Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Viruses ; 13(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452299

RESUMEN

Tomato (Solanum lycopersicum) is an important economic crop worldwide. However, tomato production is jeopardized by the devastating tomato yellow leaf curl disease caused by whitefly-transmitted begomoviruses (WTBs). In this study, we evaluated the efficacy of our previously developed plant antiviral immunity inducer, fungal F8-culture filtrate, on tomato to combat tomato yellow leaf curl Thailand virus (TYLCTHV), the predominant WTB in Taiwan. Our results indicated that F8-culture filtrate treatment induced strong resistance, did not reduce the growth of tomato, and induced prominent resistance against TYLCTHV both in the greenhouse and in the field. Among TYLCTHV-inoculated Yu-Nu tomato grown in the greenhouse, a greater percentage of plants treated with F8-culture filtrate (43-100%) were healthy-looking compared to the H2O control (0-14%). We found that TYLCTHV cannot move systemically only on the F8-culture filtrate pretreated healthy-looking plants. Tracking the expression of phytohormone-mediated immune maker genes revealed that F8-culture filtrate mainly induced salicylic acid-mediated plant immunity. Furthermore, callose depositions and the expression of the pathogen-induced callose synthase gene, POWDERY MILDEW RESISTANT 4 were only strongly induced by TYLCTHV on tomato pretreated with F8-culture filtrate. This study provides an effective way to induce tomato resistance against TYLCTHV.


Asunto(s)
Begomovirus/inmunología , Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Inmunidad de la Planta , Solanum lycopersicum/virología , Trichosporon , Animales , Begomovirus/fisiología , Medios de Cultivo , Genes de Plantas , Glucanos/metabolismo , Hemípteros/virología , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/inmunología , Trichosporon/crecimiento & desarrollo
2.
Med Mycol ; 59(8): 793-801, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-33550417

RESUMEN

Invasive fungal infections (IFIs) are important worldwide health problem, affecting the growing population of immunocompromised patients. Although the majority of IFIs are caused by Candida spp., other fungal species have been increasingly recognized as relevant opportunistic pathogens. Trichosporon spp. are members of skin and gut human microbiota. Since 1980's, invasive trichosporonosis has been considered a significant cause of fungemia in patients with hematological malignancies. As prolonged antibiotic therapy is an important risk factor for IFIs, the present study investigated if vancomycin enhances growth and virulence of Trichosporon. Vancomycin was tested against T. inkin (n = 6) and T. asahii (n = 6) clinical strains. Planktonic cells were evaluated for their metabolic activity and virulence against Caenorhabditis elegans. Biofilms were evaluated for metabolic activity, biomass production, amphotericin B tolerance, induction of persister cells, and ultrastructure. Vancomycin stimulated planktonic growth of Trichosporon spp., increased tolerance to AMB, and potentiates virulence against C. elegans. Vancomycin stimulated growth (metabolic activity and biomass) of Trichosporon spp. biofilms during all stages of development. The antibiotic increased the number of persister cells inside Trichosporon biofilms. These cells showed higher tolerance to AMB than persister cells from VAN-free biofilms. Microscopic analysis showed that VAN increased production of extracellular matrix and cells in T. inkin and T. asahii biofilms. These results suggest that antibiotic exposure may have a direct impact on the pathophysiology of opportunistic trichosporonosis in patients at risk. LAY ABSTRACT: This study showed that the vancomycin stimulated Trichosporon growth, induced morphological and physiological changes on their biofilms, and also enhanced their in vivo virulence. Although speculative, the stimulatory effect of vancomycin on fungal cells should be considered in a clinical scenario.


Asunto(s)
Antibacterianos/farmacología , Trichosporon/efectos de los fármacos , Vancomicina/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Microscopía Electrónica de Rastreo , Plancton/efectos de los fármacos , Plancton/crecimiento & desarrollo , Plancton/patogenicidad , Trichosporon/crecimiento & desarrollo , Trichosporon/patogenicidad , Trichosporon/fisiología , Virulencia/efectos de los fármacos
3.
Appl Microbiol Biotechnol ; 104(7): 3133-3144, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32076780

RESUMEN

Six local isolates of yeasts were screened for cell mass and lipid production in mixed glucose and xylose medium. Candida tropicalis SY005 and Trichosporon (Apiotrichum) loubieri SY006 showed significant lipid accumulation of 24.6% and 32% (dry cell weight), respectively when grown in medium containing equal mass of both the sugars. SY005 produced relatively higher cell mass of 9.66 gL-1 due to higher rate of sugar consumption, which raised the lipid productivity of the organism to 0.792 gL-1day-1 as compared to 0.446 gL-1day-1 in SY006. When grown with each sugar separately, the xylose consumption rate of SY005 was found to be 0.55 gL-1 h-1 after 4 days as compared to 0.52 gL-1 h-1 for SY006. Transcript expression of the high affinity xylose transporter (Cthaxt), xylose reductase (Ctxyl1), and xylitol dehydrogenase (Ctxyl2) of SY005 was monitored to unravel such high rate of sugar consumption. Expression of all the three genes was observed to vary in mixed sugars with Cthaxt exhibiting the highest expression in presence of only xylose. Expression levels of both Ctxyl1 and Ctxyl2, involved in xylose catabolism, were maximum during 24-48 h of growth, indicating that xylose utilization started in the presence of glucose, which was depleted in the medium after 96 h. Together, the present study documents that C. tropicalis SY005 consumes xylose concomitant to glucose during early period of growth, and it is a promising yeast strain for viable production of storage lipid or other high-value oleochemicals utilizing lignocellulose hydrolysate.


Asunto(s)
Candida tropicalis/metabolismo , Lípidos/biosíntesis , Xilosa/metabolismo , Candida tropicalis/genética , Candida tropicalis/crecimiento & desarrollo , Medios de Cultivo/química , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/análisis , Glucosa/metabolismo , Especificidad de la Especie , Trichosporon/genética , Trichosporon/crecimiento & desarrollo , Trichosporon/metabolismo , Xilosa/análisis , Levaduras/clasificación , Levaduras/genética , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo
4.
Microb Pathog ; 130: 219-225, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30878621

RESUMEN

Trichosporon spp. have been increasingly recognized as an important pathogen of invasive and disseminated infections in immunocompromised patients. These species are prone to form biofilms in medical devices such as catheters and prosthesis, which are associated with antifungal resistance and therapeutic failure. Therefore, new antifungals with a broader anti-biofilm activity need to be discovered. In the present study we evaluate the inhibitory potential of sodium butyrate (NaBut) - a histone deacetylase inhibitor that can alter chromatin conformation - against planktonic and sessile cells of T. asahii and T. inkin. Minimum inhibitory concentration (MIC) of NaBut against planktonic cells was evaluated by microdilution and morphological changes were analyzed by optical microscopy on malt agar supplemented with NaBut. Biofilms were evaluated during adhesion, development and after maturation for metabolic activity and biomass, as well as regarding ultrastructure by scanning electron microscopy and confocal laser scanning microscopy. NaBut inhibited the growth of planktonic cells by 50% at 60 mM or 120 mM (p < 0.05) and also reduced filamentation of Trichosporon spp. NaBut reduced adhesion of Trichosporon cells by 45% (10xMIC) on average (p < 0.05). During biofilm development, NatBut (10xMIC) reduced metabolic activity and biomass up to 63% and 81%, respectively (p < 0.05). Mature biofilms were affected by NaBut (10xMIC), showing reduction of metabolic activity and biomass of approximately 48% and 77%, respectively (p < 0.05). Ultrastructure analysis showed that NaBut (MIC and 10xMIC) was able to disassemble mature biofilms. The present study describes the antifungal and anti-biofilm potential of NaBut against these opportunist emerging fungi.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Ácido Butírico/farmacología , Trichosporon/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía , Microscopía Confocal , Microscopía Electrónica de Rastreo , Trichosporon/citología , Trichosporon/crecimiento & desarrollo
5.
Med Mycol ; 57(8): 1038-1045, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649480

RESUMEN

Trichosporon species have been considered important agents of opportunistic systemic infections, mainly among immunocompromised patients. Infections by Trichosporon spp. are generally associated with biofilm formation in invasive medical devices. These communities are resistant to therapeutic antifungals, and therefore the search for anti-biofilm molecules is necessary. This study evaluated the inhibitory effect of farnesol against planktonic and sessile cells of clinical Trichosporon asahii (n = 3) andTrichosporon inkin (n = 7) strains. Biofilms were evaluated during adhesion, development stages and after maturation for metabolic activity, biomass and protease activity, as well as regarding morphology and ultrastructure by optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy. Farnesol inhibited Trichosporon planktonic growth by 80% at concentrations ranging from 600 to 1200 µM for T. asahii and from 75 to 600 µM for T. inkin. Farnesol was able to reduce cell adhesion by 80% at 300 µM for T. asahii and T. inkin at 600 µM, while biofilm development of both species was inhibited by 80% at concentration of 150 µM, altering their structure. After biofilm maturation, farnesol decreased T. asahii biofilm formation by 50% at 600 µM concentration and T. inkin formation at 300 µM. Farnesol inhibited gradual filamentation in a concentration range between 600 and 1200 µM. Farnesol caused reduction of filament structures of Trichosporon spp. at every stage of biofilm development analyzed. These data show the potential of farnesol as an anti-biofilm molecule.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Farnesol/farmacología , Trichosporon/efectos de los fármacos , Trichosporon/crecimiento & desarrollo , Adhesión Celular/efectos de los fármacos , Humanos , Metabolismo/efectos de los fármacos , Péptido Hidrolasas/análisis , Trichosporon/aislamiento & purificación , Trichosporon/metabolismo , Tricosporonosis/microbiología
6.
Folia Microbiol (Praha) ; 64(1): 73-81, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30062620

RESUMEN

Microorganisms that cause chronic infections exist predominantly as surface-attached stable communities known as biofilms. Microbial cells in biofilms are highly resistant to conventional antibiotics and other forms of antimicrobial treatment; therefore, modern medicine tries to develop new drugs that exhibit anti-biofilm activity. We investigated the influence of a plant polyphenolic compound resveratrol (representative of the stilbene family) on the opportunistic pathogen Trichosporon cutaneum. Besides the influence on the planktonic cells of T. cutaneum, the ability to inhibit biofilm formation and to eradicate mature biofilm was studied. We have tested resveratrol as pure compound, as well as resveratrol in complex plant extract-the commercially available dietary supplement Regrapex-R-forte, which contains the extract of Vitis vinifera grape and extract of Polygonum cuspidatum root. Regrapex-R-forte is rich in stilbenes and other biologically active substances. Light microscopy imaging, confocal microscopy, and crystal violet staining were used to quantify and visualize the biofilm. The metabolic activity of biofilm-forming cells was studied by the tetrazolium salt assay. Amphotericin B had higher activity against planktonic cells; however, resveratrol and Regrapex-R-forte showed anti-biofilm effects, both in inhibition of biofilm formation and in the eradication of mature biofilm. The minimum biofilm eradicating concentration (MBEC80) for Regrapex-R-forte was found to be 2222 mg/L (in which resveratrol concentration is 200 mg/L). These methods demonstrated that Regrapex-R-forte can be employed as an anti-biofilm agent, as it has similar effect as amphotericin B (MBEC80 = 700 mg/L), which is routinely used in clinical practice.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Extractos Vegetales/farmacología , Resveratrol/farmacología , Trichosporon/efectos de los fármacos , Anfotericina B/farmacología , Biopelículas/crecimiento & desarrollo , Fallopia japonica/química , Pruebas de Sensibilidad Microbiana , Trichosporon/crecimiento & desarrollo , Trichosporon/metabolismo , Vitis/química
7.
Environ Sci Pollut Res Int ; 25(9): 8793-8799, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29327194

RESUMEN

Agro-industrial waste can be used to replace traditional carbohydrates, such as sucrose, starch, and glucose in many industrial fermentation processes. This study investigated the conversion of pre-treated waste sweetpotato vines (SV) into lipid by Trichosporon fermentans under the separate hydrolysis and fermentation (SHF) and the simultaneous saccharification and fermentation (SSF) processes. The results showed that SV autoclaving significantly increased the lipid accumulation of T. fermentans compared with acid or alkaline hydrolysis. The effects of different pre-treatments on SV were also studied by scanning electron microscopy and Fourier transform infrared spectroscopy, which showed the partial removal of the aliphatic fractions, hemicelluloses, and lignin during pre-treatment. Moreover, the lipid yield of T. fermentans in SSF was 6.98 g L-1, which was threefold higher than that (2.79 g L-1) in SHF, and the lipid contents of yeast in SSF and SHF were 36 and 25%, respectively. Overall, this study indicated that SSF using autoclaved SV could increase the growth and lipid production of T. fermentans and provided an efficient way to realize the resource utilization of waste SV.


Asunto(s)
Residuos Industriales/análisis , Ipomoea batatas/química , Lípidos/análisis , Reciclaje/métodos , Eliminación de Residuos/métodos , Trichosporon/crecimiento & desarrollo , Fermentación , Hidrólisis , Trichosporon/metabolismo
8.
Med Mycol ; 56(4): 434-441, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992352

RESUMEN

Trichosporon asahii is an opportunistic yeastlike fungus that colonizes the gastrointestinal and respiratory tracts and human skin. Although it is an important cause of disseminated infections by non-Candida species, there are a few reports related to its virulence factors and their possible role in in vivo pathogenicity. We developed a murine model of disseminated trichosporonosis in immunocompetent mice for the evaluation of the in vivo pathogenicity of 6 T. asahii isolates with different in vitro virulence factor profiles. Tissue fungal burden was determined on days 1, 3, 7, 15, and 25 post-challenge. Overall, the largest fungal load was detected in the kidney on the 5 experimental days, while brain, spleen, and liver displayed a comparatively low fungal count. We observed a fungal burden decrease in most experimental groups from day 15. Histological analysis showed the presence of T. asahii in tissue and a generalized inflammatory infiltrate of polymorphonuclear cells in the kidney, liver, red pulp of the spleen, and the hippocampus. Even though our isolates showed different in vitro virulence factors profiles, we did not detect relevant differences when assayed in vivo, except for a higher persistence of a protease- and biofilm-producing strain in kidney, liver, and brain.


Asunto(s)
Modelos Animales de Enfermedad , Trichosporon/enzimología , Trichosporon/patogenicidad , Tricosporonosis/microbiología , Tricosporonosis/patología , Animales , Antifúngicos/uso terapéutico , Biopelículas/crecimiento & desarrollo , Recuento de Colonia Microbiana , Humanos , Riñón/microbiología , Riñón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Trichosporon/crecimiento & desarrollo , Trichosporon/aislamiento & purificación , Tricosporonosis/tratamiento farmacológico , Virulencia
9.
Biofouling ; 33(8): 640-650, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28871863

RESUMEN

This study evaluated the effect of the protease inhibitor ritonavir (RIT) on Trichosporon asahii and Trichosporon inkin. Susceptibility to RIT was assessed by the broth microdilution assay and the effect of RIT on protease activity was evaluated using azoalbumin as substrate. RIT was tested for its anti-biofilm properties and RIT-treated biofilms were assessed regarding protease activity, ultrastructure and matrix composition. In addition, antifungal susceptibility, surface hydrophobicity and biofilm formation were evaluated after pre-incubation of planktonic cells with RIT for 15 days. RIT (200 µg ml-1) inhibited Trichosporon growth. RIT (100 µg ml-1) also reduced protease activity of planktonic and biofilm cells, decreased cell adhesion and biofilm formation, and altered the structure of the biofilm and the protein composition of the biofilm matrix. Pre-incubation with RIT (100 µg ml-1) increased the susceptibility to amphotericin B, and reduced surface hydrophobicity and cell adhesion. These results highlight the importance of proteases as promising therapeutic targets and reinforce the antifungal potential of protease inhibitors.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Inhibidores de la Proteasa del VIH/farmacología , Plancton/efectos de los fármacos , Ritonavir/farmacología , Trichosporon/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Interacciones Farmacológicas , Pruebas de Sensibilidad Microbiana , Péptido Hidrolasas/metabolismo , Plancton/crecimiento & desarrollo , Plancton/metabolismo , Trichosporon/crecimiento & desarrollo , Trichosporon/metabolismo
10.
Biochim Biophys Acta Biomembr ; 1859(12): 2340-2349, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28888370

RESUMEN

Crotamine is a natural polypeptide from snake venom which delivers nucleic acid molecules into cells, besides having pronounced affinity for negatively charged membranes and antifungal activity. We previously demonstrated that crotamine derived short linear peptides were not very effective as antifungal, although the non-structured recombinant crotamine was overridingly more potent compared to the native structured crotamine. Aiming to identify the features necessary for the antifungal activity of crotamine, two linear short peptides, each comprising half of the total positively charged amino acid residues of the full-length crotamine were evaluated here to show that these linear peptides keep the ability to interact with lipid membrane model systems with different phospholipid compositions, even after forming complexes with DNA. Interestingly, the presence of cysteine residues in the structure of these linear peptides highly influenced the antifungal activity, which was not associated to the lipid membrane lytic activity. In addition to the importance of the positive charges, the crucial role of cysteine residues was noticed for these linear analogs of crotamine, although the tridimensional structure and lipid membrane lytic activity observed only for native crotamine was not essential for the antifungal activity. As these peptides still keep the ability to form complexes with DNA molecules with no prejudice to their ability to bind to lipid membranes, they may be potentially advantageous as membrane translocation vector, as they do not show lipid membrane lytic activity and may harbor or not antifungal activity, by keeping or not the semi-essential amino acid cysteine in their sequence.


Asunto(s)
Antifúngicos/química , Péptidos de Penetración Celular/química , Venenos de Crotálidos/química , Secuencia de Aminoácidos , Animales , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/crecimiento & desarrollo , Péptidos de Penetración Celular/aislamiento & purificación , Péptidos de Penetración Celular/farmacología , Venenos de Crotálidos/aislamiento & purificación , Venenos de Crotálidos/farmacología , Crotalus/metabolismo , Cisteína/química , ADN/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Cinética , Pruebas de Sensibilidad Microbiana , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Unión Proteica , Electricidad Estática , Relación Estructura-Actividad , Trichosporon/efectos de los fármacos , Trichosporon/crecimiento & desarrollo , Liposomas Unilamelares/química
11.
Microbiol Res ; 205: 66-72, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28942846

RESUMEN

Trichosporon asahii is a fungal opportunistic pathogen that causes superficial and deep-seated infections presenting high mortality. Very little is known about the virulence attributes produced by this fungus. Herein, aspartic peptidase production was identified in Brazilian clinical isolates of T. asahii by different methodologies. Initially, T. asahii strain 250 (from skin lesion) was inoculated in both liquid and solid culture media containing bovine serum albumin (BSA) as the sole nitrogenous source. A translucent halo around the fungal colony was observed from the 5th day of culture. The cell-free culture supernatant revealed that soluble BSA was hydrolyzed along the growth, generating low molecular mass polypeptides as observed by electrophoresis. Subsequently, the secretions from four clinical strains of T. asahii were analyzed by BSA-SDS-PAGE and a single proteolytic band of 30-kDa was detected under acidic pH at 37°C. The secreted aspartic peptidase of T. asahii efficiently cleaved the cathepsin D peptide substrate, but not the substrates with specificity to HIV-1 peptidase and rennin. The capability to cleave either cathepsin D substrate in a fluorogenic assay or BSA immobilized within a gel matrix varied according to the T. asahii isolate. T. asahii extracellular peptidase activity was strongly inhibited by pepstatin A and HIV peptidase inhibitors, classifying it as an aspartic-type peptidase. Human serum albumin, mucin, non-immune immunoglobulin G and gelatin induced, in different levels, the secretion of this aspartic peptidase. With these results, T. asahii must be included in the list of many human fungal opportunistic pathogens able to secrete an aspartic-type peptidase.


Asunto(s)
Proteasas de Ácido Aspártico/química , Proteasas de Ácido Aspártico/metabolismo , Trichosporon/enzimología , Brasil , Catepsina D/metabolismo , ADN de Hongos , Gelatina , VIH-1/enzimología , Humanos , Concentración de Iones de Hidrógeno , Inmunoglobulina G , Peso Molecular , Mucinas , Pepstatinas/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos/química , Inhibidores de Proteasas , Albúmina Sérica , Piel/microbiología , Trichosporon/crecimiento & desarrollo , Trichosporon/aislamiento & purificación , Trichosporon/patogenicidad
12.
Biol Pharm Bull ; 40(5): 693-697, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458355

RESUMEN

In the co-culture of Staphylococcus epidermidis and Trichosporon asahii, a fungal pathogen, it was observed that live S. epidermidis inhibited the growth of T. asahii. Soluble active anti-T. asahii substances were speculated to be produced by S. epidermidis in culture medium. Using 1H- and 13C-NMR spectra and electron ionization-high resolution mass spectrometry (HR-negative-FAB-MS), we separated the active molecule and identified it as lactic acid. Commercially available L-lactic acid and D-lactic acid inhibited the growth of T. asahii. These results show that metabolites from bacterial populations are involved in the interactions of pathogenic fungi. The use of antibacterial agents to treat primary diseases could lead to the disruption of normal microbial communities and could cause opportunistic infections such as trichosporonosis.


Asunto(s)
Staphylococcus epidermidis/metabolismo , Trichosporon/crecimiento & desarrollo , Medios de Cultivo , Ácido Láctico/química , Ácido Láctico/farmacología , Espectroscopía de Resonancia Magnética , Espectrometría de Masa Bombardeada por Átomos Veloces , Staphylococcus epidermidis/química , Estereoisomerismo , Trichosporon/efectos de los fármacos
13.
Appl Biochem Biotechnol ; 182(3): 1121-1130, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28130766

RESUMEN

Cellulosic ethanol fermentation wastewater is the stillage stream of distillation column of cellulosic ethanol fermentation broth with high chemical oxygen demand (COD). The COD is required to reduce before the wastewater is released or recycled. Without any pretreatment nor external nutrients, the cellulosic ethanol fermentation wastewater bioconversion by Trichosporon cutaneum ACCC 20271 was carried out for the first time. The major components of the wastewater including glucose, xylose, acetic acid, ethanol, and partial of phenolic compounds could be utilized by T. cutaneum ACCC 20271. In a 3-L bioreactor, 2.16 g/L of microbial lipid accumulated with 55.05% of COD reduced after a 5-day culture of T. cutaneum ACCC 20271 in the wastewater. The fatty acid composition of the derived microbial lipid was similar with vegetable oil, in which it could be used as biodiesel production feedstock. This study will both solve the environmental problem and offer low-cost lipid feedstock for biodiesel production.


Asunto(s)
Celulosa/metabolismo , Etanol/metabolismo , Consumo de Oxígeno , Trichosporon/crecimiento & desarrollo , Celulosa/química
14.
Hematol Oncol ; 35(4): 900-904, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27301878

RESUMEN

Trichosporon has recently emerged as a life-threatening opportunistic fungal pathogen, notably in patients with hematological malignancy. Fungemia, sometimes associated with cutaneous lesions and/or pneumonitis, is the major clinical form. Here, we report two cases of patients suffering from acute leukaemia who developed hepatic and/or splenic lesions apart from Trichosporon positive blood cultures. The appearance of hepatic and splenic lesions following the recovery from neutropenia is highly suggestive of a chronic disseminated infection, now considered as an immune reconstitution inflammatory syndrome. Treatment with corticosteroid therapy led to clinical improvement in both cases. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias Hematológicas/complicaciones , Inflamación/etiología , Trichosporon/crecimiento & desarrollo , Anciano , Humanos , Lactante , Masculino
15.
Appl Biochem Biotechnol ; 182(2): 495-510, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27988854

RESUMEN

Crude glycerol, discharged from biodiesel production process, is a potential carbon source for microbial lipid production. The capability of using crude glycerol as sole carbon source for microbial lipid production by oleaginous yeasts Trichosporon fermentans and Trichosporon cutaneum was investigated for the first time. T. fermentans and T. cutaneum could use crude glycerol for efficient lipid production, and the optimal glycerol concentration for which were 50 and 70 g/L, respectively. The optimum nitrogen source, C/N, inoculum concentration, and pH were yeast extract + peptone, 60, 10.0%, and 6.0, respectively. The most suitable culture temperature for T. fermentans and T. cutaneum were 28 and 30 °C, respectively. Under the optimal conditions, the maximum biomass, lipid content, lipid yield, and lipid coefficient of T. fermentans and T. cutaneum were 16.0 g/L, 32.4%, 5.2 g/L, and 16.5%, and 17.4 g/L, 32.2%, 5.6 g/L, and 17.0%, respectively. Moreover, it was found that methanol present in the crude glycerol had minor influence on the lipid production. Addition of surfactant potassium oleate into the medium could slightly stimulate the cell growth and lipid accumulation of both yeasts. This study shows that T. fermentans and T. cutaneum are promising strains for lipid production on crude glycerol.


Asunto(s)
Glicerol/farmacología , Lípidos de la Membrana/biosíntesis , Trichosporon/crecimiento & desarrollo , Carbono/metabolismo
16.
Braz. j. microbiol ; 47(1): 266-269, Jan.-Mar. 2016. graf
Artículo en Inglés | LILACS | ID: lil-775127

RESUMEN

Abstract The Spitzenkörper is a dynamic and specialized multicomponent cell complex present in the tips of hyphal cells. The amphiphilic styryl dye FM4-64 was found to be ideal for imaging the dynamic changes of the apical vesicle cluster within growing hyphal tips. It is widely used as a marker of endocytosis and to visualize vacuolar membranes. Here we performed uptake experiments using FM4-64 to study the dynamic of the Spitzenkörper in Trichosporon asahii. We observed that Spitzenkörpers were present at the tip of the budding site of the spore, blastospore, and the germ tube of T. asahii. We also found that Spitzenkörpers were present at the tip of the hyphae as well as the subapical regions. Cytochalasin D, an inhibitor of actin polymerization, leads to abnormal Spitzenkörper formation and loss of cell polarity.


Asunto(s)
Colorantes Fluorescentes/análisis , Hifa/citología , Orgánulos/metabolismo , Compuestos de Piridinio/análisis , Compuestos de Amonio Cuaternario/análisis , Coloración y Etiquetado/métodos , Trichosporon/citología , Trichosporon/crecimiento & desarrollo , Hifa/crecimiento & desarrollo , Microscopía Fluorescente
17.
Braz J Microbiol ; 47(1): 266-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26887254

RESUMEN

The Spitzenkörper is a dynamic and specialized multicomponent cell complex present in the tips of hyphal cells. The amphiphilic styryl dye FM4-64 was found to be ideal for imaging the dynamic changes of the apical vesicle cluster within growing hyphal tips. It is widely used as a marker of endocytosis and to visualize vacuolar membranes. Here we performed uptake experiments using FM4-64 to study the dynamic of the Spitzenkörper in Trichosporon asahii. We observed that Spitzenkörpers were present at the tip of the budding site of the spore, blastospore, and the germ tube of T. asahii. We also found that Spitzenkörpers were present at the tip of the hyphae as well as the subapical regions. Cytochalasin D, an inhibitor of actin polymerization, leads to abnormal Spitzenkörper formation and loss of cell polarity.


Asunto(s)
Colorantes Fluorescentes/análisis , Hifa/citología , Orgánulos/metabolismo , Compuestos de Piridinio/análisis , Compuestos de Amonio Cuaternario/análisis , Coloración y Etiquetado/métodos , Trichosporon/citología , Trichosporon/crecimiento & desarrollo , Hifa/crecimiento & desarrollo , Microscopía Fluorescente
18.
Med Mycol ; 54(2): 189-96, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26483434

RESUMEN

Trichosporon asahii is a pathogenic yeast that causes trichosporonosis, a deep-seated infection, in immunocompromised hosts. Pathogenic factors involved in this infection have not been investigated in detail, but morphological phenotype switching is thought to be important for T. asahii pathogenesis. Therefore, we analyzed adhesion, which may be a key early step in T. asahii infection, after morphological phenotype switching. T. asahii clinical isolates show several colony morphologies. In this study, colonies showing white-farinose (W), off-white-smooth (O), off-white-rugose (OR), smooth (S), and yellowish-white (Y) morphologies were obtained from three isolates and compared in an adhesion assay performed in cell culture dishes. At least one type of colony morphology from each clinical isolate adhered strongly to the culture dish surface, although the colony type that displayed strong adherence varied among the strains. Thus, morphological phenotype switching altered the adhesion of T. asahii strains.


Asunto(s)
Adhesión Celular , Trichosporon/crecimiento & desarrollo , Trichosporon/fisiología , Tricosporonosis/microbiología , Humanos , Técnicas Microbiológicas , Trichosporon/aislamiento & purificación
19.
Microb Ecol ; 71(2): 422-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26385555

RESUMEN

The study on the biology and biodiversity of coprophagous Scarabaeoidea carried out in the Polish Carpathians revealed the occurrence of unusual epizoic excrescences on various dung beetles species of the genus Onthophagus. The excrescences occur on the elytra, prothorax, and head of the studied beetles. Detailed research on this phenomenon determined that the fungus grew in the form of multicellular thalli. The ITS-based identification of fungal material collected from beetles' exoskeletons resulted in a 100 % match with Trichosporon lactis. Until now, only a yeast lifestyle/stage was known for this basidiomycete species. Therefore, in this paper, we describe a new substrate for growth of T. lactis and its unknown and intriguing relationship with dung beetles. The results obtained in this study open up numerous research possibilities on the new role of dung beetles in terrestrial ecosystems, as well as on using the physiological properties of T. lactis to restore soils.


Asunto(s)
Exoesqueleto/microbiología , Escarabajos/microbiología , Trichosporon/aislamiento & purificación , Animales , Filogenia , Trichosporon/clasificación , Trichosporon/genética , Trichosporon/crecimiento & desarrollo
20.
N Biotechnol ; 33(1): 144-52, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26455640

RESUMEN

Zero-valent iron nanoparticles (nZVI) are a relatively new option for the treatment of contaminated soil and groundwater. However, because of their apparent toxicity, nZVI in high concentrations are known to interfere with many autochthonous microorganisms and, thus, impact their participation in the remediation process. The effect of two commercially available nZVI products, Nanofer 25 (non-stabilized) and Nanofer 25S (stabilized), was examined. Considerable toxicity to the soil yeast Trichosporon cutaneum was observed. Two chemically different humic substances (HSs) were studied as a possible protection agent that mitigates nZVI toxicity: oxidized oxyhumolite X6 and humic acid X3A. The effect of addition of HSs was studied in different phases of the experiment to establish the effect on cells and nZVI. SEM and TEM images revealed an ability of both types of nZVI and HSs to adsorb on surface of the cells. Changes in cell surface properties were also observed by zeta potential measurements. Our results indicate that HSs can act as an electrosteric barrier, which hinders mutual interaction between nZVI and treated cell. Thus, the application of HS seems to be a promising solution to mitigating the toxic action of nZVI.


Asunto(s)
Sustancias Húmicas/análisis , Hierro/toxicidad , Nanopartículas del Metal/toxicidad , Trichosporon/efectos de los fármacos , Electricidad Estática , Trichosporon/crecimiento & desarrollo , Trichosporon/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...