Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Skelet Muscle ; 14(1): 18, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095894

RESUMEN

BACKGROUND: Older adults exhibit a slower recovery of muscle mass following disuse atrophy than young adults. At a smaller scale, muscle fibre cross-sectional area (i.e., sarcomeres in parallel) exhibits this same pattern. Less is known, however, about age-related differences in the recovery of muscle fibre length, driven by increases in serial sarcomere number (SSN), following disuse. The purpose of this study was to investigate age-related differences in SSN adaptations and muscle mechanical function during and following muscle immobilization. We hypothesized that older adult rats would experience a similar magnitude of SSN loss during immobilization, however, take longer to recover SSN than young following cast removal, which would limit the recovery of muscle mechanical function. METHODS: We casted the plantar flexors of young (8 months) and old (32 months) male rats in a shortened position for 2 weeks, and assessed recovery during 4 weeks of voluntary ambulation. Following sacrifice, legs were fixed in formalin for measurement of soleus SSN and physiological cross-sectional area (PCSA) with the un-casted soleus acting as a control. Ultrasonographic measurements of pennation angle (PA) and muscle thickness (MT) were conducted weekly. In-vivo active and passive torque-angle relationships were constructed pre-cast, post-cast, and following 4 weeks of recovery. RESULTS: From pre- to post-cast, young and older adult rats experienced similar decreases in SSN (-20%, P < 0.001), muscle wet weight (-25%, P < 0.001), MT (-30%), PA (-15%, P < 0.001), and maximum isometric torque (-40%, P < 0.001), but there was a greater increase in passive torque in older (+ 180%, P < 0.001) compared to young adult rats (+ 68%, P = 0.006). Following cast removal, young exhibited quicker recovery of SSN and MT than old, but SSN recovered sooner than PA and MT in both young and old. PCSA nearly recovered and active torque fully recovered in young adult rats, whereas in older adult rats these remained unrecovered at ∼ 75%. CONCLUSIONS: This study showed that older adult rats retain a better ability to recover longitudinal compared to parallel muscle morphology following cast removal, making SSN a highly adaptable target for improving muscle function in elderly populations early on during rehabilitation.


Asunto(s)
Envejecimiento , Músculo Esquelético , Sarcómeros , Animales , Masculino , Sarcómeros/metabolismo , Sarcómeros/patología , Músculo Esquelético/fisiopatología , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/diagnóstico por imagen , Ratas , Ratas Endogámicas F344 , Trastornos Musculares Atróficos/fisiopatología , Trastornos Musculares Atróficos/patología , Trastornos Musculares Atróficos/diagnóstico por imagen , Trastornos Musculares Atróficos/etiología , Recuperación de la Función , Suspensión Trasera/efectos adversos , Adaptación Fisiológica
2.
J Cachexia Sarcopenia Muscle ; 13(6): 2616-2629, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36104842

RESUMEN

Short, intermittent episodes of disuse muscle atrophy (DMA) may have negative impact on age related muscle loss. There is evidence of variability in rate of DMA between muscles and over the duration of immobilization. As yet, this is poorly characterized. This review aims to establish and compare the time-course of DMA in immobilized human lower limb muscles in both healthy and critically ill individuals, exploring evidence for an acute phase of DMA and differential rates of atrophy between and muscle groups. MEDLINE, Embase, CINHAL and CENTRAL databases were searched from inception to April 2021 for any study of human lower limb immobilization reporting muscle volume, cross-sectional area (CSA), architecture or lean leg mass over multiple post-immobilization timepoints. Risk of bias was assessed using ROBINS-I. Where possible meta-analysis was performed using a DerSimonian and Laird random effects model with effect sizes reported as mean differences (MD) with 95% confidence intervals (95% CI) at various time-points and a narrative review when meta-analysis was not possible. Twenty-nine studies were included, 12 in healthy volunteers (total n = 140), 18 in patients on an Intensive Therapy Unit (ITU) (total n = 516) and 3 in patients with ankle fracture (total n = 39). The majority of included studies are at moderate risk of bias. Rate of quadriceps atrophy over the first 14 days was significantly greater in the ITU patients (MD -1.01 95% CI -1.32, -0.69), than healthy cohorts (MD -0.12 95% CI -0.49, 0.24) (P < 0.001). Rates of atrophy appeared to vary between muscle groups (greatest in triceps surae (-11.2% day 28), followed by quadriceps (-9.2% day 28), then hamstrings (-6.5% day 28), then foot dorsiflexors (-3.2% day 28)). Rates of atrophy appear to decrease over time in healthy quadriceps (-6.5% day 14 vs. -9.1% day 28) and triceps surae (-7.8% day 14 vs. -11.2% day 28), and ITU quadriceps (-13.2% day 7 vs. -28.2% day 14). There appears to be variability in the rate of DMA between muscle groups, and more rapid atrophy during the earliest period of immobilization, indicating different mechanisms being dominant at different timepoints. Rates of atrophy are greater amongst critically unwell patients. Overall evidence is limited, and existing data has wide variability in the measures reported. Further work is required to fully characterize the time course of DMA in both health and disease.


Asunto(s)
Fuerza Muscular , Trastornos Musculares Atróficos , Humanos , Fuerza Muscular/fisiología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Músculo Cuádriceps , Músculo Esquelético/patología , Extremidad Inferior , Trastornos Musculares Atróficos/etiología
3.
Physiol Rep ; 9(14): e14979, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34309237

RESUMEN

Sepsis induces a myopathy characterized by loss of muscle mass and weakness. Septic patients undergo prolonged periods of limb muscle disuse due to bed rest. The contribution of limb muscle disuse to the myopathy phenotype remains poorly described. To characterize sepsis-induced myopathy with hindlimb disuse, we combined the classic sepsis model via cecal ligation and puncture (CLP) with the disuse model of hindlimb suspension (HLS) in mice. Male C57bl/6j mice underwent CLP or SHAM surgeries. Four days after surgeries, mice underwent HLS or normal ambulation (NA) for 7 days. Soleus (SOL) and extensor digitorum longus (EDL) were dissected for in vitro muscle mechanics, morphological, and histological assessments. In SOL muscles, both CLP+NA and SHAM+HLS conditions elicited ~20% reduction in specific force (p < 0.05). When combined, CLP+HLS elicited ~35% decrease in specific force (p < 0.05). Loss of maximal specific force (~8%) was evident in EDL muscles only in CLP+HLS mice (p < 0.05). CLP+HLS reduced muscle fiber cross-sectional area (CSA) and mass in SOL (p < 0.05). In EDL muscles, CLP+HLS decreased absolute mass to a smaller extent (p < 0.05) with no changes in CSA. Immunohistochemistry revealed substantial myeloid cell infiltration (CD68+) in SOL, but not in EDL muscles, of CLP+HLS mice (p < 0.05). Combining CLP with HLS is a feasible model to study sepsis-induced myopathy in mice. Hindlimb disuse combined with sepsis induced muscle dysfunction and immune cell infiltration in a muscle dependent manner. These findings highlight the importance of rehabilitative interventions in septic hosts to prevent muscle disuse and help attenuate the myopathy.


Asunto(s)
Suspensión Trasera/efectos adversos , Músculo Esquelético/fisiopatología , Trastornos Musculares Atróficos/fisiopatología , Sepsis/fisiopatología , Animales , Miembro Posterior/patología , Suspensión Trasera/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Enfermedades Musculares/etiología , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/patología , Sepsis/complicaciones , Sepsis/patología
4.
Clin Transl Sci ; 14(4): 1512-1523, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33742769

RESUMEN

Mechanical ventilation (MV) is a life-saving instrument used to provide ventilatory support for critically ill patients and patients undergoing surgery. Unfortunately, an unintended consequence of prolonged MV is the development of inspiratory weakness due to both diaphragmatic atrophy and contractile dysfunction; this syndrome is labeled ventilator-induced diaphragm dysfunction (VIDD). VIDD is clinically important because diaphragmatic weakness is an important contributor to problems in weaning patients from MV. Investigations into the pathogenesis of VIDD reveal that oxidative stress is essential for the rapid development of VIDD as redox disturbances in diaphragm fibers promote accelerated proteolysis. Currently, no standard treatment exists to prevent VIDD and, therefore, developing a strategy to avert VIDD is vital. Guided by evidence indicating that activation of the classical axis of the renin-angiotensin system (RAS) in diaphragm fibers promotes oxidative stress and VIDD, we hypothesized that activation of the nonclassical RAS signaling pathway via angiotensin 1-7 (Ang1-7) will protect against VIDD. Using an established animal model of prolonged MV, our results disclose that infusion of Ang1-7 protects the diaphragm against MV-induced contractile dysfunction and fiber atrophy in both fast and slow muscle fibers. Further, Ang1-7 shielded diaphragm fibers against MV-induced mitochondrial damage, oxidative stress, and protease activation. Collectively, these results reveal that treatment with Ang1-7 protects against VIDD, in part, due to diminishing oxidative stress and protease activation. These important findings provide robust evidence that Ang1-7 has the therapeutic potential to protect against VIDD by preventing MV-induced contractile dysfunction and atrophy of both slow and fast muscle fibers.


Asunto(s)
Angiotensina I/administración & dosificación , Diafragma/efectos de los fármacos , Debilidad Muscular/prevención & control , Trastornos Musculares Atróficos/prevención & control , Fragmentos de Péptidos/administración & dosificación , Respiración Artificial/efectos adversos , Animales , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Femenino , Humanos , Infusiones Intravenosas , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Debilidad Muscular/etiología , Debilidad Muscular/fisiopatología , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Ratas
5.
J Cachexia Sarcopenia Muscle ; 12(3): 717-730, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675163

RESUMEN

BACKGROUND: Muscle atrophy is a common pathology associated with disuse, such as prolonged bed rest or spaceflight, and is associated with detrimental health outcomes. There is emerging evidence that disuse atrophy may differentially affect males and females. Cellular mechanisms contributing to the development and progression of disuse remain elusive, particularly protein turnover cascades. The purpose of this study was to investigate the initial development and progression of disuse muscle atrophy in male and female mice using the well-established model of hindlimb unloading (HU). METHODS: One hundred C57BL/6J mice (50 male and 50 female) were hindlimb suspended for 0 (control), 24, 48, 72, or 168 h to induce disuse atrophy (10 animals per group). At designated time points, animals were euthanized, and tissues (extensor digitorum longus, gastrocnemius, and soleus for mRNA analysis, gastrocnemius and extensor digitorum longus for protein synthesis rates, and tibialis anterior for histology) were collected for analysis of protein turnover mechanisms (protein anabolism and catabolism). RESULTS: Both males and females lost ~30% of tibialis anterior cross-sectional area after 168 h of disuse. Males had no statistical difference in MHCIIB fibre area, whereas unloaded females had ~33% lower MHCIIB cross-sectional area by 168 h of unloading. Both males and females had lower fractional protein synthesis rates (FSRs) within 24-48 h of HU, and females appeared to have a greater reduction compared with males within 24 h of HU (~23% lower FSRs in males vs. 40% lower FSRs in females). Males and females exhibited differential patterns and responses in multiple markers of protein anabolism, catabolism, and myogenic capacity during the development and progression of disuse atrophy. Specifically, females had greater mRNA inductions of catabolic factors Ubc and Gadd45a (~4-fold greater content in females compared with ~2-fold greater content in males) and greater inductions of anabolic inhibitors Redd1 and Deptor with disuse across multiple muscle tissues exhibiting different fibre phenotypes. CONCLUSIONS: These results suggest that the aetiology of disuse muscle atrophy is more complicated and nuanced than previously thought, with different responses based on muscle phenotypes and between males and females, with females having greater inductions of atrophic markers early in the development of disuse atrophy.


Asunto(s)
Atrofia Muscular , Trastornos Musculares Atróficos , Animales , Femenino , Suspensión Trasera , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Trastornos Musculares Atróficos/etiología , Factores Sexuales
6.
Neurol Res ; 43(5): 372-380, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33372862

RESUMEN

Objective: In addition to the split hand sign, other split phenomena of different muscles also exist in amyotrophic lateral sclerosis (ALS). We analyzed the incidence of split phenomena in multiple antagonistic muscle groups in ALS patients and explored whether clinical factors affected their occurrence.Methods: 618 ALS patients were included from a single ALS center. Muscle strength in upper and lower limbs was evaluated using the modified Medical Research Council (MRC) scoring system (range from 1 to 13). Split phenomena between different antagonistic muscle groups were summarized, and the correlations with clinical factors were analyzed.Results: Split phenomena were detected in 22.3% antagonistic muscles for flexion and extension of the elbow, 11.9% for the wrist, 23.9% for fingers, 18.2% for the ankle, and 14.7% for toes. These manifestations were characterized by preferential wasting of the elbow, wrist, and finger extensor muscles compared with the flexor muscles, and the ankle and toe dorsiflexor muscles compared with the plantar flexor muscles. The presence of muscle wasting was more common when the muscle strength was stronger than a modified MRC grade 6. No definite correlation was found between split phenomena and clinical factors, including age-at-onset, gender, disease duration, the region of onset, and pyramidal tract damage.Discussion: Split phenomena of antagonistic muscle groups widely exist in ALS patients. No definitive and consistent clinical factors were observed that affected the occurrence of these phenomena.


Asunto(s)
Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/fisiopatología , Fuerza Muscular , Debilidad Muscular/fisiopatología , Músculo Esquelético/fisiopatología , Atrofia Muscular/fisiopatología , Trastornos Musculares Atróficos/fisiopatología , Adulto , Femenino , Humanos , Extremidad Inferior/fisiopatología , Masculino , Persona de Mediana Edad , Debilidad Muscular/etiología , Atrofia Muscular/etiología , Trastornos Musculares Atróficos/etiología , Extremidad Superior/fisiopatología
7.
Anticancer Res ; 40(4): 2275-2281, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32234926

RESUMEN

BACKGROUND/AIM: To assess the prognostic effect of muscle loss after esophagectomy and before discharge. PATIENTS AND METHODS: This study retrospectively analysed 159 consecutive patients with oesophageal and gastroesophageal junction cancer who underwent esophagectomy between August 2011 and October 2015. Body composition was evaluated one week before surgery and at discharge using a bioelectrical impedance analyser. RESULTS: The median rate of muscle mass loss (RMML) was 4.38% (range=-3.3 to +18.8). Patients with increased RMML had significantly poorer outcomes of overall survival than those with decreased RMML (p=0.015). On multivariate analysis, RMML [≥4.38, hazard ratio (HR)=2.033, 95% confidence interval (CI)=1.018-5.924, p=0.044) and pathological tumour depth (≥2, HR=3.099, 95%CI=1.339-7.172, p=0.008) were selected as independent prognostic factors. CONCLUSION: RMML after esophagectomy is indicative of poor prognosis in patients with esophageal cancer.


Asunto(s)
Neoplasias Esofágicas/fisiopatología , Esofagectomía/métodos , Unión Esofagogástrica/fisiopatología , Trastornos Musculares Atróficos/fisiopatología , Neoplasias Gástricas/fisiopatología , Anciano , Supervivencia sin Enfermedad , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/cirugía , Esofagectomía/efectos adversos , Unión Esofagogástrica/patología , Unión Esofagogástrica/cirugía , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Trastornos Musculares Atróficos/etiología , Pronóstico , Estudios Retrospectivos , Neoplasias Gástricas/patología , Neoplasias Gástricas/cirugía
8.
PLoS One ; 15(4): e0231306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32271840

RESUMEN

OBJECTIVE: To determine if a commercial myostatin reducer (Fortetropin®) would inhibit disuse muscle atrophy in dogs after a tibial plateau leveling osteotomy. DESIGN: A prospective randomized, double-blinded, placebo-controlled clinical trial. ANIMALS: One hundred client-owned dogs presenting for surgical correction of cranial cruciate ligament rupture by tibial plateau leveling osteotomy. PROCEDURES: Patients were randomly assigned into the Fortetropin® or placebo group and clients were instructed to add the assigned supplement to the dog's normal diet once daily for twelve weeks. Enrolled patients had ultrasound measurements of muscle thickness, tape measure measurements of thigh circumference, serum myostatin level assays, and static stance analysis evaluated at weeks 0, 8, and 12. RESULTS: From week 0 to week 8, there was no change for thigh circumference in the Fortetropin® group for the affected limb (-0.54cm, P = 0.31), but a significant decrease in thigh circumference for the placebo group (-1.21cm, P = 0.03). There was no significant change in serum myostatin levels of dogs in the Fortetropin® group at any time point (P>0.05), while there was a significant rise of serum myostatin levels of dogs in placebo group during the period of forced exercise restriction (week 0 to week 8; +2,892 pg/ml, P = 0.02). The percent of body weight supported by the affected limb increased in dogs treated with Fortetropin® (+7.0%, P<0.01) and the placebo group (+4.9%, P<0.01) at the end of the period of forced exercise restriction. The difference in weight bearing between the Fortetropin® and placebo groups was not statistically significant (P = 0.10). CONCLUSION: Dogs receiving Fortetropin® had a similar increase in stance force on the affected limb, no significant increase in serum myostatin levels, and no significant reduction in thigh circumference at the end of the period of forced exercise restriction compared to the placebo. These findings support the feeding of Fortetropin® to prevent disuse muscle atrophy in canine patients undergoing a tibial plateau leveling osteotomy.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/complicaciones , Lesiones del Ligamento Cruzado Anterior/veterinaria , Suplementos Dietéticos , Trastornos Musculares Atróficos/dietoterapia , Trastornos Musculares Atróficos/etiología , Miostatina/antagonistas & inhibidores , Osteotomía , Proteolípidos/administración & dosificación , Animales , Lesiones del Ligamento Cruzado Anterior/cirugía , Perros , Trastornos Musculares Atróficos/veterinaria , Placebos , Proteolípidos/farmacología , Tibia/cirugía
9.
Surg Today ; 50(7): 693-702, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31834495

RESUMEN

PURPOSE: Skeletal muscle loss after gastrectomy can worsen patients' quality of life and prognosis. Laparoscopic gastrectomy is less invasive than open gastrectomy and has become commonly performed. However, the degree of skeletal muscle loss after laparoscopic procedures remains unclear. We herein report the degree and risk factors of psoas muscle loss after laparoscopic gastrectomy for gastric cancer. METHODS: The total psoas area (TPA) on computed tomography of 50 consecutive patients who underwent laparoscopic total gastrectomy (LTG) and 167 consecutive patients who underwent laparoscopic distal gastrectomy (LDG) for gastric cancer was retrospectively evaluated at one postoperative year. The TPA loss was compared between LDG and LTG and univariate and multivariate analyses were performed to identify the risk factors for TPA loss > 10%. RESULTS: The median TPA decrease rate was 5.9% in the LDG group and 15.6% in the LTG group. LTG and postoperative respiratory complications were independent factors associated with a severe TPA loss of > 10%. In the LTG group, no independent factors were identified in a multivariate analysis. In the LDG group, postoperative complications were identified as an independent risk factor for TPA loss > 10%. CONCLUSIONS: Laparoscopic gastrectomy leads to postoperative TPA loss, especially in patients who underwent LTG and had postoperative respiratory complications. Postoperative complications after LDG were also a risk factor for TPA loss.


Asunto(s)
Gastrectomía/efectos adversos , Laparoscopía/efectos adversos , Trastornos Musculares Atróficos/etiología , Complicaciones Posoperatorias/etiología , Músculos Psoas/patología , Anciano , Femenino , Gastrectomía/métodos , Humanos , Laparoscopía/métodos , Masculino , Persona de Mediana Edad , Trastornos Musculares Atróficos/patología , Pronóstico , Calidad de Vida , Trastornos Respiratorios/complicaciones , Estudios Retrospectivos , Factores de Riesgo
10.
JCI Insight ; 4(24)2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31852842

RESUMEN

Massive tears of the rotator cuff (RC) are associated with chronic muscle degeneration due to fibrosis, fatty infiltration, and muscle atrophy. The microenvironment of diseased muscle often impairs efficient engraftment and regenerative activity of transplanted myogenic precursors. Accumulating myofibroblasts and fat cells disrupt the muscle stem cell niche and myogenic cell signaling and deposit excess disorganized connective tissue. Therefore, restoration of the damaged stromal niche with non-fibro-adipogenic cells is a prerequisite to successful repair of an injured RC. We generated from human embryonic stem cells (hES) a potentially novel subset of PDGFR-ß+CD146+CD34-CD56- pericytes that lack expression of the fibro-adipogenic cell marker PDGFR-α. Accordingly, the PDGFR-ß+PDGFR-α- phenotype typified non-fibro-adipogenic, non-myogenic, pericyte-like derivatives that maintained non-fibro-adipogenic properties when transplanted into chronically injured murine RCs. Although administered hES pericytes inhibited developing fibrosis at early and late stages of progressive muscle degeneration, transplanted PDGFR-ß+PDGFR-α+ human muscle-derived fibro-adipogenic progenitors contributed to adipogenesis and greater fibrosis. Additionally, transplanted hES pericytes substantially attenuated muscle atrophy at all tested injection time points after injury. Coinciding with this observation, conditioned medium from cultured hES pericytes rescued atrophic myotubes in vitro. These findings imply that non-fibro-adipogenic hES pericytes recapitulate the myogenic stromal niche and may be used to improve cell-based treatments for chronic muscle disorders.


Asunto(s)
Células Madre Embrionarias Humanas/fisiología , Trastornos Musculares Atróficos/terapia , Pericitos/trasplante , Lesiones del Manguito de los Rotadores/complicaciones , Manguito de los Rotadores/patología , Animales , Diferenciación Celular , Línea Celular , Enfermedad Crónica/terapia , Modelos Animales de Enfermedad , Femenino , Fibrosis , Humanos , Inyecciones Intralesiones , Ratones , Desarrollo de Músculos/fisiología , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/patología , Trastornos Musculares Atróficos/fisiopatología , Pericitos/fisiología , Manguito de los Rotadores/fisiopatología , Trasplante Heterólogo/métodos
11.
Int J Med Sci ; 16(6): 822-830, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31337955

RESUMEN

Electrical stimulation (ES)-induced muscle contraction has multiple effects; however, mechano-responsiveness of bone tissue declines with age. Here, we investigated whether daily low-frequency ES-induced muscle contraction treatment reduces muscle and bone loss and ameliorates bone fragility in early-stage disuse musculoskeletal atrophy in aged rats. Twenty-seven-month-old male rats were assigned to age-matched groups comprising the control (CON), sciatic nerve denervation (DN), or DN with direct low-frequency ES (DN+ES) groups. The structural and mechanical properties of the trabecular and cortical bone of the tibiae, and the morphological and functional properties of the tibialis anterior (TA) muscles were assessed one week after DN. ES-induced muscle contraction force mitigated denervation-induced muscle and trabecular bone loss and deterioration of the mechanical properties of the tibia mid-diaphysis, such as the stiffness, but not the maximal load, in aged rats. The TA muscle in the DN+ES group showed significant improvement in the myofiber cross-sectional area and muscle force relative to the DN group. These results suggest that low-frequency ES-induced muscle contraction treatment retards trabecular bone and muscle loss in aged rats in early-stage disuse musculoskeletal atrophy, and has beneficial effects on the functional properties of denervated skeletal muscle.


Asunto(s)
Envejecimiento/fisiología , Terapia por Estimulación Eléctrica/métodos , Músculo Esquelético/fisiopatología , Trastornos Musculares Atróficos/terapia , Osteoporosis/terapia , Animales , Densidad Ósea/fisiología , Modelos Animales de Enfermedad , Masculino , Contracción Muscular/fisiología , Desnervación Muscular/efectos adversos , Músculo Esquelético/inervación , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/fisiopatología , Osteoporosis/fisiopatología , Ratas , Ratas Endogámicas F344 , Tibia/fisiopatología , Resultado del Tratamiento
12.
J Cachexia Sarcopenia Muscle ; 10(6): 1195-1209, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31313502

RESUMEN

BACKGROUND: Successful strategies to halt or reverse sarcopenia require a basic understanding of the factors that cause muscle loss with age. Acute periods of muscle loss in older individuals have an incomplete recovery of muscle mass and strength, thus accelerating sarcopenic progression. The purpose of the current study was to further understand the mechanisms underlying the failure of old animals to completely recover muscle mass and function after a period of hindlimb unloading. METHODS: Hindlimb unloading was used to induce muscle atrophy in Fischer 344-Brown Norway (F344BN F1) rats at 24, 28, and 30 months of age. Rats were hindlimb unloaded for 14 days and then reloaded at 24 months (Reloaded 24), 28 months (Reloaded 28), and 24 and 28 months (Reloaded 24/28) of age. Isometric torque was determined at 24 months of age (24 months), at 28 months of age (28 months), immediately after 14 days of reloading, and at 30 months of age (30 months). During control or reloaded conditions, rats were labelled with deuterium oxide (D2 O) to determine rates of muscle protein synthesis and RNA synthesis. RESULTS: After 14 days of reloading, in vivo isometric torque returned to baseline in Reloaded 24, but not Reloaded 28 and Reloaded 24/28. Despite the failure of Reloaded 28 and Reloaded 24/28 to regain peak force, all groups were equally depressed in peak force generation at 30 months. Increased age did not decrease muscle protein synthesis rates, and in fact, increased resting rates of protein synthesis were measured in the myofibrillar fraction (Fractional synthesis rate (FSR): %/day) of the plantaris (24 months: 2.53 ± 0.17; 30 months: 3.29 ± 0.17), and in the myofibrillar (24 months: 2.29 ± 0.07; 30 months: 3.34 ± 0.11), collagen (24 months: 1.11 ± 0.07; 30 months: 1.55 ± 0.14), and mitochondrial (24 months: 2.38 ± 0.16; 30 months: 3.20 ± 0.10) fractions of the tibialis anterior (TA). All muscles increased myofibrillar protein synthesis (%/day) in Reloaded 24 (soleus: 3.36 ± 0.11, 5.23 ± 0.19; plantaris: 2.53 ± 0.17, 3.66 ± 0.07; TA: 2.29 ± 0.14, 3.15 ± 0.12); however, in Reloaded 28, only the soleus had myofibrillar protein synthesis rates (%/day) >28 months (28 months: 3.80 ± 0.10; Reloaded 28: 4.86 ± 0.19). Across the muscles, rates of protein synthesis were correlated with RNA synthesis (all muscles combined, R2 = 0.807, P < 0.0001). CONCLUSIONS: These data add to the growing body of literature that indicate that changes with age, including following disuse atrophy, differ by muscle. In addition, our findings lead to additional questions of the underlying mechanisms by which some muscles are maintained with age while others are not.


Asunto(s)
Envejecimiento/patología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Trastornos Musculares Atróficos/fisiopatología , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Modelos Animales de Enfermedad , Suspensión Trasera/efectos adversos , Masculino , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/metabolismo , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/genética , Trastornos Musculares Atróficos/metabolismo , Tamaño de los Órganos , Biosíntesis de Proteínas , Ratas , Ratas Endogámicas F344 , Torque
13.
Skeletal Radiol ; 47(11): 1541-1549, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29948037

RESUMEN

OBJECTIVE: Disuse and/or a non-weight-bearing condition changes muscle composition, with decreased skeletal muscle tissue and increased fat within (intramuscular adipose tissue, IntraMAT) and between (intermuscular adipose tissue, InterMAT) given muscles. Excessive adipose tissue contributes to dysfunctional and metabolically impaired muscle. How these adipose tissues change during orthopedic treatment (e.g., cast immobilization, daily use of crutches) is not well documented. This study aimed to quantify changes in IntraMAT, InterMAT, and thigh and calf muscle tissue during orthopedic treatment. MATERIALS AND METHODS: We studied 8 patients with fifth metatarsal bone or fibular fractures. The ankle joint involved underwent plaster casting for approximately 4 weeks, with crutches used during that time. Axial T1-weighted MRI at the mid-thigh and a 30% proximal site at the calf were obtained to measure IntraMAT and InterMAT cross-sectional areas (CSAs) and skeletal muscle tissue CSA before treatment and 4 weeks afterward. RESULTS: Thigh and calf muscle tissue CSAs were significantly decreased from before to after treatment: thigh, 85.8 ± 7.6 to 77.1 ± 7.3 cm2; calf, 53.3 ± 5.5 to 48.9 ± 5.0 cm2 (p < 0.05). None of the IntraMAT or InterMAT changes was statistically significant. There was a relation between the percentage change of thigh IntraMAT CSA and muscle tissue CSA (rs = -0.86, p < 0.01). CONCLUSIONS: The 4 weeks of treatment primarily induced skeletal muscle atrophy with less of an effect on IntraMAT or InterMAT. There is a risk of increasing IntraMAT relatively by decreasing skeletal muscle tissue size during orthopedic treatment.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Peroné/lesiones , Fracturas Óseas/terapia , Inmovilización/efectos adversos , Huesos Metatarsianos/lesiones , Trastornos Musculares Atróficos/diagnóstico por imagen , Tejido Adiposo/patología , Anciano , Anciano de 80 o más Años , Moldes Quirúrgicos , Muletas , Femenino , Humanos , Pierna , Imagen por Resonancia Magnética , Masculino , Huesos Metatarsianos/diagnóstico por imagen , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/patología , Muslo , Soporte de Peso
14.
Appl Physiol Nutr Metab ; 43(11): 1131-1139, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29800529

RESUMEN

The contralateral effects of unilateral strength training, known as cross-education of strength, date back well over a century. In the last decade, a limited number of studies have emerged demonstrating the preservation or "sparing" effects of cross-education during immobilization. Recently published evidence reveals that the sparing effects of cross-education show muscle site specificity and involve preservation of muscle cross-sectional area. The new research also demonstrates utility of training with eccentric contractions as a potent stimulus to preserve immobilized limb strength across multiple modes of contraction. The cumulative data in nonclinical settings suggest that cross-education can completely abolish expected declines in strength and muscle size in the range of ∼13% and ∼4%, respectively, after 3-4 weeks of immobilization of a healthy arm. The evidence hints towards the possibility that unique mechanisms may be involved in preservation effects of cross-education, as compared with those that lead to functional improvements under normal conditions. Cross-education effects after strength training appear to be larger in clinical settings, but there is still only 1 randomized clinical trial demonstrating the potential utility of cross-education in addition to standard treatment. More work is necessary in both controlled and clinical settings to understand the potential interaction of neural and muscle adaptations involved in the observed sparing effects, but there is growing evidence to advocate for the clinical utility of cross-education.


Asunto(s)
Fuerza Muscular/fisiología , Trastornos Musculares Atróficos , Entrenamiento de Fuerza , Restricción Física/efectos adversos , Brazo/fisiopatología , Traumatismos del Brazo/rehabilitación , Traumatismos del Brazo/terapia , Humanos , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/fisiopatología , Trastornos Musculares Atróficos/prevención & control
15.
Am J Pathol ; 187(12): 2674-2685, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28919112

RESUMEN

Muscle dysfunction is the most important modifiable mediating factor in primary osteoarthritis (OA) because properly contracting muscles are a key absorber of forces acting on a joint. However, the pathological features of disuse muscle atrophy in OA patients have been rarely studied. Vastus medialis muscles of 14 female patients with OA (age range, 69 to 86 years), largely immobile for 1 or more years, were obtained during arthroplastic surgery and analyzed histologically. These were compared with female patients without arthritis, two with patellar fracture and two with patellar subluxation. Areas occupied by myofibers and adipose tissue were quantified. Large numbers of myofibers were lost in the vastus medialis of OA patients. The loss of myofibers was a possible cause of the reduction in muscle strength of the operated on knee. These changes were significantly correlated with an increase in intramuscular ectopic adipose tissue, and not observed in knees of nonarthritic patients. Resident platelet-derived growth factor receptor α-positive mesenchymal progenitor cells contributed to ectopic adipogenesis in vastus medialis muscles of OA patients. The present study suggests that significant loss of myofibers and ectopic adipogenesis in vastus medialis muscles are common pathological features of advanced knee OA patients with long-term loss of mobility. These changes may be related to the loss of joint function in patients with knee OA.


Asunto(s)
Tejido Adiposo , Coristoma/patología , Trastornos Musculares Atróficos/patología , Osteoartritis/complicaciones , Músculo Cuádriceps/patología , Adipogénesis/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Trastornos Musculares Atróficos/etiología
16.
Appl Physiol Nutr Metab ; 42(2): 117-127, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28056188

RESUMEN

The purpose of this study was to examine the possible mechanism underlying the protective effect of tetramethylpyrazine (TMP) against disuse-induced muscle atrophy. Sprague-Dawley rats were randomly assigned to receive 14 days of hindlimb unloading (HLU, a model of disuse atrophy) or cage controls. The rats were given TMP (60 mg/kg body mass) or vehicle (water) by gavage. Compared with vehicle treatment, TMP significantly attenuated the loss of gastrocnemius muscle mass (-33.56%, P < 0.01), the decrease of cross-sectional area of slow fiber (-10.99%, P < 0.05) and fast fiber (-15.78%, P < 0.01) during HLU. Although TMP failed to further improve recovery of muscle function or fatigability compared with vehicle treatment, it can suppress the higher level of lactate (-22.71%, P < 0.01) induced by HLU. Besides, TMP could effectually reduce the increased protein expression of muscle RING-finger protein 1 induced by HLU (-14.52%, P < 0.01). Furthermore, TMP can ameliorate the calcium overload (-54.39%, P < 0.05), the increase of malondialdehyde content (-19.82%, P < 0.05), the decrease of superoxide dismutase activity (21.34%, P < 0.05), and myonuclear apoptosis (-78.22%, P < 0.01) induced by HLU. Moreover, TMP significantly reduced HLU-induced increase of Bax to B-cell lymphoma 2 (-36.36%, P < 0.01) and cytochrome c release (-36.16%, P < 0.05). In conclusion, TMP attenuated HLU-induced gastrocnemius muscle atrophy through suppression of Ca2+/reactive oxygen species increase and consequent proteolysis and apoptosis. Therefore, TMP might exhibit therapeutic effect against oxidative stress, cytosolic calcium overload, and mitochondrial damage in disuse-induced muscle atrophy.


Asunto(s)
Apoptosis/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Trastornos Musculares Atróficos/prevención & control , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Pirazinas/uso terapéutico , Vasodilatadores/uso terapéutico , Animales , Biomarcadores/metabolismo , Señalización del Calcio/efectos de los fármacos , Represión Enzimática/efectos de los fármacos , Femenino , Suspensión Trasera/efectos adversos , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/patología , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Complejo Represivo Polycomb 1/metabolismo , Proteolisis/efectos de los fármacos , Distribución Aleatoria , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo
17.
Appl Physiol Nutr Metab ; 41(12): 1240-1247, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27841025

RESUMEN

l-Carnitine was recently found to downregulate the ubiquitin proteasome pathway (UPP) and increase insulin-like growth factor 1 concentrations in animal models. However, the effect of l-carnitine administration on disuse muscle atrophy induced by hindlimb suspension has not yet been studied. Thus, we hypothesized that l-carnitine may have a protective effect on muscle atrophy induced by hindlimb suspension via the Akt1/mTOR and/or UPP. Male Wistar rats were assigned to 3 groups: hindlimb suspension group, hindlimb suspension with l-carnitine administration (1250 mg·kg-1·day-1) group, and pair-fed group adjusted hindlimb suspension. l-Carnitine administration for 2 weeks of hindlimb suspension alleviated the decrease in weight and fiber size in the soleus muscle. In addition, l-carnitine suppressed atrogin-1 mRNA expression, which has been reported to play a pivotal role in muscle atrophy. The present study shows that l-carnitine has a protective effect against soleus muscle atrophy caused by hindlimb suspension and decreased E3 ligase messenger RNA expression, suggesting the possibility that l-carnitine protects against muscle atrophy, at least in part, through the inhibition of the UPP. These observations suggest that l-carnitine could serve as an effective supplement in the decrease of muscle atrophy caused by weightlessness in the fields of clinical and rehabilitative research.


Asunto(s)
Carnitina/uso terapéutico , Suplementos Dietéticos , Represión Enzimática , Proteínas Musculares/antagonistas & inhibidores , Músculo Esquelético/metabolismo , Trastornos Musculares Atróficos/prevención & control , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Animales , Biomarcadores/metabolismo , Suspensión Trasera/efectos adversos , Inmunohistoquímica , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/prevención & control , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/patología , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma/uso terapéutico , Distribución Aleatoria , Ratas , Ratas Wistar , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ingravidez/efectos adversos
18.
Physiol Rep ; 4(18)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27650250

RESUMEN

The effects of either eicosapentaenoic (EPA)- or docosahexaenoic (DHA)-rich fish oils on hindlimb suspension (HS)-induced muscle disuse atrophy were compared. Daily oral supplementations (0.3 mL/100 g b.w.) with mineral oil (MO) or high EPA or high DHA fish oils were performed in adult rats. After 2 weeks, the animals were subjected to HS for further 2 weeks. The treatments were maintained alongside HS At the end of 4 weeks, we evaluated: body weight gain, muscle mass and fat depots, composition of fatty acids, cross-sectional areas (CSA) of the soleus muscle and soleus muscle fibers, activities of cathepsin L and 26S proteasome, and content of carbonylated proteins in the soleus muscle. Signaling pathway activities associated with protein synthesis (Akt, p70S6K, S6, 4EBP1, and GSK3-beta) and protein degradation (atrogin-1/MAFbx, and MuRF1) were evaluated. HS decreased muscle mass, CSA of soleus muscle and soleus muscle fibers, and altered signaling associated with protein synthesis (decreased) and protein degradation (increased). The treatment with either fish oil decreased the ratio of omega-6/omega-3 fatty acids and changed protein synthesis-associated signaling. EPA-rich fish oil attenuated the changes induced by HS on 26S proteasome activity, CSA of soleus muscle fibers, and levels of p-Akt, total p70S6K, p-p70S6K/total p70S6K, p-4EBP1, p-GSK3-beta, p-ERK2, and total ERK 1/2 proteins. DHA-rich fish oil attenuated the changes induced by HS on p-4EBP1 and total ERK1 levels. The effects of EPA-rich fish oil on protein synthesis signaling were more pronounced. Both EPA- and DHA-rich fish oils did not impact skeletal muscle mass loss induced by non-inflammatory HS.


Asunto(s)
Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Aceites de Pescado/química , Redes Reguladoras de Genes , Suspensión Trasera/efectos adversos , Trastornos Musculares Atróficos/metabolismo , Animales , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Redes Reguladoras de Genes/efectos de los fármacos , Masculino , Músculo Esquelético/efectos de los fármacos , Trastornos Musculares Atróficos/etiología , Ratas , Transducción de Señal/efectos de los fármacos
19.
Clin Adv Hematol Oncol ; 14(6): 436-46, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27379813

RESUMEN

The use of targeted therapies in patients with genitourinary malignancies has significantly improved outcomes. For example, androgen receptor (AR) pathway inhibitors have improved outcomes for patients with prostate cancer, and antiangiogenic agents have improved outcomes for those with kidney cancer. However, these advances have been accompanied by musculoskeletal side effects that manifest as physical dysfunction. Although the effects of androgen deprivation therapy on skeletal muscle are well-known, an additional concern is that the muscle loss associated with these newer drugs-especially AR pathway inhibitors-may result in insulin resistance and metabolic syndrome, thus increasing the risk for cardiovascular events and diabetes. Antiangiogenic agents also may cause muscle loss, although this has been poorly described in the literature. As these targeted therapies begin to be used in the earlier stages of treatment, there will be a critical need to prevent treatment-related toxicities with nonpharmacologic interventions. Over the past decade, exercise training has emerged as a novel nonpharmacologic adjunctive method to address toxicities resulting from these targeted therapies. Despite numerous studies in patients with prostate cancer, there remains a large gap in our knowledge of the true efficacy of exercise therapy, as well as the best way to prescribe exercise programs. Here, we suggest that the central role of skeletal muscle in the development of side effects of AR pathway inhibitors and antiangiogenic agents may unlock a number of unique opportunities to study how exercise prescriptions can be used more effectively. Resistance training may be a particularly important modality.


Asunto(s)
Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/terapia , Entrenamiento de Fuerza , Neoplasias Urogenitales/complicaciones , Antagonistas de Andrógenos/efectos adversos , Antagonistas de Andrógenos/uso terapéutico , Antineoplásicos Hormonales/efectos adversos , Antineoplásicos Hormonales/uso terapéutico , Humanos , Terapia Molecular Dirigida , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Estadificación de Neoplasias , Inhibidores de Proteínas Quinasas/uso terapéutico , Resultado del Tratamiento , Neoplasias Urogenitales/diagnóstico , Neoplasias Urogenitales/tratamiento farmacológico , Neoplasias Urogenitales/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA