependent manner by directly restricting the translocation of NFAT1 into the nucleus. YAP slows T cell responses in systemic viral infections and retards effector T cells in autoimmune diabetes. Our work reveals a paradigm whereby tissue mechanics fine-tune adaptive immune responses in health and disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas de Ciclo Celular/inmunología , Proliferación Celular , Activación de Linfocitos , Mecanotransducción Celular/inmunología , Linfocitos T/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/inmunología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Mecanotransducción Celular/genética , Ratones , Ratones Transgénicos , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/inmunología , Virosis/genética , Virosis/inmunología , Proteínas Señalizadoras YAP
9.
Cell Rep ; 29(13): 4496-4508.e4, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875556

RESUMEN

Mutations in the FUS gene cause familial amyotrophic lateral sclerosis (ALS-FUS). In ALS-FUS, FUS-positive inclusions are detected in the cytoplasm of neurons and glia, a condition known as FUS proteinopathy. Mutant FUS incorporates into stress granules (SGs) and can spontaneously form cytoplasmic RNA granules in cultured cells. However, it is unclear what can trigger the persistence of mutant FUS assemblies and lead to inclusion formation. Using CRISPR/Cas9 cell lines and patient fibroblasts, we find that the viral mimic dsRNA poly(I:C) or a SG-inducing virus causes the sustained presence of mutant FUS assemblies. These assemblies sequester the autophagy receptor optineurin and nucleocytoplasmic transport factors. Furthermore, an integral component of the antiviral immune response, type I interferon, promotes FUS protein accumulation by increasing FUS mRNA stability. Finally, mutant FUS-expressing cells are hypersensitive to dsRNA toxicity. Our data suggest that the antiviral immune response is a plausible second hit for FUS proteinopathy.


Asunto(s)
Esclerosis Amiotrófica Lateral/inmunología , Interacciones Huésped-Patógeno/inmunología , Neuronas Motoras/inmunología , Proteína FUS de Unión a ARN/inmunología , Virus Sincitiales Respiratorios/inmunología , Médula Espinal/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/virología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/inmunología , Línea Celular , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/virología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/inmunología , Cuerpos de Inclusión/virología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Neuronas Motoras/metabolismo , Neuronas Motoras/virología , Neuroglía/inmunología , Neuroglía/metabolismo , Neuroglía/virología , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/inmunología , Poli I-C/farmacología , Cultivo Primario de Células , Agregado de Proteínas/genética , Agregado de Proteínas/inmunología , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/inmunología , Proteína FUS de Unión a ARN/genética , Virus Sincitiales Respiratorios/patogenicidad , Médula Espinal/metabolismo , Médula Espinal/patología , Médula Espinal/virología
10.
Viruses ; 11(11)2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683525

RESUMEN

Classical swine fever virus (CSFV) causes a contagious disease of pigs. The virus can break the mucosal barrier to establish its infection. Type III interferons (IFN-λs) play a crucial role in maintaining the antiviral state in epithelial cells. Limited information is available on whether or how CSFV modulates IFN-λs production. We found that IFN-λ3 showed dose-dependent suppression of CSFV replication in IPEC-J2 cells. Npro-deleted CSFV mutant (∆Npro) induced significantly higher IFN-λs transcription from 24 h post-infection (hpi) than its parental strain (wtCSFV). The strain wtCSFV strongly inhibited IFN-λs transcription and IFN-λ3 promoter activity in poly(I:C)-stimulated IPEC-J2 cells, whereas ∆Npro did not show such inhibition. Npro overexpression caused significant reduction of IFN-λs transcription and IFN-λ3 promoter activity. Both wtCSFV and ∆Npro infection induced time-dependent IRF1 expression in IPEC-J2 cells, with ΔNpro showing more significant induction, particularly at 24 hpi. However, infection with wtCSFV or Npro overexpression led not only to significant reduction of IRF1 expression and its promoter activity in poly(I:C)-treated IPEC-J2 cells but also to blockage of IRF1 nuclear translocation. This study provides clear evidence that CSFV Npro suppresses IRF1-mediated type III IFNs production by inhibiting IRF1 expression and its nuclear translocation.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica/inmunología , Endopeptidasas , Interferones/metabolismo , Proteínas Virales , Transporte Activo de Núcleo Celular/inmunología , Animales , Línea Celular , Peste Porcina Clásica/virología , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Inmunidad Innata , Factor 1 Regulador del Interferón/metabolismo , Mutación/genética , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Interferón lambda
11.
Front Immunol ; 10: 2168, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572379

RESUMEN

The heterogeneous nature of inflammatory bowel disease (IBD) presents challenges, particularly when choosing therapy. Activation of the NF-κB transcription factor is a highly regulated, dynamic event in IBD pathogenesis. Using a lentivirus approach, NF-κB-regulated luciferase was expressed in patient macrophages, isolated from frozen peripheral blood mononuclear cell samples. Following activation, samples could be segregated into three clusters based on the NF-κB-regulated luciferase response. The ulcerative colitis (UC) samples appeared only in the hypo-responsive Cluster 1, and in Cluster 2. Conversely, Crohn's disease (CD) patients appeared in all Clusters with their percentage being higher in the hyper-responsive Cluster 3. A positive correlation was seen between NF-κB-induced luciferase activity and the concentrations of cytokines released into medium from stimulated macrophages, but not with serum or biopsy cytokine levels. Confocal imaging of lentivirally-expressed p65 activation revealed that a higher proportion of macrophages from CD patients responded to endotoxin lipid A compared to controls. In contrast, cells from UC patients exhibited a shorter duration of NF-κB p65 subunit nuclear localization compared to healthy controls, and CD donors. Analysis of macrophage cytokine responses and patient metadata revealed a strong correlation between CD patients who smoked and hyper-activation of p65. These in vitro dynamic assays of NF-κB activation in blood-derived macrophages have the potential to segregate IBD patients into groups with different phenotypes and may therefore help determine response to therapy.


Asunto(s)
Núcleo Celular/inmunología , Colitis Ulcerosa/inmunología , Enfermedad de Crohn/inmunología , Macrófagos/inmunología , Transducción de Señal/inmunología , Factor de Transcripción ReIA/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Adulto , Animales , Núcleo Celular/genética , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/patología , Femenino , Humanos , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Transducción de Señal/genética , Factor de Transcripción ReIA/genética
12.
Front Immunol ; 10: 2067, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620119

RESUMEN

The ankyrin repeat domain-55 (ANKRD55) gene contains intronic single nucleotide polymorphisms (SNPs) associated with risk to contract multiple sclerosis, rheumatoid arthritis or other autoimmune disorders. Risk alleles of these SNPs are associated with higher levels of ANKRD55 in CD4+ T cells. The biological function of ANKRD55 is unknown, but given that ankyrin repeat domains constitute one of the most common protein-protein interaction platforms in nature, it is likely to function in complex with other proteins. Thus, identification of its protein interactomes may provide clues. We identified ANKRD55 interactomes via recombinant overexpression in HEK293 or HeLa cells and mass spectrometry. One hundred forty-eight specifically interacting proteins were found in total protein extracts and 22 in extracts of sucrose gradient-purified nuclei. Bioinformatic analysis suggested that the ANKRD55-protein partners from total protein extracts were related to nucleotide and ATP binding, enriched in nuclear transport terms and associated with cell cycle and RNA, lipid and amino acid metabolism. The enrichment analysis of the ANKRD55-protein partners from nuclear extracts is related to sumoylation, RNA binding, processes associated with cell cycle, RNA transport, nucleotide and ATP binding. The interaction between overexpressed ANKRD55 isoform 001 and endogenous RPS3, the cohesins SMC1A and SMC3, CLTC, PRKDC, VIM, ß-tubulin isoforms, and 14-3-3 isoforms were validated by western blot, reverse immunoprecipitaton and/or confocal microscopy. We also identified three phosphorylation sites in ANKRD55, with S436 exhibiting the highest score as likely 14-3-3 binding phosphosite. Our study suggests that ANKRD55 may exert function(s) in the formation or architecture of multiple protein complexes, and is regulated by (de)phosphorylation reactions. Based on interactome and subcellular localization analysis, ANKRD55 is likely transported into the nucleus by the classical nuclear import pathway and is involved in mitosis, probably via effects associated with mitotic spindle dynamics.


Asunto(s)
Proteínas Portadoras/inmunología , Núcleo Celular/metabolismo , Mitosis/inmunología , Mapas de Interacción de Proteínas/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Proteínas Portadoras/genética , Núcleo Celular/genética , Células HEK293 , Células HeLa , Humanos , Mitosis/genética , Polimorfismo de Nucleótido Simple
13.
FASEB J ; 33(11): 12500-12514, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31408613

RESUMEN

The tetraspanin CD82 is a potent suppressor of tumor metastasis and regulates several processes including signal transduction, cell adhesion, motility, and aggregation. However, the mechanisms by which CD82 participates in innate immunity are unknown. We report that CD82 is a key regulator of TLR9 trafficking and signaling. TLR9 recognizes unmethylated cytosine-phosphate-guanine (CpG) motifs present in viral, bacterial, and fungal DNA. We demonstrate that TLR9 and CD82 associate in macrophages, which occurs in the endoplasmic reticulum (ER) and post-ER. Moreover, CD82 is essential for TLR9-dependent myddosome formation in response to CpG stimulation. Finally, CD82 modulates TLR9-dependent NF-κB nuclear translocation, which is critical for inflammatory cytokine production. To our knowledge, this is the first time a tetraspanin has been implicated as a key regulator of TLR signaling. Collectively, our study demonstrates that CD82 is a specific regulator of TLR9 signaling, which may be critical in cancer immunotherapy approaches and coordinating the innate immune response to pathogens.-Khan, N. S., Lukason, D. P., Feliu, M., Ward, R. A., Lord, A. K., Reedy, J. L., Ramirez-Ortiz, Z. G., Tam, J. M., Kasperkovitz, P. V., Negoro, P. E., Vyas, T. D., Xu, S., Brinkmann, M. M., Acharaya, M., Artavanis-Tsakonas, K., Frickel, E.-M., Becker, C. E., Dagher, Z., Kim, Y.-M., Latz, E., Ploegh, H. L., Mansour, M. K., Miranti, C. K., Levitz, S. M., Vyas, J. M. CD82 controls CpG-dependent TLR9 signaling.


Asunto(s)
Núcleo Celular/inmunología , Proteína Kangai-1/inmunología , Macrófagos/inmunología , Oligodesoxirribonucleótidos/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 9/inmunología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Animales , Núcleo Celular/genética , Citocinas/genética , Citocinas/inmunología , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/patología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Proteína Kangai-1/genética , Macrófagos/patología , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/inmunología , Células RAW 264.7 , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 9/genética
14.
J Autoimmun ; 104: 102314, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31416681

RESUMEN

The TGF-ß superfamily of cytokines plays pivotal roles in the regulation of immune responses protecting against or contributing to diseases, such as, allergy, autoimmunity and cancer. Activin-A, a member of the TGF-ß superfamily, was initially identified as an inducer of follicle-stimulating hormone secretion. Extensive research over the past decades illuminated fundamental roles for activin-A in essential biologic processes, including embryonic development, stem cell maintenance and differentiation, haematopoiesis, cell proliferation and tissue fibrosis. Activin-A signals through two type I and two type II receptors which, upon ligand binding, activate their kinase activity, phosphorylate the SMAD2 and 3 intracellular signaling mediators that form a complex with SMAD4, translocate to the nucleus and activate or silence gene expression. Most immune cell types, including macrophages, dendritic cells (DCs), T and B lymphocytes and natural killer cells have the capacity to produce and respond to activin-A, although not in a similar manner. In innate immune cells, including macrophages, DCs and neutrophils, activin-A exerts a broad range of pro- or anti-inflammatory functions depending on the cell maturation and activation status and the spatiotemporal context. Activin-A also controls the differentiation and effector functions of Th cell subsets, including Th9 cells, TFH cells, Tr1 Treg cells and Foxp3+ Treg cells. Moreover, activin-A affects B cell responses, enhancing mucosal IgA secretion and inhibiting pathogenic autoantibody production. Interestingly, an array of preclinical and clinical studies has highlighted crucial functions of activin-A in the initiation, propagation and resolution of human diseases, including autoimmune diseases, such as, systemic lupus erythematosus, rheumatoid arthritis and pulmonary alveolar proteinosis, in allergic disorders, including allergic asthma and atopic dermatitis, in cancer and in microbial infections. Here, we provide an overview of the biology of activin-A and its signaling pathways, summarize recent studies pertinent to the role of activin-A in the modulation of inflammation and immunity, and discuss the potential of targeting activin-A as a novel therapeutic approach for the control of inflammatory diseases.


Asunto(s)
Activinas/inmunología , Enfermedades Autoinmunes/inmunología , Hipersensibilidad/inmunología , Neoplasias/inmunología , Transporte Activo de Núcleo Celular/inmunología , Animales , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/terapia , Núcleo Celular/inmunología , Núcleo Celular/patología , Células Dendríticas , Humanos , Hipersensibilidad/patología , Hipersensibilidad/terapia , Leucocitos/inmunología , Leucocitos/patología , Proteínas de Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Proteínas Smad/inmunología
15.
Front Immunol ; 10: 290, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863402

RESUMEN

Herpes simplex virus type 2 (HSV-2) is the main cause of genital herpes and infections are common in the lower genital tract. Although neuronal and immune cells can be infected, epithelial cells, and keratinocytes are the primary HSV-2 target cells. HSV-2 establishes latency by evading the host immune system and its infection can also increase the risk of HIV-1 sexual transmission. Our pervious study found that HSV-2 immediate early protein ICP22, inhibited IFN-ß production by interfering with the IRF3 pathway. However, ICP22-null HSV-2 did not completely lose the capability of suppressing IFN-ß induction, suggesting the involvement of other viral components in the process. In this study, by using an ex vivo cervical explant model, we first demonstrated that HSV-2 can indeed inhibit IFN-ß induction in human mucosal tissues. We further identified HSV-2 immediate early protein ICP27 as a potent IFN-ß antagonist. ICP27 significantly suppresses the Sendai virus or polyinosinic-polycytidylic acid-induced IFN-ß production in human mucosal epithelial cells, showing that ICP27 inhibits the IFN-ß promoter activation, and IFN-ß production at both mRNA and protein levels. Additional studies revealed that ICP27 directly associates with IRF3 and inhibits its phosphorylation and nuclear translocation, resulting in the inhibition of IFN-ß induction. Our findings provide insights into the molecular mechanism underlying HSV-2 mucosal immune evasion, and information for the design of HSV-2 mucosal vaccines.


Asunto(s)
Células Epiteliales/inmunología , Herpesvirus Humano 2/inmunología , Proteínas Inmediatas-Precoces/inmunología , Factor 3 Regulador del Interferón/inmunología , Interferón beta/inmunología , Proteínas Virales/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Línea Celular Tumoral , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/virología , Regulación de la Expresión Génica/inmunología , Células HEK293 , Células HeLa , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/fisiología , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/biosíntesis , Interferón beta/genética , Membrana Mucosa/citología , Membrana Mucosa/metabolismo , Membrana Mucosa/virología , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
Cell Death Dis ; 9(5): 478, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29706626

RESUMEN

Although one of the first comprehensive examinations of long non-coding RNA (lncRNA) expression was performed in human CD8 T lymphocytes, little is known about their roles in CD8 T cells functions during the progression of hepatocellular carcinoma (HCC). Here, we show that Lnc-Tim3 is upregulated and negatively correlates with IFN-γ and IL-2 production in tumor-infiltrating CD8 T cells of HCC patients. Lnc-Tim3 plays a pivotal role in stimulating CD8 T exhaustion and the survival of the exhausted CD8 T cells. Mechanistically, Lnc-Tim3 specifically binds to Tim-3 and blocks its interaction with Bat3, thus suppressing downstream Lck/ NFAT1/AP-1 signaling, leading to nuclear localization of Bat3, and enhancing p300-dependent p53 and RelA transcriptional activation of anti-apoptosis genes including MDM2 and Bcl-2. In summary, Lnc-Tim3 promotes T cell exhaustion, a phenotype which is correlated with compromised anti-tumor immunity, suggesting that Lnc-Tim3 and its associated signaling pathways may influence the outcome of cancer therapies aimed at modulating the acquired immune system.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Carcinoma Hepatocelular/inmunología , Núcleo Celular/inmunología , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Neoplasias Hepáticas/inmunología , Chaperonas Moleculares/inmunología , Proteínas de Neoplasias/inmunología , ARN Largo no Codificante/inmunología , ARN Neoplásico/inmunología , Transporte Activo de Núcleo Celular/inmunología , Linfocitos T CD8-positivos/patología , Carcinoma Hepatocelular/patología , Núcleo Celular/patología , Femenino , Humanos , Neoplasias Hepáticas/patología , Masculino , Transducción de Señal/inmunología
17.
J Cell Biol ; 217(7): 2329-2340, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29748336

RESUMEN

Exportins bind cargo molecules in a RanGTP-dependent manner inside nuclei and transport them through nuclear pores to the cytoplasm. CRM1/Xpo1 is the best-characterized exportin because specific inhibitors such as leptomycin B allow straightforward cargo validations in vivo. The analysis of other exportins lagged far behind, foremost because no such inhibitors had been available for them. In this study, we explored the cargo spectrum of exportin 7/Xpo7 in depth and identified not only ∼200 potential export cargoes but also, surprisingly, ∼30 nuclear import substrates. Moreover, we developed anti-Xpo7 nanobodies that acutely block Xpo7 function when transfected into cultured cells. The inhibition is pathway specific, mislocalizes export cargoes of Xpo7 to the nucleus and import substrates to the cytoplasm, and allowed validation of numerous tested cargo candidates. This establishes Xpo7 as a broad-spectrum bidirectional transporter and paves the way for a much deeper analysis of exportin and importin function in the future.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Carioferinas/genética , Poro Nuclear/genética , Proteína de Unión al GTP ran/genética , Transporte Activo de Núcleo Celular/inmunología , Animales , Camélidos del Nuevo Mundo/inmunología , Núcleo Celular/química , Núcleo Celular/genética , Células HeLa , Humanos , Carioferinas/antagonistas & inhibidores , Carioferinas/química , Carioferinas/inmunología , Poro Nuclear/inmunología , Oocitos/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Xenopus laevis/genética , Proteína de Unión al GTP ran/antagonistas & inhibidores , Proteína de Unión al GTP ran/química , Proteína de Unión al GTP ran/inmunología , Proteína Exportina 1
18.
Biochem Biophys Res Commun ; 495(3): 2282-2288, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29258824

RESUMEN

The potential role of hypoxia in mediating the receptor for advanced glycation end products (RAGE) expression deserves to be confirmed. And the role of RAGE in hypoxia-induced chemotaxis and inflammation is still unclear. In present study, THP-1 cells were pretreated with siRNA to block HIF1α, NF-κ B, or RAGE, followed by exposed to hypoxia (combined with H2O2 or SNP), and then RAGE expression, nuclear translocation of HIF1α and NF-κ B, release of TNF-α and IL-1ß, as well as expression of MCP-1 and CCR2 were measured. The results revealed that RAGE mRNA and protein in THP-1 cells were significantly increased after exposed into hypoxia atmosphere, especially into the solution containing SNP or H2O2. Moreover, SNP or H2O2 exposure could further amplify hypoxia-induced nuclear translocation of HIF-1α and NF-κ B. Knockdown HIF-1α or NF-κ B by siRNAs could reduce hypoxia- and oxidative stress-induced RAGE hyper-expression. And pretreatment THP-1 cells with RAGE siRNA or NF-κ B siRNA could reduce hypoxia- and oxidative stress-induced expression of MCP-1 and CCR2, and release of TNF-α and IL-1ß. Thus, hypoxia not only increases RAGE expression in THP-1 cells by promoting nuclear translocation of NF-κ B and HIF1α, but also regulates chemotaxis and pro-inflammatory cytokines release, which may be partially mediated through upregulation of RAGE expression.


Asunto(s)
Antígenos de Neoplasias/inmunología , Hipoxia de la Célula/inmunología , Núcleo Celular/inmunología , Quimiotaxis/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Mediadores de Inflamación/inmunología , Proteínas Quinasas Activadas por Mitógenos/inmunología , FN-kappa B/inmunología , Transporte Activo de Núcleo Celular/inmunología , Humanos , Células THP-1 , Regulación hacia Arriba/inmunología
19.
Proc Natl Acad Sci U S A ; 114(10): 2681-2686, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28213497

RESUMEN

The innate immune system senses RNA viruses by pattern recognition receptors (PRRs) and protects the host from virus infection. PRRs mediate the production of immune modulatory factors and direct the elimination of RNA viruses. Here, we show a unique PRR that mediates antiviral response. Tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP ribose) polymerase (TIPARP), a Cysteine3 Histidine (CCCH)-type zinc finger-containing protein, binds to Sindbis virus (SINV) RNA via its zinc finger domain and recruits an exosome to induce viral RNA degradation. TIPARP typically localizes in the nucleus, but it accumulates in the cytoplasm after SINV infection, allowing targeting of cytoplasmic SINV RNA. Redistribution of TIPARP is induced by reactive oxygen species (ROS)-dependent oxidization of the nuclear pore that affects cytoplasmic-nuclear transport. BCL2-associated X protein (BAX) and BCL2 antagonist/killer 1 (BAK1), B-cell leukemia/lymphoma 2 (BCL2) family members, mediate mitochondrial damage to generate ROS after SINV infection. Thus, TIPARP is a viral RNA-sensing PRR that mediates antiviral responses triggered by BAX- and BAK1-dependent mitochondrial damage.


Asunto(s)
Inmunidad Innata/genética , Poli(ADP-Ribosa) Polimerasas/genética , Virus ARN/genética , Receptores de Reconocimiento de Patrones/genética , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Citoplasma/genética , Citoplasma/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Mitocondrias/genética , Mitocondrias/patología , Mitocondrias/virología , Proteínas de Transporte de Nucleósidos , Poli(ADP-Ribosa) Polimerasas/inmunología , Virus ARN/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Virus Sindbis/genética , Virus Sindbis/inmunología , Virus Sindbis/patogenicidad , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/inmunología , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/inmunología
20.
Cell ; 166(6): 1526-1538.e11, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27569911

RESUMEN

Nuclear transport of immune receptors, signal transducers, and transcription factors is an essential regulatory mechanism for immune activation. Whether and how this process is regulated at the level of the nuclear pore complex (NPC) remains unclear. Here, we report that CPR5, which plays a key inhibitory role in effector-triggered immunity (ETI) and programmed cell death (PCD) in plants, is a novel transmembrane nucleoporin. CPR5 associates with anchors of the NPC selective barrier to constrain nuclear access of signaling cargos and sequesters cyclin-dependent kinase inhibitors (CKIs) involved in ETI signal transduction. Upon activation by immunoreceptors, CPR5 undergoes an oligomer to monomer conformational switch, which coordinates CKI release for ETI signaling and reconfigures the selective barrier to allow significant influx of nuclear signaling cargos through the NPC. Consequently, these coordinated NPC actions result in simultaneous activation of diverse stress-related signaling pathways and constitute an essential regulatory mechanism specific for ETI/PCD induction.


Asunto(s)
Transporte Activo de Núcleo Celular/inmunología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas de la Membrana/metabolismo , Poro Nuclear/inmunología , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA