Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.212
Filtrar
1.
Clin Transl Med ; 14(5): e1719, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778460

RESUMEN

Cerebrovascular diseases (CVDs) are a major threat to global health. Elucidation of the molecular mechanisms underlying the pathology of CVDs is critical for the development of efficacious preventative and therapeutic approaches. Accumulating studies have highlighted the significance of ubiquitin-modifying enzymes (UMEs) in the regulation of CVDs. UMEs are a group of enzymes that orchestrate ubiquitination, a post-translational modification tightly involved in CVDs. Functionally, UMEs regulate multiple pathological processes in ischemic and hemorrhagic stroke, moyamoya disease, and atherosclerosis. Considering the important roles of UMEs in CVDs, they may become novel druggable targets for these diseases. Besides, techniques applying UMEs, such as proteolysis-targeting chimera and deubiquitinase-targeting chimera, may also revolutionize the therapy of CVDs in the future.


Asunto(s)
Trastornos Cerebrovasculares , Humanos , Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
2.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731591

RESUMEN

Angelica sinensis (Oliv.) Diels (A. sinensis) is a medicinal and edible values substance, which could promote blood circulation and enrich blood. It possesses rich chemical components and nutrients, which have significant therapeutic effects on cardiovascular and cerebrovascular diseases. It is commonly used for the prevention and treatment of cardiovascular and cerebrovascular diseases in the elderly, especially in improving ischemic damage to the heart and brain, protecting vascular cells, and regulating inflammatory reactions. This article reviews the main pharmacological effects and clinical research of A. sinensis on cardiovascular and cerebrovascular diseases in recent years, explores the effect of its chemical components on cardiovascular and cerebrovascular diseases by regulating the expression of functional proteins and inhibiting inflammation, anti-apoptosis, and antioxidant mechanisms. It provides a reference for further research on A. sinensis and the development of related drugs. It provides a new reference direction for the in-depth research and application of A. sinensis in the prevention, improvement, and treatment of cardiovascular and cerebrovascular diseases.


Asunto(s)
Angelica sinensis , Enfermedades Cardiovasculares , Trastornos Cerebrovasculares , Humanos , Angelica sinensis/química , Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
3.
Biol Pharm Bull ; 47(1): 104-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171771

RESUMEN

White matter lesions induced by chronic cerebral hypoperfusion can cause vascular dementia; however, no appropriate treatments are currently available for these diseases. In this study, we investigated lipid peroxidation, which has recently been pointed out to be associated with cerebrovascular disease and vascular dementia, as a therapeutic target for chronic cerebral hypoperfusion. We used ethoxyquin, a lipid-soluble antioxidant, in a neuronal cell line and mouse model of the disease. The cytoprotective effect of ethoxyquin on glutamate-stimulated HT-22 cells, a mouse hippocampal cell line, was comparable to that of a ferroptosis inhibitor. In addition, the administration of ethoxyquin to bilateral common carotid artery stenosis model mice suppressed white matter lesions, blood-brain barrier disruption, and glial cell activation. Taken together, we propose that the inhibition of lipid peroxidation may be a useful therapeutic approach for chronic cerebrovascular disease and the resulting white matter lesions.


Asunto(s)
Isquemia Encefálica , Estenosis Carotídea , Trastornos Cerebrovasculares , Demencia Vascular , Sustancia Blanca , Animales , Ratones , Demencia Vascular/complicaciones , Etoxiquina/metabolismo , Etoxiquina/farmacología , Etoxiquina/uso terapéutico , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Isquemia Encefálica/patología , Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/complicaciones , Trastornos Cerebrovasculares/metabolismo , Modelos Animales de Enfermedad , Estenosis Carotídea/complicaciones , Estenosis Carotídea/metabolismo , Estenosis Carotídea/patología , Ratones Endogámicos C57BL
4.
Glia ; 72(2): 375-395, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37909242

RESUMEN

White matter abnormalities, related to poor cerebral perfusion, are a core feature of small vessel cerebrovascular disease, and critical determinants of vascular cognitive impairment and dementia. Despite this importance there is a lack of treatment options. Proliferation of microglia producing an expanded, reactive population and associated neuroinflammatory alterations have been implicated in the onset and progression of cerebrovascular white matter disease, in patients and in animal models, suggesting that targeting microglial proliferation may exert protection. Colony-stimulating factor-1 receptor (CSF1R) is a key regulator of microglial proliferation. We found that the expression of CSF1R/Csf1r and other markers indicative of increased microglial abundance are significantly elevated in damaged white matter in human cerebrovascular disease and in a clinically relevant mouse model of chronic cerebral hypoperfusion and vascular cognitive impairment. Using the mouse model, we investigated long-term pharmacological CSF1R inhibition, via GW2580, and demonstrated that the expansion of microglial numbers in chronic hypoperfused white matter is prevented. Transcriptomic analysis of hypoperfused white matter tissue showed enrichment of microglial and inflammatory gene sets, including phagocytic genes that were the predominant expression modules modified by CSF1R inhibition. Further, CSF1R inhibition attenuated hypoperfusion-induced white matter pathology and rescued spatial learning impairments and to a lesser extent cognitive flexibility. Overall, this work suggests that inhibition of CSF1R and microglial proliferation mediates protection against chronic cerebrovascular white matter pathology and cognitive deficits. Our study nominates CSF1R as a target for the treatment of vascular cognitive disorders with broader implications for treatment of other chronic white matter diseases.


Asunto(s)
Trastornos Cerebrovasculares , Trastornos del Conocimiento , Disfunción Cognitiva , Leucoencefalopatías , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Sustancia Blanca , Animales , Ratones , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/patología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Receptores del Factor Estimulante de Colonias/metabolismo , Sustancia Blanca/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
5.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003477

RESUMEN

The blood-brain barrier (BBB) is a unique and selective feature of the central nervous system's vasculature. BBB dysfunction has been observed as an early sign of Alzheimer's Disease (AD) before the onset of dementia or neurodegeneration. The intricate relationship between the BBB and the pathogenesis of AD, especially in the context of neurovascular coupling and the overlap of pathophysiology in neurodegenerative and cerebrovascular diseases, underscores the urgency to understand the BBB's role more deeply. Preserving or restoring the BBB function emerges as a potentially promising strategy for mitigating the progression and severity of AD. Molecular and genetic changes, such as the isoform ε4 of apolipoprotein E (ApoEε4), a significant genetic risk factor and a promoter of the BBB dysfunction, have been shown to mediate the BBB disruption. Additionally, receptors and transporters like the low-density lipoprotein receptor-related protein 1 (LRP1), P-glycoprotein (P-gp), and the receptor for advanced glycation end products (RAGEs) have been implicated in AD's pathogenesis. In this comprehensive review, we endeavor to shed light on the intricate pathogenic and therapeutic connections between AD and the BBB. We also delve into the latest developments and pioneering strategies targeting the BBB for therapeutic interventions, addressing its potential as a barrier and a carrier. By providing an integrative perspective, we anticipate paving the way for future research and treatments focused on exploiting the BBB's role in AD pathogenesis and therapy.


Asunto(s)
Enfermedad de Alzheimer , Trastornos Cerebrovasculares , Humanos , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Péptidos beta-Amiloides/metabolismo , Transporte Biológico/fisiología , Trastornos Cerebrovasculares/metabolismo
6.
Biomed Pharmacother ; 163: 114817, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37141733

RESUMEN

Cardiovascular and cerebrovascular diseases (CVDs) remain an intractable problem and have high morbidity and mortality worldwide, as well as substantial health and economic burdens, representing an urgent clinical need. In recent years, the focus of research has shifted from the use of mesenchymal stem cells (MSCs) for transplantation to the use of their secretory exosomes (MSC-exosomes) for the treatment of numerous CVDs, including atherosclerosis, myocardial infarction (MI), heart failure (HF), ischemia/reperfusion (I/R), aneurysm, and stroke. MSCs are pluripotent stem cells with multiple differentiation pathways that exert pleiotropic effects by producing soluble factors, the most effective components of which are exosomes. MSC-exosomes are considered to be an excellent and promising cell-free therapy for CVDs due to their higher circulating stability, improved biocompatibility, reduced toxicity, and immunogenicity. In addition, exosomes play critical roles in repairing CVDs by inhibiting apoptosis, regulating inflammation, ameliorating cardiac remodeling, and promoting angiogenesis. Herein, we describe knowledge about the biological characteristics of MSC-exosomes, investigate the mechanism by which MSC-exosomes mediate therapeutic repair, and summarize recent advances in the efficacy of MSC-exosomes in CVDs, with a view toward future clinical applications.


Asunto(s)
Trastornos Cerebrovasculares , Exosomas , Células Madre Mesenquimatosas , Infarto del Miocardio , Humanos , Exosomas/metabolismo , Corazón , Infarto del Miocardio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Trastornos Cerebrovasculares/terapia , Trastornos Cerebrovasculares/metabolismo
7.
Anal Biochem ; 636: 114387, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34537182

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a multisystem disease, which has been classified as an emerging epidemic not only confined to liver-related morbidity and mortality. It is also becoming apparent that NAFLD is associated with moderate cerebral dysfunction and cognitive decline. A possible link between NAFLD and Alzheimer's disease (AD) has only recently been proposed due to the multiple shared genes and pathological mechanisms contributing to the development of these conditions. Although AD is a progressive neurodegenerative disease, the exact pathophysiological mechanism remains ambiguous and similarly to NAFLD, currently available pharmacological therapies have mostly failed in clinical trials. In addition to the usual suspects (inflammation, oxidative stress, blood-brain barrier alterations and ageing) that could contribute to the NAFLD-induced development and progression of AD, changes in the vasculature, cerebral perfusion and waste clearance could be the missing link between these two diseases. Here, we review the most recent literature linking NAFLD and AD, focusing on cerebrovascular alterations and the brain's clearance system as risk factors involved in the development and progression of AD, with the aim of promoting further research using neuroimaging techniques and new mechanism-based therapeutic interventions.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer , Trastornos Cerebrovasculares , Enfermedad del Hígado Graso no Alcohólico , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/fisiopatología , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/fisiopatología , Humanos , Inflamación/metabolismo , Inflamación/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Estrés Oxidativo , Factores de Riesgo
8.
Artículo en Inglés | MEDLINE | ID: mdl-34759019

RESUMEN

BACKGROUND AND OBJECTIVES: Compared with stroke controls, patients with varicella zoster virus (VZV) vasculopathy have increased amyloid in CSF, along with increased amylin (islet amyloid polypeptide [IAPP]) and anti-VZV antibodies. Thus, we examined the gene expression profiles of VZV-infected primary human brain vascular adventitial fibroblasts (HBVAFs), one of the initial arterial cells infected in VZV vasculopathy, to determine whether they are a potential source of amyloid that can disrupt vasculature and potentiate inflammation. METHODS: Mock- and VZV-infected quiescent HBVAFs were harvested at 3 days postinfection. Targeted RNA sequencing of the whole-human transcriptome (BioSpyder Technologies, TempO-Seq) was conducted followed by gene set enrichment and pathway analysis. Selected pathways unique to VZV-infected cells were confirmed by enzyme-linked immunoassays, migration assays, and immunofluorescence analysis (IFA) that included antibodies against amylin and amyloid-beta, as well as amyloid staining by Thioflavin-T. RESULTS: Compared with mock, VZV-infected HBVAFs had significantly enriched gene expression pathways involved in vascular remodeling and vascular diseases; confirmatory studies showed secretion of matrix metalloproteinase-3 and -10, as well increased migration of infected cells and uninfected cells when exposed to conditioned media from VZV-infected cells. In addition, significantly enriched pathways involved in amyloid-associated diseases (diabetes mellitus, amyloidosis, and Alzheimer disease), tauopathy, and progressive neurologic disorder were identified; predicted upstream regulators included amyloid precursor protein, apolipoprotein E, microtubule-associated protein tau, presenilin 1, and IAPP. Confirmatory IFA showed that VZV-infected HBVAFs contained amyloidogenic peptides (amyloid-beta and amylin) and intracellular amyloid. DISCUSSION: Gene expression profiles and pathway enrichment analysis of VZV-infected HBVAFs, as well as phenotypic studies, reveal features of pathologic vascular remodeling (e.g., increased cell migration and changes in the extracellular matrix) that can contribute to cerebrovascular disease. Furthermore, the discovery of amyloid-associated transcriptional pathways and intracellular amyloid deposition in HBVAFs raise the possibility that VZV vasculopathy is an amyloid disease. Amyloid deposition may contribute to cell death and loss of vascular wall integrity, as well as potentiate chronic inflammation in VZV vasculopathy, with disease severity and recurrence determined by the host's ability to clear virus infection and amyloid deposition and by the coexistence of other amyloid-associated diseases (i.e., Alzheimer disease and diabetes mellitus).


Asunto(s)
Adventicia , Péptidos beta-Amiloides/metabolismo , Trastornos Cerebrovasculares , Fibroblastos , Infección por el Virus de la Varicela-Zóster , Remodelación Vascular , Adventicia/citología , Adventicia/metabolismo , Adventicia/patología , Adventicia/virología , Células Cultivadas , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/patología , Trastornos Cerebrovasculares/virología , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/virología , Humanos , Análisis de Secuencia de ARN , Transcriptoma/fisiología , Infección por el Virus de la Varicela-Zóster/metabolismo , Infección por el Virus de la Varicela-Zóster/patología , Infección por el Virus de la Varicela-Zóster/virología , Remodelación Vascular/fisiología
9.
FASEB J ; 36(1): e22075, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919285

RESUMEN

Long non-coding RNAs (lncRNAs) regulate neurological damage in cerebral ischemia-reperfusion injury (CIRI). This study aimed to investigate the biological roles of lncRNA CEBPA-AS1 in CIRI. Middle cerebral artery occlusion and ischemia-reperfusion injury (MCAO/IR) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) cell lines were generated; the expression of CEBPA-AS1 was evaluated by qRT-PCR. The effects of CEBPA-AS1 on cell apoptosis and nerve damage were examined. The downstream microRNA (miRNA) and mRNA of CEBPA-AS1 were predicted and verified. We found that overexpression of CEBPA-AS1 could attenuate MCAO/IR-induced nerve damage and neuronal apoptosis in the rat model. Knockdown of CEBPA-AS1 aggravated cell apoptosis and enhanced the production of LDH and MDA in the OGD/R cells. Upon examining the molecular mechanisms, we found that CEBPA-AS1 stimulated APPL1 expression by combining with miR-340-5p, thereby regulating the APPL1/LKB1/AMPK pathway. In the rescue experiments, CEBPA-AS1 overexpression was found to attenuate OGD/R-induced cell apoptosis and MCAO/IR induced nerve damage, while miR-340-5p reversed these effects of CEBPA-AS1. In conclusion, CEBPA-AS1 could decrease CIRI by sponging miR-340-5, regulating the APPL1/LKB1/AMPK pathway.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/biosíntesis , Proteínas Quinasas Activadas por AMP/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Trastornos Cerebrovasculares/metabolismo , MicroARNs/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , ARN Largo no Codificante/biosíntesis , Daño por Reperfusión/metabolismo , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Trastornos Cerebrovasculares/genética , Trastornos Cerebrovasculares/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , ARN Largo no Codificante/genética , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/genética , Daño por Reperfusión/patología
10.
Aging (Albany NY) ; 13(17): 21791-21806, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479211

RESUMEN

Alzheimer's disease (AD), as the most common neurodegenerative disease in elder population, is pathologically characterized by ß-amyloid (Aß) plaques, neurofibrillary tangles composed of highly-phosphorylated tau protein and consequently progressive neurodegeneration. However, both Aß and tau fails to cover the whole pathological process of AD, and most of the Aß- or tau-based therapeutic strategies are all failed. Increasing lines of evidence from both clinical and preclinical studies have indicated that age-related cerebrovascular dysfunctions, including the changes in cerebrovascular microstructure, blood-brain barrier integrity, cerebrovascular reactivity and cerebral blood flow, accompany or even precede the development of AD-like pathologies. These findings may raise the possibility that cerebrovascular changes are likely pathogenic contributors to the onset and progression of AD. In this review, we provide an appraisal of the cerebrovascular alterations in AD and the relationship to cognitive impairment and AD pathologies. Moreover, the adrenergic mechanisms leading to cerebrovascular and AD pathologies were further discussed. The contributions of early cerebrovascular factors, especially through adrenergic mechanisms, should be considered and treasured in the diagnostic, preventative, and therapeutic approaches to address AD.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de Alzheimer/etiología , Circulación Cerebrovascular , Trastornos Cerebrovasculares/metabolismo , Receptores Adrenérgicos/metabolismo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/terapia , Animales , Barrera Hematoencefálica/metabolismo , Trastornos Cerebrovasculares/patología , Trastornos Cerebrovasculares/fisiopatología , Humanos
11.
Pharm Res ; 38(9): 1477-1484, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34480263

RESUMEN

The evidence shows that individuals with type-1 diabetes mellitus (T1DM) are at greater risk of accelerated cognitive impairment and dementia. Although, to date the mechanisms are largely unknown. An emerging body of literature indicates that dysfunction of cerebral neurovascular network and plasma dyshomeostasis of soluble amyloid-ß in association with impaired lipid metabolism are central to the onset and progression of cognitive deficits and dementia. However, the latter has not been extensively considered in T1DM. Therefore, in this review, we summarised the literature concerning altered lipid metabolism and cerebrovascular function in T1DM as an implication for potential pathways leading to cognitive decline and dementia.


Asunto(s)
Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Glucosa/metabolismo , Amiloide , Animales , Humanos , Metabolismo de los Lípidos/fisiología
12.
Life Sci ; 283: 119865, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34358549

RESUMEN

AIMS: Stroke has risen to the fifth and third most common causes of death in the United States and the rest of the world, respectively. Vortioxetine (VTX) is a multimodal antidepressant agent that balances 5-HT receptors and represses the serotonin transporter. Our study aimed to examine the neuroprotective impacts of VTX against cerebral ischemia caused by occluding the middle cerebral artery (MCA). MAIN METHODS: Until the middle cerebral artery occlusion (MCAO) induction, VTX (10 mg/kg/day) was taken orally for 14 days. Behavioral assessments were carried out 24 h after the MCAO technique. The hippocampal and cortical tissues of the brain were isolated to assess the histological changes and the levels of the biochemical parameters. KEY FINDINGS: MCAO damage led to severe neurological deficits and histopathological damage. However, VTX improved MCAO-induced neurological deficits and ameliorated histopathological changes in both hippocampal and cortical tissues of MCAO rats. Western blot analysis showed increments of p-PERK, CHOP, ASK-1, NICD, HES-1, HES-5, and p-eIF2α expression levels in MCAO rats. Moreover, ELISA revealed an increase in the levels of ATF4, IRE1, Apaf-1, and HIF-1α, while VTX administration ameliorated most of these perturbations induced after MCAO injury. SIGNIFICANCE: This research suggests that VTX could be a potent neuroprotective agent against ischemic stroke by inhibiting a variety of oxidative, apoptotic, inflammatory, and endoplasmic reticulum stress pathways.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Trastornos Cerebrovasculares/tratamiento farmacológico , Factor 2 Eucariótico de Iniciación/metabolismo , Neuronas/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , Vortioxetina/farmacología , eIF-2 Quinasa/metabolismo , Animales , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/patología , Masculino , Neuronas/patología , Ratas , Ratas Wistar , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
13.
PLoS One ; 16(7): e0255154, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324560

RESUMEN

BACKGROUND: COVID-19 has been reported in over 40million people globally with variable clinical outcomes. In this systematic review and meta-analysis, we assessed demographic, laboratory and clinical indicators as predictors for severe courses of COVID-19. METHODS: This systematic review was registered at PROSPERO under CRD42020177154. We systematically searched multiple databases (PubMed, Web of Science Core Collection, MedRvix and bioRvix) for publications from December 2019 to May 31st 2020. Random-effects meta-analyses were used to calculate pooled odds ratios and differences of medians between (1) patients admitted to ICU versus non-ICU patients and (2) patients who died versus those who survived. We adapted an existing Cochrane risk-of-bias assessment tool for outcome studies. RESULTS: Of 6,702 unique citations, we included 88 articles with 69,762 patients. There was concern for bias across all articles included. Age was strongly associated with mortality with a difference of medians (DoM) of 13.15 years (95% confidence interval (CI) 11.37 to 14.94) between those who died and those who survived. We found a clinically relevant difference between non-survivors and survivors for C-reactive protein (CRP; DoM 69.10 mg/L, CI 50.43 to 87.77), lactate dehydrogenase (LDH; DoM 189.49 U/L, CI 155.00 to 223.98), cardiac troponin I (cTnI; DoM 21.88 pg/mL, CI 9.78 to 33.99) and D-Dimer (DoM 1.29mg/L, CI 0.9 to 1.69). Furthermore, cerebrovascular disease was the co-morbidity most strongly associated with mortality (Odds Ratio 3.45, CI 2.42 to 4.91) and ICU admission (Odds Ratio 5.88, CI 2.35 to 14.73). DISCUSSION: This comprehensive meta-analysis found age, cerebrovascular disease, CRP, LDH and cTnI to be the most important risk-factors that predict severe COVID-19 outcomes and will inform clinical scores to support early decision-making.


Asunto(s)
COVID-19/patología , Proteína C-Reactiva/metabolismo , COVID-19/metabolismo , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/virología , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Troponina I/metabolismo
14.
Stroke ; 52(7): 2404-2413, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34107734

RESUMEN

Background and Purpose: Hypertension is a leading risk factor for cerebrovascular disease and loss of brain health. While the brain renin-angiotensin system (RAS) contributes to hypertension, its potential impact on the local vasculature is unclear. We tested the hypothesis that activation of the brain RAS would alter the local vasculature using a modified deoxycorticosterone acetate (DOCA) model. Methods: C57BL/6 mice treated with DOCA (50 mg SQ; or shams) were given tap H2O and H2O with 0.9% NaCl for 1 to 3 weeks. Results: In isolated cerebral arteries and parenchymal arterioles from DOCA-treated male mice, endothelium- and nitric oxide-dependent dilation was progressively impaired, while mesenteric arteries were unaffected. In contrast, cerebral endothelial function was not significantly affected in female mice treated with DOCA. In males, mRNA expression of renal Ren1 was markedly reduced while RAS components (eg, Agt and Ace) were increased in both brain and cerebral arteries with central RAS activation. In NZ44 reporter mice expressing GFP (green fluorescent protein) driven by the angiotensin II type 1A receptor (Agtr1a) promoter, DOCA increased GFP expression ≈3-fold in cerebral arteries. Impaired endothelial responses were restored to normal by losartan, an AT1R (angiotensin II type 1 receptor) antagonist. Last, DOCA treatment produced inward remodeling of parenchymal arterioles. Conclusions: These findings suggest activation of the central and cerebrovascular RAS impairs endothelial (nitric oxide dependent) signaling in brain through expression and activation of AT1R and sex-dependent effects. The central RAS may be a key contributor to vascular dysfunction in brain in a preclinical (low renin) model of hypertension. Because the brain RAS is also activated during aging and other diseases, a common mechanism may promote loss of endothelial and brain health despite diverse cause.


Asunto(s)
Trastornos Cerebrovasculares/metabolismo , Endotelio Vascular/metabolismo , Hipertensión/metabolismo , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Receptor de Angiotensina Tipo 1/biosíntesis , Sistema Renina-Angiotensina/fisiología , Animales , Trastornos Cerebrovasculares/inducido químicamente , Trastornos Cerebrovasculares/genética , Acetato de Desoxicorticosterona/toxicidad , Femenino , Hipertensión/inducido químicamente , Hipertensión/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo III/genética , Receptor de Angiotensina Tipo 1/genética , Sistema Renina-Angiotensina/efectos de los fármacos
15.
Biochimie ; 186: 130-146, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33964368

RESUMEN

The aim of the study was the assessment of the neuroprotective potential of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (DHQ) and its effect on inflammation, apoptosis, and transcriptional regulation of the antioxidant system in cerebral ischemia/reperfusion (CIR) in rats. The CIR rat model was constructed using the bilateral common carotid artery occlusion followed by reoxygenation. DHQ was administered at a dose of 50 mg/kg for three days. Histological staining was performed using hematoxylin and eosin. The level of S100B protein, 8-hydroxy-2-deoxyguanosine, and 8-isoprostane was assessed using an enzyme immunoassay. The intensity of apoptosis was assessed based on the activity of caspases and DNA fragmentation. The activity of enzymes was measured spectrophotometrically, the level of gene transcripts was assessed by real-time PCR. DHQ reduced the histopathological changes and normalized levels of S100B, lactate, pyruvate, and HIF-1 mRNA in the CIR rat model. In addition, DHQ decreased the oxidative stress markers in animals with a pathology. The tested compound also inhibited inflammation by decreasing the activity of myeloperoxidase, expression of interleukins and Nfkb2. DHQ-treated rats with CIR showed decreased caspase activity, DNA fragmentation, and AIF expression. DHQ changed activity of antioxidant enzymes to the control values, decreased the expression of Cat, Gsr, and Nfe2l2, which was overexpressed in CIR, and activated the expression of Sod1, Gpx1, Gsta2, and Foxo1. DHQ showed a neuroprotective effect on CIR in rats. The neuroprotective effect involve mechanisms such as the inhibition of oxidative stress, leading to a reduction in the inflammatory response and apoptosis and the modulation of the antioxidant defense components.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Trastornos Cerebrovasculares , Fármacos Neuroprotectores/farmacología , Quinolinas/farmacología , Daño por Reperfusión , Animales , Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
16.
ASN Neuro ; 13: 17590914211018100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34053242

RESUMEN

Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-ß, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.


Asunto(s)
Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Proteínas Portadoras/metabolismo , Diterpenos de Tipo Kaurano/administración & dosificación , Furanos/administración & dosificación , Humanos , Indenos/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Sulfonamidas/administración & dosificación
17.
JCI Insight ; 6(10)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34027891

RESUMEN

Individuals with heart failure (HF) frequently present with comorbidities, including obesity, insulin resistance, hypertension, and dyslipidemia. Many patients with HF experience cardiogenic dementia, yet the pathophysiology of this disease remains poorly understood. Using a swine model of cardiometabolic HF (Western diet+aortic banding; WD-AB), we tested the hypothesis that WD-AB would promote a multidementia phenotype involving cerebrovascular dysfunction alongside evidence of Alzheimer's disease (AD) pathology. The results provide evidence of cerebrovascular insufficiency coupled with neuroinflammation and amyloidosis in swine with experimental cardiometabolic HF. Although cardiac ejection fraction was normal, indices of arterial compliance and cerebral blood flow were reduced, and cerebrovascular regulation was impaired in the WD-AB group. Cerebrovascular dysfunction occurred concomitantly with increased MAPK signaling and amyloidogenic processing (i.e., increased APP, BACE1, CTF, and Aß40 in the prefrontal cortex and hippocampus) in the WD-AB group. Transcriptomic profiles of the stellate ganglia revealed the WD-AB group displayed an enrichment of gene networks associated with MAPK/ERK signaling, AD, frontotemporal dementia, and a number of behavioral phenotypes implicated in cognitive impairment. These provide potentially novel evidence from a swine model that cerebrovascular and neuronal pathologies likely both contribute to the dementia profile in a setting of cardiometabolic HF.


Asunto(s)
Amiloide/metabolismo , Trastornos Cerebrovasculares , Insuficiencia Cardíaca , Enfermedades Metabólicas , Animales , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/fisiopatología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/fisiopatología , Transducción de Señal , Porcinos
18.
J Biochem Mol Toxicol ; 35(7): e22796, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33942446

RESUMEN

Eprosartan (EPRO), an angiotensin receptor type-1 (AT-1) blocker, exhibited neuroprotective activities in ischemic stroke resulting from focal cerebral ischemia in rats. The current study aimed to clarify the neuroprotective role of EPRO in middle carotid artery occlusion (MCAO)-induced ischemic stroke in rats. Fifty-six male Wistar rats were divided into four groups (n = 14 per group): sham-operated group, sham receiving EPRO (60 mg/kg/day, po) group, ischemia-reperfusion (IR) group, and IR receiving EPRO (60 mg/kg/day, po) group. MCAO led to a remarkable impairment in motor function together with stimulation of inflammatory and apoptotic pathways in the hippocampus of rats. After MCAO, the AT1 receptor in the brain was stimulated, resulting in activation of Janus kinase 2/signal transducers and activators of transcription 3 signaling generating more neuroinflammatory milieu and destructive actions on the hippocampus. Augmentation of caspase-3 level by MCAO enhanced neuronal apoptosis synchronized with neurodegenerative effects of oxidative stress biomarkers. Pretreatment with EPRO opposed motor impairment and decreased oxidative and apoptotic mediators in the hippocampus of rats. The anti-inflammatory activity of EPRO was revealed by downregulation of nuclear factor-kappa B and tumor necrosis factor-ß levels and (C-X-C motif) ligand 1 messenger RNA (mRNA) expression. Moreover, the study confirmed the role of EPRO against a unique pathway of hypoxia-inducible factor-1α and its subsequent inflammatory mediators. Furthermore, upregulation of caveolin-1 mRNA level was also observed along with decreased oxidative stress marker levels and brain edema. Therefore, EPRO showed neuroprotective effects in MCAO-induced cerebral ischemia in rats via attenuation of oxidative, apoptotic, and inflammatory pathways.


Asunto(s)
Acrilatos/farmacología , Encéfalo/metabolismo , Trastornos Cerebrovasculares/prevención & control , Imidazoles/farmacología , Fármacos Neuroprotectores/farmacología , Tiofenos/farmacología , Animales , Encéfalo/patología , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/patología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos
19.
J Cell Mol Med ; 25(12): 5341-5350, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33942488

RESUMEN

Sestrin2 (SESN2) is a conserved stress-inducible protein (also known as hypoxia-inducible gene 95 (HI95)) that is induced under hypoxic conditions. SESN2 represses the production of reactive oxygen species (ROS) and provides cytoprotection against various noxious stimuli, including hypoxia, oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. In recent years, the determination of the regulation and signalling mechanisms of SESN2 has increased our understanding of its role in the hypoxic response. SESN2 has well-documented roles in hypoxia-related diseases, making it a potential target for diagnosis and treatment. This review discusses the regulatory mechanisms of SESN2 and highlights the significance of SESN2 as a biomarker and therapeutic target in hypoxia-related diseases, such as cancer, respiratory-related diseases, cardiovascular diseases and cerebrovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/patología , Trastornos Cerebrovasculares/patología , Hipoxia/fisiopatología , Neoplasias/patología , Proteínas Nucleares/metabolismo , Peroxidasas/metabolismo , Enfermedades Respiratorias/patología , Animales , Enfermedades Cardiovasculares/metabolismo , Trastornos Cerebrovasculares/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Estrés Oxidativo , Peroxidasas/genética , Especies Reactivas de Oxígeno , Enfermedades Respiratorias/metabolismo
20.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922229

RESUMEN

The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells surrounded by a basement membrane, pericytes, astrocytes, microglia and neurons. A carefully coordinated interplay between these cellular and non-cellular components is required to maintain normal neuronal function, and in line with these observations, a growing body of evidence has linked NVU dysfunction to neurodegeneration. Plasminogen activators catalyze the conversion of the zymogen plasminogen into the two-chain protease plasmin, which in turn triggers a plethora of physiological events including wound healing, angiogenesis, cell migration and inflammation. The last four decades of research have revealed that the two mammalian plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), are pivotal regulators of NVU function during physiological and pathological conditions. Here, we will review the most relevant data on their expression and function in the NVU and their role in neurovascular and neurodegenerative disorders.


Asunto(s)
Trastornos Cerebrovasculares/patología , Enfermedades Neurodegenerativas/patología , Activadores Plasminogénicos/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Animales , Trastornos Cerebrovasculares/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...