Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 650
Filtrar
1.
Neural Plast ; 2024: 8862647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715980

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that is characterized by inattention, hyperactivity, and impulsivity. The neural mechanisms underlying ADHD remain inadequately understood, and current approaches do not well link neural networks and attention networks within brain networks. Our objective is to investigate the neural mechanisms related to attention and explore neuroimaging biological tags that can be generalized within the attention networks. In this paper, we utilized resting-state functional magnetic resonance imaging data to examine the differential functional connectivity network between ADHD and typically developing individuals. We employed a graph convolutional neural network model to identify individuals with ADHD. After classification, we visualized brain regions with significant contributions to the classification results. Our results suggest that the frontal, temporal, parietal, and cerebellar regions are likely the primary areas of dysfunction in individuals with ADHD. We also explored the relationship between regions of interest and attention networks, as well as the connection between crucial nodes and the distribution of positively and negatively correlated connections. This analysis allowed us to pinpoint the most discriminative brain regions, including the right orbitofrontal gyrus, the left rectus gyrus and bilateral insula, the right inferior temporal gyrus and bilateral transverse temporal gyrus in the temporal region, and the lingual gyrus of the occipital lobe, multiple regions of the basal ganglia and the upper cerebellum. These regions are primarily involved in the attention executive control network and the attention orientation network. Dysfunction in the functional connectivity of these regions may contribute to the underlying causes of ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Encéfalo , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Humanos , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Adulto , Mapeo Encefálico/métodos , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Adulto Joven , Adolescente , Niño , Atención/fisiología
2.
J Affect Disord ; 355: 459-469, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580035

RESUMEN

BACKGROUND: The aim of this study was to investigate the diagnostic value of ML techniques based on sMRI or/and fMRI for ADHD. METHODS: We conducted a comprehensive search (from database creation date to March 2024) for relevant English articles on sMRI or/and fMRI-based ML techniques for diagnosing ADHD. The pooled sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), summary receiver operating characteristic (SROC) curve and area under the curve (AUC) were calculated to assess the diagnostic value of sMRI or/and fMRI-based ML techniques. The I2 test was used to assess heterogeneity and the source of heterogeneity was investigated by performing a meta-regression analysis. Publication bias was assessed using the Deeks funnel plot asymmetry test. RESULTS: Forty-three studies were included in the systematic review, 27 of which were included in our meta-analysis. The pooled sensitivity and specificity of sMRI or/and fMRI-based ML techniques for the diagnosis of ADHD were 0.74 (95 % CI 0.65-0.81) and 0.75 (95 % CI 0.67-0.81), respectively. SROC curve showed that AUC was 0.81 (95 % CI 0.77-0.84). Based on these findings, the sMRI or/and fMRI-based ML techniques have relatively good diagnostic value for ADHD. LIMITATIONS: Our meta-analysis specifically focused on ML techniques based on sMRI or/and fMRI studies. Since EEG-based ML techniques are also used for diagnosing ADHD, further systematic analyses are necessary to explore ML methods based on multimodal medical data. CONCLUSION: sMRI or/and fMRI-based ML technique is a promising objective diagnostic method for ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sensibilidad y Especificidad , Curva ROC , Aprendizaje Automático
3.
J Psychiatr Res ; 173: 347-354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581903

RESUMEN

Several studies on attention-deficit hyperactivity disorder (ADHD) have suggested a developmental sequence of brain changes: subcortico-subcortical connectivity in children, evolving to subcortico-cortical in adolescence, and culminating in cortico-cortical connectivity in young adulthood. This study hypothesized that children with ADHD would exhibit decreased functional connectivity (FC) between the cortex and striatum compared to adults with ADHD, who may show increased FC in these regions. Seventy-six patients with ADHD (26 children, 26 adolescents, and 24 adults) and 74 healthy controls (25 children, 24 adolescents, and 25 adults) participated in the study. Resting state magnetic resonance images were acquired using a 3.0 T Philips Achieva scanner. The results indicated a gradual decrease in the number of subcategories representing intelligence quotient deficits in the ADHD group with age. In adulthood, the ADHD group exhibited lower working memory compared to the healthy control group. The number of regions showing decreased FC from the cortex to striatum between the ADHD and control groups reduced with age, while regions with increased FC from the default mode network and attention network in the ADHD group increased with age. In adolescents and adults, working memory was positively associated with brain activity in the postcentral gyrus and negatively correlated with ADHD clinical symptoms. In conclusion, the findings suggest that intelligence deficits in certain IQ subcategories may diminish as individuals with ADHD age. Additionally, the study indicates an increasing anticorrelation between cortical and subcortical regions with age in individuals with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adulto , Adolescente , Niño , Humanos , Adulto Joven , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Memoria a Corto Plazo , Vías Nerviosas/diagnóstico por imagen
4.
Hum Brain Mapp ; 45(5): e26589, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38530121

RESUMEN

BACKGROUND: Prior research has shown smaller cortical and subcortical gray matter volumes among individuals with attention-deficit/hyperactivity disorder (ADHD). However, neuroimaging studies often do not differentiate between inattention and hyperactivity/impulsivity, which are distinct core features of ADHD. The present study uses an approach to disentangle overlapping variance to examine the neurostructural heterogeneity of inattention and hyperactivity/impulsivity dimensions. METHODS: We analyzed data from 10,692 9- to 10-year-old children from the Adolescent Brain Cognitive Development (ABCD) Study. Confirmatory factor analysis was used to derive factors representing inattentive and hyperactive/impulsive traits. We employed structural equation modeling to examine these factors' associations with gray matter volume while controlling for the shared variance between factors. RESULTS: Greater endorsement of inattentive traits was associated with smaller bilateral caudal anterior cingulate and left parahippocampal volumes. Greater endorsement of hyperactivity/impulsivity traits was associated with smaller bilateral caudate and left parahippocampal volumes. The results were similar when accounting for socioeconomic status, medication, and in-scanner motion. The magnitude of these findings increased when accounting for overall volume and intracranial volume, supporting a focal effect in our results. CONCLUSIONS: Inattentive and hyperactivity/impulsivity traits show common volume deficits in regions associated with visuospatial processing and memory while at the same time showing dissociable differences, with inattention showing differences in areas associated with attention and emotion regulation and hyperactivity/impulsivity associated with volume differences in motor activity regions. Uncovering such biological underpinnings within the broader disorder of ADHD allows us to refine our understanding of ADHD presentations.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Niño , Adolescente , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Corteza Cerebral , Cognición , Conducta Impulsiva
5.
J Psychiatr Res ; 173: 200-209, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547742

RESUMEN

Iron deficiency may play a role in the pathophysiology of Attention Deficit/Hyperactivity Disorder (ADHD). Due to its preponderant function in monoamine catecholamine and myelin synthesis, brain iron concentration may be of primary interest in the investigation of iron dysregulation in ADHD. This study reviewed current evidence of brain iron abnormalities in children and adolescents with ADHD using magnetic resonance imaging methods, such as relaxometry and quantitative susceptibility mapping, to assess brain iron estimates. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A literature search was performed for studies published between January 1, 2008 and July 7, 2023 in Medline, Scopus and Proquest. Regions of interest, brain iron index values and phenotypical information were extracted from the relevant studies. Risk of bias was assessed using a modified version of the National Heart, Lung, and Blood Institute quality assessment tool. Seven cross-sectional studies comparing brain iron estimates in children with ADHD with neurotypical children were included. Significantly reduced brain iron content in medication-naïve children with ADHD was a consistent finding. Two studies found psychostimulant use may increase and normalize brain iron concentration in children with ADHD. The findings were consistent across the studies despite differing methodologies and may lay the early foundation for the recognition of a potential biomarker in ADHD, although longitudinal prospective neuroimaging studies using larger sample sizes are required. Lastly, the effects of iron supplementation on brain iron concentration in children with ADHD need to be elucidated.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Niño , Adolescente , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Estudios Transversales , Hierro , Estudios Prospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neuroimagen
6.
BMC Med ; 22(1): 92, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433204

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental disorders with overlapping behavioral features and genetic etiology. While brain cortical thickness (CTh) alterations have been reported in ASD and ADHD separately, the degree to which ASD and ADHD are associated with common and distinct patterns of CTh changes is unclear. METHODS: We searched PubMed, Web of Science, Embase, and Science Direct from inception to 8 December 2023 and included studies of cortical thickness comparing youth (age less than 18) with ASD or ADHD with typically developing controls (TDC). We conducted a comparative meta-analysis of vertex-based studies to identify common and distinct CTh alterations in ASD and ADHD. RESULTS: Twelve ASD datasets involving 458 individuals with ASD and 10 ADHD datasets involving 383 individuals with ADHD were included in the analysis. Compared to TDC, ASD showed increased CTh in bilateral superior frontal gyrus, left middle temporal gyrus, and right superior parietal lobule (SPL) and decreased CTh in right temporoparietal junction (TPJ). ADHD showed decreased CTh in bilateral precentral gyri, right postcentral gyrus, and right TPJ relative to TDC. Conjunction analysis showed both disorders shared reduced TPJ CTh located in default mode network (DMN). Comparative analyses indicated ASD had greater CTh in right SPL and TPJ located in dorsal attention network and thinner CTh in right TPJ located in ventral attention network than ADHD. CONCLUSIONS: These results suggest shared thinner TPJ located in DMN is an overlapping neurobiological feature of ASD and ADHD. This alteration together with SPL alterations might be related to altered biological motion processing in ASD, while abnormalities in sensorimotor systems may contribute to behavioral control problems in ADHD. The disorder-specific thinner TPJ located in disparate attention networks provides novel insight into distinct symptoms of attentional deficits associated with the two neurodevelopmental disorders. TRIAL REGISTRATION: PROSPERO CRD42022370620. Registered on November 9, 2022.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Humanos , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Neurobiología
7.
Psychiatry Clin Neurosci ; 78(5): 291-299, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38444215

RESUMEN

AIM: The effective connectivity between the striatum and cerebral cortex has not been fully investigated in attention-deficit/hyperactivity disorder (ADHD). Our objective was to explore the interaction effects between diagnosis and age on disrupted corticostriatal effective connectivity and to represent the modulation function of altered connectivity pathways in children and adolescents with ADHD. METHODS: We performed Granger causality analysis on 300 participants from a publicly available Attention-Deficit/Hyperactivity Disorder-200 dataset. By computing the correlation coefficients between causal connections between striatal subregions and other cortical regions, we estimated the striatal inflow and outflow connection to represent intermodulation mechanisms in corticostriatal pathways. RESULTS: Interactions between diagnosis and age were detected in the superior occipital gyrus within the visual network, medial prefrontal cortex, posterior cingulate gyrus, and inferior parietal lobule within the default mode network, which is positively correlated with hyperactivity/impulsivity severity in ADHD. Main effect of diagnosis exhibited a general higher cortico-striatal causal connectivity involving default mode network, frontoparietal network and somatomotor network in ADHD compared with comparisons. Results from high-order effective connectivity exhibited a disrupted information pathway involving the default mode-striatum-somatomotor-striatum-frontoparietal networks in ADHD. CONCLUSION: The interactions detected in the visual-striatum-default mode networks pathway appears to be related to the potential distraction caused by long-term abnormal information input from the retina in ADHD. Higher causal connectivity and weakened intermodulation may indicate the pathophysiological process that distractions lead to the impairment of motion planning function and the inhibition/control of this unplanned motion signals in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Corteza Cerebral , Cuerpo Estriado , Imagen por Resonancia Magnética , Humanos , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Niño , Adolescente , Masculino , Femenino , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Cuerpo Estriado/fisiopatología , Cuerpo Estriado/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Conectoma , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen
8.
J Atten Disord ; 28(5): 936-944, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321936

RESUMEN

OBJECTIVE: Stimulant medications are the main treatment for Attention Deficit Hyperactivity Disorder (ADHD), but overall treatment efficacy in adults has less than a 60% response rate. This study aimed to identify neural and cognitive markers predictive of longitudinal improvement in response to stimulant treatment in drug-naïve adults with ADHD. METHOD: We used diffusion tensor imaging (DTI) and executive function measures with 36 drug-naïve adult ADHD patients in a prospective study design. RESULTS: Structural connectivity (measured by fractional anisotropy, FA) in striatal regions correlated with ADHD clinical symptom improvement following stimulant treatment (amphetamine or methylphenidate) in better medication responders. A significant positive correlation was also found between working memory performance and stimulant-related symptom improvement. Higher pre-treatment working memory scores correlated with greater response. CONCLUSION: These findings provide evidence of pre-treatment neural and behavioral markers predictive of longitudinal treatment response to stimulant medications in adults with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Metilfenidato , Adulto , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Imagen de Difusión Tensora , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/uso terapéutico , Estudios Prospectivos , Metilfenidato/farmacología , Metilfenidato/uso terapéutico , Anfetamina/uso terapéutico , Resultado del Tratamiento , Cognición
9.
J Psychiatr Res ; 172: 229-235, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412785

RESUMEN

The mRNA markers identified using microarray assay and diffusion tensor magnetic resonance imaging (DTI) were applied to elucidate the pathophysiology of attention-deficit hyperactivity disorder (ADHD). First, we obtained total RNA from leukocytes from three children with ADHD and three healthy controls for analysis with microarray assays. Subsequently, we applied real-time quantitative polymerase chain reaction (qRT‒PCR) assays to validate the differential expression of 7 genes (COX7B, CYCS, TFAM, UTP14A, ZNF280C, IFT57 and NDUFB5) between 130 ADHD patients and 70 controls, and we built an ADHD prediction model based on the ΔCt values of aforementioned seven genes (AUROC = 0.98). Finally, in a validation group (28 patients with ADHD and 27 healthy controls), mRNA expression of the above seven genes also significantly differentiated ADHD patients from controls (AUROC value = 0.91). The DTI analysis showed increased fractional anisotropy (FA) of the forceps minor, superior corona radiata, posterior corona radiata and anterior corona radiata in ADHD patients. Moreover, the FA of the right superior corona radiata tract was positively correlated with ΔCt levels of the COX7B gene and the IFT57 gene. The results shed a new light on a genetic profile of ADHD that may help in deciphering the white matter microstructural features in disease pathogenesis.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Niño , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/genética , Transcriptoma , Sustancia Blanca/patología , ARN Mensajero , Anisotropía
10.
Psychiatry Res ; 334: 115794, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367454

RESUMEN

Attention deficit hyperactivity disorder (ADHD) has been characterized by impairments among distributed functional brain networks, e.g., the frontoparietal network (FPN), default mode network (DMN), reward and motivation-related circuits (RMN), and salience network (SAL). In the current study, we evaluated the complexity and functional connectivity (FC) of resting state fMRI (rsfMRI) in pre-adolescents with the behavioral symptoms of ADHD, for pathology-relevant networks. We leveraged data from the Adolescent Brain and Cognitive Development (ABCD) Study. The final study sample included 63 children demonstrating the behavioral features of ADHD and 92 healthy control children matched on age, sex, and pubertal development status. For selected regions in the relevant networks, ANCOVA compared multiscale entropy (MSE) and FC between the groups. Finally, differences in the association between MSE and FC were evaluated. We found significantly reduced MSE along with increased FC within the FPN of pre-adolescents demonstrating the behavior symptoms of ADHD compared to matched healthy controls. Significant partial correlations between MSE and FC emerged in the FPN and RMN in the healthy controls however the association was absent in the participants demonstrating the behavior symptoms of ADHD. The current findings of complexity and FC in ADHD pathology support hypotheses of altered function of inhibitory control networks in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Mapeo Encefálico , Niño , Humanos , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Descanso , Encéfalo , Síntomas Conductuales , Análisis de Sistemas
11.
Res Dev Disabil ; 146: 104691, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340416

RESUMEN

BACKGROUND: Stimulant medication is the primary pharmacological treatment for attention dysregulation and is commonly prescribed for children with Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism. Neuroimaging studies of these groups commonly use a 24-48-hour washout period to mediate the effects of stimulant medication on functional connectivity (FC) metrics. However, the impact of washout on functional connectivity has received limited study. METHODS: We used fMRI data from participants with diagnosis of Autism and ADHD (and an off stimulant control) from the Adolescent Brain and Cognitive Development (ABCD) and Autism Brain Imaging Data Exchange (ABIDE) databases to explore the effect of simulant washout on FC. Connectivity within and between the default mode (DMN) and fronto-parietal networks (FPN) was examined, as these networks have previously been implicated in attention dysregulation and associated with stimulant medication usage. For each diagnostic group, we assessed effects in interconnectivity between DMN and FPN, intraconnectivity within DMN, and intraconnectivity within FPN. RESULTS: We found no significant effect of medication status in intra- and inter-connectivity of the DMN and the FPN in either diagnostic group. IMPLICATIONS: Our findings suggest that more information is needed about the effect of stimulant medication, and washout, on the FC of attention networks in clinical populations.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Autístico , Niño , Adolescente , Humanos , Mapeo Encefálico/métodos , Encéfalo , Cognición , Imagen por Resonancia Magnética/métodos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Vías Nerviosas/diagnóstico por imagen
12.
Psychiatry Clin Neurosci ; 78(5): 309-321, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38334172

RESUMEN

AIMS: This study aimed to illuminate the neuropathological landscape of attention deficit hyperactivity disorder (ADHD) by a multiscale macro-micro-molecular perspective from in vivo neuroimaging data. METHODS: The "ADHD-200 initiative" repository provided multi-site high-quality resting-state functional connectivity (rsfc-) neuroimaging for ADHD children and matched typically developing (TD) cohort. Diffusion mapping embedding model to derive the functional connectome gradient detecting biologically plausible neural pattern was built, and the multivariate partial least square method to uncover the enrichment of neurotransmitomic, cellular and chromosomal gradient-transcriptional signatures of AHBA enrichment and meta-analytic decoding. RESULTS: Compared to TD, ADHD children presented connectopic cortical gradient perturbations in almost all the cognition-involved brain macroscale networks (all pBH <0.001), but not in the brain global topology. As an intermediate phenotypic variant, such gradient perturbation was spatially enriched into distributions of GABAA/BZ and 5-HT2A receptors (all pBH <0.01) and co-varied with genetic transcriptional expressions (e.g. DYDC2, ATOH7, all pBH <0.01), associated with phenotypic variants in episodic memory and emotional regulations. Enrichment models demonstrated such gradient-transcriptional variants indicated the risk of both cell-specific and chromosome- dysfunctions, especially in enriched expression of oligodendrocyte precursors and endothelial cells (all pperm <0.05) as well enrichment into chromosome 18, 19 and X (pperm <0.05). CONCLUSIONS: Our findings bridged brain macroscale neuropathological patterns to microscale/cellular biological architectures for ADHD children, demonstrating the neurobiologically pathological mechanism of ADHD into the genetic and molecular variants in GABA and 5-HT systems as well brain-derived enrichment of specific cellular/chromosomal expressions.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Conectoma , Transcriptoma , Humanos , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/patología , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Niño , Masculino , Femenino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Corteza Cerebral/patología , Adolescente , Neurotransmisores/metabolismo
13.
Int J Dev Neurosci ; 84(3): 217-226, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387863

RESUMEN

Despite the importance of understanding how intelligence is ingrained in the function and structure of the brain in some neurological disorders, the alterations of intelligence-associated neurological factors in atypical neurodevelopmental disorders, such as attention deficit/hyperactivity disorder (ADHD), are limited. Therefore, we aimed to explore the relationship between the brain functional and morphological characteristics and the intellectual performance of 139 patients with ADHD. Resting-state functional and T1-weighted structural magnetic resonance imaging (MRI) data and intellectual-performance data of the patients were collected. The MRI data were preprocessed to extract four indicators characterizing the participants' brain features: fractional amplitude of low-frequency fluctuation, regional homogeneity, and gray and white matter volumes. Then, we used a two-layer feature-selection method with support vector regression models based on three kernel functions to predict the verbal and performance intelligent quotients of the patients, along with ten fold cross-validation to evaluate the models' predictive performance. All models showed good performance; the correlation coefficients between the predicted and observed values for each predictive phenotypic variable were >0.41, with statistical significance. The brain features that could best predict the intellectual performance of the patients were concentrated in the superior and inferior frontal gyrus of the prefrontal areas, the angular gyrus and precuneus of the parietal lobe, the inferior and middle temporal gyrus of the temporal lobe, and part of the cerebellar regions. Thus, the voxel-based brain-feature indicators could adequately predict the intellectual performance of patients with ADHD, providing a foundation for future neuroimaging studies of this disorder.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Encéfalo , Inteligencia , Imagen por Resonancia Magnética , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Masculino , Femenino , Inteligencia/fisiología , Niño , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adolescente , Pruebas de Inteligencia , Adulto Joven , Adulto
14.
J Neurosci Res ; 102(1): e25284, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284864

RESUMEN

In this study, we explored the application of diffusion kurtosis imaging (DKI) technology in the brains of children with attention-deficit/hyperactivity disorder (ADHD). Seventy-two children with ADHD and 79 age- and sex-matched healthy controls were included in the study. All children were examined by means of 3D T1-weighted image, DKI, and conventional sequence scanning. The volume and DKI parameters of each brain region were obtained by software postprocessing (GE ADW 4.6 workstation) and compared between the two groups of children to determine the imaging characteristics of children with ADHD. The result showed the total brain volume was lower in children with ADHD than in healthy children (p < .05). The gray and white matter volumes in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, putamen, globus pallidus, and other brain regions were lower in children with ADHD than in healthy children (p < .05). The axial kurtosis (Ka), mean kurtosis (MK), fractional anisotropy (FA), and radial kurtosis(Kr) values in the frontal lobe, temporal lobe, and caudate nucleus of children with ADHD were lower than those of healthy children, while the mean diffusivity(MD) and fractional anisotropy of kurtosis (FAK) values were higher than those of healthy children (p < .05). Additionally, the Ka, MK, FA, and Kr values in the frontal lobe, caudate nucleus, and temporal lobe could be used to distinguish children with ADHD (AUC > .05, p < .05). In conclusion, DKI showed abnormal gray matter and white matter development in some brain regions of children with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Niño , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Corteza Cerebral
15.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38286629

RESUMEN

Identification of replicable neuroimaging correlates of attention-deficit hyperactivity disorder (ADHD) has been hindered by small sample sizes, small effects, and heterogeneity of methods. Given evidence that ADHD is associated with alterations in widely distributed brain networks and the small effects of individual brain features, a whole-brain perspective focusing on cumulative effects is warranted. The use of large, multisite samples is crucial for improving reproducibility and clinical utility of brain-wide MRI association studies. To address this, a polyneuro risk score (PNRS) representing cumulative, brain-wide, ADHD-associated resting-state functional connectivity was constructed and validated using data from the Adolescent Brain Cognitive Development (ABCD, N = 5,543, 51.5% female) study, and was further tested in the independent Oregon-ADHD-1000 case-control cohort (N = 553, 37.4% female). The ADHD PNRS was significantly associated with ADHD symptoms in both cohorts after accounting for relevant covariates (p < 0.001). The most predictive PNRS involved all brain networks, though the strongest effects were concentrated among the default mode and cingulo-opercular networks. In the longitudinal Oregon-ADHD-1000, non-ADHD youth had significantly lower PNRS (Cohen's d = -0.318, robust p = 5.5 × 10-4) than those with persistent ADHD (age 7-19). The PNRS, however, did not mediate polygenic risk for ADHD. Brain-wide connectivity was robustly associated with ADHD symptoms in two independent cohorts, providing further evidence of widespread dysconnectivity in ADHD. Evaluation in enriched samples demonstrates the promise of the PNRS approach for improving reproducibility in neuroimaging studies and unraveling the complex relationships between brain connectivity and behavioral disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adolescente , Humanos , Femenino , Niño , Adulto Joven , Adulto , Masculino , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Mapeo Encefálico , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Cognición , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
16.
Eur Child Adolesc Psychiatry ; 33(2): 369-380, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36800038

RESUMEN

Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are two highly prevalent and commonly co-occurring neurodevelopmental disorders. The neural mechanisms underpinning the comorbidity of ASD and ADHD (ASD + ADHD) remain unclear. We focused on the topological organization and functional connectivity of brain networks in ASD + ADHD patients versus ASD patients without ADHD (ASD-only). Resting-state functional magnetic resonance imaging (rs-fMRI) data from 114 ASD and 161 typically developing (TD) individuals were obtained from the Autism Brain Imaging Data Exchange II. The ASD patients comprised 40 ASD + ADHD and 74 ASD-only individuals. We constructed functional brain networks for each group and performed graph-theory and network-based statistic (NBS) analyses. Group differences between ASD + ADHD and ASD-only were analyzed at three levels: nodal, global, and connectivity. At the nodal level, ASD + ADHD exhibited topological disorganization in the temporal and occipital regions, compared with ASD-only. At the global level, ASD + ADHD and ASD-only displayed no significant differences. At the connectivity level, the NBS analysis revealed that ASD + ADHD showed enhanced functional connectivity between the prefrontal and frontoparietal regions, as well as between the orbitofrontal and occipital regions, compared with ASD-only. The hippocampus was the shared region in aberrant functional connectivity patterns in ASD + ADHD and ASD-only compared with TD. These findings suggests that ASD + ADHD displays altered topology and functional connectivity in the brain regions that undertake social cognition, language processing, and sensory processing.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
17.
Dev Med Child Neurol ; 66(3): 362-378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37667426

RESUMEN

AIM: This study aimed to (1) quantify attention and executive functioning in children with developmental coordination disorder (DCD), (2) assess whether some children with DCD are more likely to show attention difficulties, and (3) characterize brain correlates of motor and attention deficits. METHOD: Fifty-three children (36 with DCD and 17 without) aged 8 to 10 years underwent T1-weighted and diffusion-weighted magnetic resonance imaging, and standardized attention and motor assessments. Parents completed questionnaires of executive functioning and symptoms of inattention and hyperactivity. We assessed regional cortical thickness and surface area, and cerebellar, callosal, and primary motor tract structure. RESULTS: Analyses of covariance and one-sample t-tests identified impaired attention, non-motor processing speed, and executive functioning in children with DCD, yet partial Spearman's rank correlation coefficients revealed these were unrelated to one another or the type or severity of the motor deficit. Robust regression analyses revealed that cortical morphology in the posterior cingulate was associated with both gross motor skills and inattentive symptoms in children with DCD, while gross motor skills were also associated with left corticospinal tract (CST) morphology. INTERPRETATION: Children with DCD may benefit from routine attention and hyperactivity assessments. Alterations in the posterior cingulate and CST may be linked to impaired forward modelling during movements in children with DCD. Overall, alterations in these regions may explain the high rate of non-motor impairments in children with DCD. WHAT THIS PAPER ADDS: Children with developmental coordination disorder have difficulties in attention, processing speed, and executive functioning. Non-motor impairments were not interrelated or correlated with the type or severity of motor deficit. Posterior cingulate morphology was associated with gross motor skills and inattention. Gross motor skills were also associated with left corticospinal tract morphology.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastornos de la Destreza Motora , Niño , Humanos , Trastornos de la Destreza Motora/psicología , Encéfalo/diagnóstico por imagen , Función Ejecutiva , Cognición , Neuroimagen , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Destreza Motora
18.
Eur Radiol ; 34(3): 1444-1452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37673963

RESUMEN

OBJECTIVES: Whether the alternation of the glymphatic system exists in neurodevelopmental disease still remains unclear. In this study, we investigated structural and functional changes in the glymphatic system in the treatment-naïve attention-deficit/hyperactivity disorder (ADHD) children by quantitatively measuring the Virchow-Robin spaces (VRS) volume and diffusion tensor image-analysis along the perivascular space (DTI-ALPS). METHODS: Forty-seven pediatric ADHD patients and 52 age- and gender-matched typically developing (TD) children were recruited in this prospective study. The VRS volume was calculated using a semi-automated approach in axial T2-weighted images. Diffusivities along the x-, y-, and z-axes in the projection, association, and subcortical neural fiber areas were measured. The ALPS index, a ratio that accentuated water diffusion along the perivascular space, was calculated. The Mann-Whitney U test was used to compare the quantitative parameters; Pearson's correlation was used to analyze the correlation with clinical symptoms. RESULTS: The cerebral VRS volume (mean, 15.514 mL vs. 11.702 mL) and the VRS volume ratio in the ADHD group were larger than those in the TD group (all p < 0.001). The diffusivity along the x-axis in association fiber area and ALPS index were significantly smaller in the ADHD group vs. TD group (mean, 1.40 vs.1.59, p < 0.05 after false discovery rate adjustment). Besides, the ALPS index was related to inattention symptoms of ADHD (r = - 0.323, p < 0.05). CONCLUSIONS: Our study suggests that the glymphatic system alternation may participate in the pathogenesis of ADHD, which may be a new research direction for exploring the mechanisms of psycho-behavioral developmental disorders. Moreover, the VRS volume and ALPS index could be used as the metrics for diagnosing ADHD. CLINICAL RELEVANCE STATEMENT: Considering the potential relevance of the glymphatic system for exploring the mechanisms of attention deficit/hyperactivity, the Virchow-Robin spaces volume and the analysis along the perivascular space index could be used as additional metrics for diagnosing the disorder. KEY POINTS: • Increased Virchow-Robin space volume and decreased analysis along the perivascular space index were found in the treatment-naïve attention-deficit/hyperactivity disorder children. • The results of this study indicate that the glymphatic system alternation may have a valuable role in the pathogenesis of attention-deficit/hyperactivity disorder. • The analysis along the perivascular space index is correlated with inattention symptoms of attention-deficit/hyperactivity disorder children.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Humanos , Niño , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Estudios Prospectivos , Benchmarking , Difusión , Procesamiento de Imagen Asistido por Computador
19.
Am J Geriatr Psychiatry ; 32(4): 427-442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37989710

RESUMEN

OBJECTIVES: Recent evidence suggests attention-deficit/hyperactivity disorder (ADHD) is a risk factor for cognitive impairment in later life. Here, we investigated cerebrovascular burden, quantified using white matter hyperintensity (WMH) volumes, as a potential mediator of this relationship. DESIGN: This was a cross-sectional observational study. SETTING: Participants were recruited from a cognitive neurology clinic where they had been referred for cognitive assessment, or from the community. PARTICIPANTS: Thirty-nine older adults with clinical ADHD and 50 age- and gender-matched older adults without ADHD. MEASUREMENTS: A semiautomated structural MRI pipeline was used to quantify periventricular (pWMH) and deep WMH (dWMH) volumes. Cognition was measured using standardized tests of memory, processing speed, visuo-construction, language, and executive functioning. Mediation models, adjusted for sex, were built to test the hypothesis that ADHD status exerts a deleterious impact on cognitive performance via WMH burden. RESULTS: Results did not support a mediated effect of ADHD on cognition. Post hoc inspection of the data rather suggested a moderated effect, which was investigated as an a posteriori hypothesis. These results revealed a significant moderating effect of WMH on the relationship between ADHD memory, speed, and executive functioning, wherein ADHD was negatively associated with cognition at high and medium levels of WMH, but not when WMH volumes were low. CONCLUSIONS: ADHD increases older adults' susceptibility to the deleterious cognitive effects of WMH in the brain. Older adults with ADHD may be at risk for cognitive impairment if they have deep WMH volumes above 61 mm3 and periventricular WMH above 260 mm3.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Disfunción Cognitiva , Sustancia Blanca , Humanos , Anciano , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Estudios Transversales , Cognición , Encéfalo/diagnóstico por imagen , Función Ejecutiva , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/epidemiología , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen
20.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38142281

RESUMEN

Disruptions in large-scale brain connectivity are hypothesized to contribute to psychiatric disorders, including schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. However, high inter-individual variation among patients with psychiatric disorders hinders achievement of unified findings. To this end, we adopted a newly proposed method to resolve heterogeneity of differential structural covariance network in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. This method could infer individualized structural covariance aberrance by assessing the deviation from healthy controls. T1-weighted anatomical images of 114 patients with psychiatric disorders (schizophrenia: n = 37; bipolar I disorder: n = 37; attention-deficit/hyperactivity disorder: n = 37) and 110 healthy controls were analyzed to obtain individualized differential structural covariance network. Patients exhibited tremendous heterogeneity in profiles of individualized differential structural covariance network. Despite notable heterogeneity, patients with the same disorder shared altered edges at network level. Moreover, individualized differential structural covariance network uncovered two distinct psychiatric subtypes with opposite differences in structural covariance edges, that were otherwise obscured when patients were merged, compared with healthy controls. These results provide new insights into heterogeneity and have implications for the nosology in psychiatric disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Bipolar , Esquizofrenia , Humanos , Trastorno Bipolar/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...