Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
BMJ Open Ophthalmol ; 9(1)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702178

RESUMEN

BACKGROUND: Dry eye disease is the most commonplace multifractional ocular complication, which has already affected millions of people in the world. It is identified by the excessive buildup of reactive oxygen species, leading to substantial corneal epithelial cell demise and ocular surface inflammation attributed to TLR4. In this study, we aimed to identify potential compounds to treat of dry eye syndrome by exploring in silico methods. METHODS: In this research, molecular docking and dynamics simulation tests were used to examine the effects of selected compounds on TLR4 receptor. Compounds were extracted from different databases and were prepared and docked against TLR4 receptor via Autodock Vina. Celastrol, lumacaftor and nilotinib were selected for further molecular dynamics studies for a deeper understanding of molecular systems consisting of protein and ligands by using the Desmond module of the Schrodinger Suite. RESULTS: The docking results revealed that the compounds are having binding affinity in the range of -5.1 to -8.78 based on the binding affinity and three-dimensional interactions celastrol, lumacaftor and nilotinib were further studied for their activity by molecular dynamics. Among the three compounds, celastrol was the most stable based on molecular dynamics trajectory analysis from 100 ns in the catalytic pockets of 2Z63.pdb.pdb. Root mean square deviation of celastrol/2Z63 was in the range of 1.8-4.8 Å. CONCLUSION: In particular, Glu376 of TLR4 receptor is crucial for the identification and binding of lipopolysaccharides (LPS), which are part of Gram-negative bacteria's outer membrane. In our investigation, celastrol binds to Glu376, suggesting that celastrol may prevent the dry eye syndrome by inhibiting LPS's binding to TLR4.


Asunto(s)
Síndromes de Ojo Seco , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Triterpenos Pentacíclicos , Pirimidinas , Receptor Toll-Like 4 , Síndromes de Ojo Seco/tratamiento farmacológico , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/química , Humanos , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/química , Simulación por Computador , Ligandos , Aminopiridinas/farmacología , Aminopiridinas/química , Aminopiridinas/uso terapéutico
2.
Med Oncol ; 41(5): 97, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532150

RESUMEN

Glioblastoma, a highly aggressive and lethal brain cancer, lacks effective treatment options and has a poor prognosis. In our study, we explored the potential anti-cancer effects of sodium butyrate (SB) and celastrol (CEL) in two glioblastoma cell lines. SB, a histone deacetylase inhibitor, and CEL, derived from the tripterygium wilfordii plant, act as mTOR and proteasome inhibitors. Both can cross the blood-brain barrier, and they exhibit chemo- and radiosensitive properties in various cancer models. GB cell lines LN-405 and T98G were treated with SB and CEL. Cell viability was assessed by MTT assay and IC50 values were obtained. Gene expression of DNA repair, apoptosis, and autophagy-related genes was analyzed by RT-PCR. Cell cycle distribution was determined using flow cytometry. Viability assays using MTT assay revealed IC50 values of 26 mM and 22.7 mM for SB and 6.77 µM, and 9.11 µM for CEL in LN-405 and T98G cells, respectively. Furthermore, we examined the expression levels of DNA repair genes (MGMT, MLH-1, MSH-2, MSH-6), apoptosis genes (caspase-3, caspase-8, caspase-9), and an autophagy gene (ATG-6) using real-time polymerase chain reaction. Additionally, flow cytometry analysis revealed alterations in cell cycle distribution following treatment with SB, CEL and their combination. These findings indicate that SB and CEL may act through multiple mechanisms, including DNA repair inhibition, apoptosis induction, and autophagy modulation, to exert their anti-cancer effects in glioblastoma cells. This is the first study providing novel insights into the potential therapeutic effects of SB and CEL in glioblastoma.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Línea Celular , Apoptosis , Línea Celular Tumoral
3.
Biomed Pharmacother ; 172: 116256, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367550

RESUMEN

Anti-IL-17A antibodies, such as secukinumab and ixekizumab, are effective proinflammatory cytokine inhibitors for autoimmune disorders, including psoriasis. However, anti-IL-17A small molecule treatments are yet to be commercialized. Celastrol, a natural compound extracted from the roots of traditional Chinese medicinal plants, has anti-inflammatory and antioxidant properties. However, the binding of celastrol to IL-17A and the associated anti-inflammatory mechanisms remain unclear. This study investigated whether celastrol could directly bind to IL-17A and regulate inflammation in psoriatic in vitro and in vivo models. The results showed that celastrol directly binds to IL-17A and inhibits its downstream signaling, including the NF-kB and MAPK pathways. Interestingly, celastrol restored autophagy dysfunction and reduced proinflammatory cytokine secretion in keratinocytes. In addition, celastrol increased autophagy in the epidermis of a mouse model of psoriasis. Celastrol decreased Th17 cell populations and proinflammatory cytokine levels in mice. Thus, IL-17A-targeting celastrol reduced inflammation by rescuing impaired autophagy in in vitro and in vivo models of psoriasis, demonstrating its potential as a substitute for anti-IL-17A antibodies for treating psoriasis.


Asunto(s)
Antiinflamatorios , Interleucina-17 , Triterpenos Pentacíclicos , Psoriasis , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Autofagia , Citocinas , Inflamación/tratamiento farmacológico , Interleucina-17/antagonistas & inhibidores , Triterpenos Pentacíclicos/uso terapéutico , Psoriasis/tratamiento farmacológico
4.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396785

RESUMEN

Betulinic acid is a naturally occurring compound that can be obtained through methanolic or ethanolic extraction from plant sources, as well as through chemical synthesis or microbial biotransformation. Betulinic acid has been investigated for its potential therapeutic properties, and exhibits anti-inflammatory, antiviral, antimalarial, and antioxidant activities. Notably, its ability to cross the blood-brain barrier addresses a significant challenge in treating neurological pathologies. This review aims to compile information about the impact of betulinic acid as an antitumor agent, particularly in the context of glioblastoma. Importantly, betulinic acid demonstrates selective antitumor activity against glioblastoma cells by inhibiting proliferation and inducing apoptosis, consistent with observations in other cancer types. Compelling evidence published highlights the acid's therapeutic action in suppressing the Akt/NFκB-p65 signaling cascade and enhancing the cytotoxic effects of the chemotherapeutic agent temozolomide. Interesting findings with betulinic acid also suggest a focus on researching the reduction of glioblastoma's invasiveness and aggressiveness profile. This involves modulation of extracellular matrix components, remodeling of the cytoskeleton, and secretion of proteolytic proteins. Drawing from a comprehensive review, we conclude that betulinic acid formulations as nanoparticles and/or ionic liquids are promising drug delivery approaches with the potential for translation into clinical applications for the treatment and management of glioblastoma.


Asunto(s)
Antineoplásicos , Glioblastoma , Triterpenos , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Triterpenos/farmacología , Triterpenos/uso terapéutico , Triterpenos/química , Triterpenos Pentacíclicos/uso terapéutico , Ácido Betulínico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química
5.
Cell Commun Signal ; 22(1): 139, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378659

RESUMEN

BACKGROUND: Malaria remains a global health burden, and the emergence and increasing spread of drug resistance to current antimalarials poses a major challenge to malaria control. There is an urgent need to find new drugs or strategies to alleviate this predicament. Celastrol (Cel) is an extensively studied natural bioactive compound that has shown potentially promising antimalarial activity, but its antimalarial mechanism remains largely elusive. METHODS: We first established the Plasmodium berghei ANKA-infected C57BL/6 mouse model and systematically evaluated the antimalarial effects of Cel in conjunction with in vitro culture of Plasmodium falciparum. The potential antimalarial targets of Cel were then identified using a Cel activity probe based on the activity-based protein profiling (ABPP) technology. Subsequently, the antimalarial mechanism was analyzed by integrating with proteomics and transcriptomics. The binding of Cel to the identified key target proteins was verified by a series of biochemical experiments and functional assays. RESULTS: The results of the pharmacodynamic assay showed that Cel has favorable antimalarial activity both in vivo and in vitro. The ABPP-based target profiling showed that Cel can bind to a number of proteins in the parasite. Among the 31 identified potential target proteins of Cel, PfSpdsyn and PfEGF1-α were verified to be two critical target proteins, suggesting the role of Cel in interfering with the de novo synthesis of spermidine and proteins of the parasite, thus exerting its antimalarial effects. CONCLUSIONS: In conclusion, this study reports for the first time the potential antimalarial targets and mechanism of action of Cel using the ABPP strategy. Our work not only support the expansion of Cel as a potential antimalarial agent or adjuvant, but also establishes the necessary theoretical basis for the development of potential antimalarial drugs with pentacyclic triterpenoid structures, as represented by Cel. Video Abstract.


Asunto(s)
Antimaláricos , Malaria , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/uso terapéutico , Espermidina/farmacología , Ratones Endogámicos C57BL , Malaria/tratamiento farmacológico , Malaria/parasitología , Triterpenos Pentacíclicos/uso terapéutico
6.
Int Immunopharmacol ; 129: 111597, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38295543

RESUMEN

Neutrophils are the most important innate immune cells in host defense against methicillin-resistant Staphylococcus aureus (MRSA). However, MRSA orchestrates precise and timely expression of a series of virulence factors, especially the chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS), to evade neutrophil-mediated host defenses. Here, we demonstrated that tripterin, a plant-derived bioactive pentacyclic triterpenoid, had a low minimum inhibitory concentration (MIC) of 1.28 µg/mL and displayed excellent anti-MRSA activity in vitro and in vivo. RNA-seq and further knockdown experiments revealed that tripterin could dramatically downregulate the expression of CHIPS by regulating the SaeRS two-component regulatory system, thereby enhancing the chemotactic response of neutrophils. Furthermore, tripterin also displayed a potential inhibitory effect on biofilm components to enhance neutrophil infiltration into the interior of the biofilm. In a mouse bacteremia model, tripterin could still maintain an excellent therapeutic effect that was significantly better than that of the traditional antibiotic vancomycin. Overall, these results suggest that tripterin possesses a superior antibacterial activity via breaking CHIPS-mediated immune evasion to promote neutrophil chemotaxis, thus providing a novel strategy for combating serious pathogenic infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Staphylococcus aureus , Neutrófilos , Quimiotaxis , Evasión Inmune , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Pruebas de Sensibilidad Microbiana
7.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139154

RESUMEN

Lung cancer is the leading cause of cancer-related death worldwide. Its high mortality is partly due to chronic inflammation that accompanies the disease and stimulates cancer progression. In this review, we analyzed recent studies and highlighted the role of the epithelial-mesenchymal transition (EMT) as a link between inflammation and lung cancer. In the inflammatory tumor microenvironment (iTME), fibroblasts, macrophages, granulocytes, and lymphocytes produce inflammatory mediators, some of which can induce EMT. This leads to increased invasiveness of tumor cells and self-renewal of cancer stem cells (CSCs), which are associated with metastasis and tumor recurrence, respectively. Based on published data, we propose that inflammation-induced EMT may be a potential therapeutic target for the treatment of lung cancer. This prospect is partially realized in the development of EMT inhibitors based on pentacyclic triterpenoids (PTs), described in the second part of our study. PTs reduce the metastatic potential and stemness of tumor cells, making PTs promising candidates for lung cancer therapy. We emphasize that the high diversity of molecular mechanisms underlying inflammation-induced EMT far exceeds those that have been implicated in drug development. Therefore, analysis of information on the relationship between the iTME and EMT is of great interest and may provide ideas for novel treatment approaches for lung cancer.


Asunto(s)
Neoplasias Pulmonares , Triterpenos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Triterpenos/farmacología , Triterpenos/uso terapéutico , Transducción de Señal , Recurrencia Local de Neoplasia/patología , Transición Epitelial-Mesenquimal , Inflamación/tratamiento farmacológico , Inflamación/patología , Triterpenos Pentacíclicos/uso terapéutico , Células Madre Neoplásicas/patología , Microambiente Tumoral
8.
Curr Drug Targets ; 24(16): 1282-1291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37957908

RESUMEN

INTRODUCTION: Rosa webbiana (RW) Wall Ex. Royle is used in traditional medicine in Pakistan for the treatment of several diseases including jaundice. To date, only neuroprotective potential of the plant has been evaluated. OBJECTIVE: The current study was designed to isolate bioactive compound(s) and investigate its possible radical scavenging, anti-inflammatory and hepatoprotective activities. METHODS: Column chromatography was done to isolate compounds from the chloroform fraction of RW. The compound was characterized by mass spectrometry, 1H-NMR, and 2D-NMR spectroscopy. Radical scavenging activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) assays, while anti-inflammatory potential was evaluated via xylene-induced ear edema and carrageenan-induced paw edema models. For hepatoprotection, CCl4-induced model in mice was used. RESULTS: A triterpene compound (3α, 21ß-dihydroxy-olean-12-ene) was isolated from RW fruits (ARW1). The compound exhibited DPPH and H2O2 scavenging activities 61 ± 1.31% and 66 ± 0.48% respectively at 500 µg/ml. ARW1 (at 50 mg/kg) exhibited 62.9 ± 0.15% inhibition of xylene-induced ear edema and 66.6 ± 0.17% carrageenan-induced paw edema in mice. In CCl4-induced hepatotoxic mice, ARW1 significantly countered elevation in alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin (T.B), and reduction in total protein (T.P) levels. Liver histomorphological study supported the serum biochemical profile for hepatoprotection. Moreover, ARW1 significantly attenuated the toxic changes in body and liver weight induced by CCl4. CONCLUSION: The compound ARW1 exhibited anti-radical, anti-inflammatory and hepatoprotective effects. The anti-inflammatory and hepatoprotective activities may be attributed to anti-oxidant potential of the compound.


Asunto(s)
Extractos Vegetales , Rosa , Ratones , Animales , Carragenina/efectos adversos , Carragenina/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Xilenos/efectos adversos , Xilenos/metabolismo , Peróxido de Hidrógeno/efectos adversos , Peróxido de Hidrógeno/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Hígado/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/prevención & control , Triterpenos Pentacíclicos/metabolismo , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico
9.
Adv Healthc Mater ; 12(29): e2301325, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37530416

RESUMEN

Overactivated macrophages are a prominent feature of many inflammatory and autoimmune diseases, including sepsis. Attention and regulation of macrophages activity is of great significance for sepsis treatment. Herein, this study shows that folic acid-functionalized exosomes accumulate in the lung of septic mice and specifically target inflammatory macrophages. Therefore, FA-functionalized exosomes co-loaded with resveratrol (an anti-inflammatory polyphenol) and celastrol (an immunosuppressive pentacyclic triterpenoid; FA-Exo/R+C), which exhibit powerful anti-inflammatory and immunosuppressive activities against LPS-stimulated macrophages in vitro by regulating NF-κB and ERK1/2 signaling pathways, are designed. Encouraged by these positive data, the efficacy of FA-Exo/R+C is systematically investigated in an LPS-induced mouse sepsis model. FA-Exo/R+C shows striking therapeutic benefits in terms of attenuated cytokine storm, reduced acute lung injury, and increased survival of septic mice by inhibiting the inflammation and proliferation of proinflammatory M1 macrophages. Importantly, multiple administrations of FA-Exo/R+C significantly enhance and prolong the protective effect, and resist rechallenge to LPS. Collectively, the strategy of co-delivering drugs combination through functionalized exosomes offers a new avenue for sepsis treatment.


Asunto(s)
Exosomas , Sepsis , Animales , Ratones , Resveratrol/farmacología , Resveratrol/uso terapéutico , Exosomas/metabolismo , Ácido Fólico/farmacología , Lipopolisacáridos/farmacología , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/metabolismo , Triterpenos Pentacíclicos/uso terapéutico , Modelos Animales de Enfermedad , Antiinflamatorios/uso terapéutico , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
10.
Adv Exp Med Biol ; 1423: 237-243, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37525050

RESUMEN

Vascular dementia (VaD) accounts to 30% of cases and is predicted as second most common form of dementia after Alzheimer's disease by WHO. Earlier studies reported that plant-derived pentacyclic triterpenoids possess a wide range of pharmacological activities but these compounds are not extensively studied for their neuroprotective potential against VaD. This in silico approach was designed to screen 20 pentacyclic triterpenoid plant compounds against known targets of VaD using Flare software. S-Adenyl homocysteine hydrolase, Acetylcholinesterase, and Butyrylcholinesterase were selected as important VaD targets, and various parameters like intermolecular interaction energies, binding energy, and dock scores were analyzed and compared between selected ligands. Our results showed that Ursolic acid has lowest binding energy when docked with most of the target proteins, and among all 20 pentacyclic triterpenoids studied, only three ligands Betulinic acid, Ambolic acid, and Madecassic acid, showed better binding energy scores, and they can be shortlisted as lead compounds to further study their therapeutic potential against VaD using in vitro and in vivo animal models.


Asunto(s)
Antineoplásicos , Demencia Vascular , Triterpenos , Animales , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Triterpenos Pentacíclicos/química , Demencia Vascular/tratamiento farmacológico , Acetilcolinesterasa , Butirilcolinesterasa , Triterpenos/farmacología , Triterpenos/uso terapéutico , Triterpenos/química , Plantas/metabolismo
11.
Nutrients ; 15(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37447385

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease illustrated by neuronal dysfunctions, leading to memory weaknesses and personality changes mostly in the aged population worldwide. The exact cause of AD is unclear, but numerous studies have addressed the involvement of oxidative stress (OS), induced by reactive oxygen species (ROS), to be one of the leading causes in developing AD. OS dysregulates the cellular homeostasis, causing abnormal protein and lipid metabolism. Nutrition plays a pivotal role in modulating the antioxidant system and decreases the neuronal ROS level, thus playing an important therapeutic role in neurodegenerative diseases, especially in AD. Hence, medicinal herbs and their extracts have received global attention as a commercial source of antioxidants Lupeol. Lupeol is a pentacyclic triterpenoid and has many biological functions. It is available in fruits, vegetables, and medicinal plants. It has shown effective antioxidant and anti-inflammatory properties, and higher blood-brain barrier permeability. Also, the binding and inhibitory potentials of Lupeol have been investigated and proved to be effective against certain receptor proteins and enzymes in AD studies by computational molecular docking approaches. Therefore, AD-related research has gained interest in investigating the therapeutic effects of Lupeol. However, despite its beneficial effects in AD, there is still a lack of research in Lupeol. Hence, we compiled in this analysis all preclinical research that looked at Lupeol as an antioxidant and anti-inflammatory agent for AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Triterpenos , Humanos , Anciano , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Enfermedad de Alzheimer/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico
12.
Curr Protein Pept Sci ; 24(10): 820-842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073661

RESUMEN

Nowadays, discovering an effective and safe anticancer medication is one of the major challenges. Premature death due to the unidirectional toxicity of conventional therapy is common in cancer patients with poor health status. Plants have been used as medicine since prehistoric times, and extensive research on the anticancer properties of various bioactive phytomolecules is ongoing. Pentacyclic triterpenoids are secondary metabolites of plants with well-known cytotoxic and chemopreventive properties established in numerous cancer research studies. The lupane, oleanane, and ursane groups of these triterpenoids have been well-studied in recent decades for their potential antitumor activity. This review delves into the molecular machinery governing plant-derived triterpenes' anticancer efficacy. The highlighted mechanisms are antiproliferative activity, induction of apoptosis through regulation of BCL-2 and BH3 family proteins, modulation of the inflammatory pathway, interference with cell invagination and inhibition of metastasis. Lack of solubility in mostly used biological solvents is the major barrier to the therapeutic progress of these triterpenoids. This review also highlights some probable ways to mitigate this issue with the help of nanotechnology and the modification of their physical forms.


Asunto(s)
Antineoplásicos , Neoplasias , Triterpenos , Humanos , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Apoptosis , Plantas
13.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982279

RESUMEN

Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer affecting the pleural lining of the lungs. Celastrol (Cela), a pentacyclic triterpenoid, has demonstrated promising therapeutic potential as an antioxidant, anti-inflammatory, neuroprotective agent, and anti-cancer agent. In this study, we developed inhaled surface-modified Cela-loaded poly(lactic-co-glycolic) acid (PLGA) microparticles (Cela MPs) for the treatment of MPM using a double emulsion solvent evaporation method. The optimized Cela MPs exhibited high entrapment efficiency (72.8 ± 6.1%) and possessed a wrinkled surface with a mean geometric diameter of ~2 µm and an aerodynamic diameter of 4.5 ± 0.1 µm, suggesting them to be suitable for pulmonary delivery. A subsequent release study showed an initial burst release up to 59.9 ± 2.9%, followed by sustained release. The therapeutic efficacy of Cela MPs was evaluated against four mesothelioma cell lines, where Cela MP exhibited significant reduction in IC50 values, and blank MPs produced no toxicity to normal cells. Additionally, a 3D-spheroid study was performed where a single dose of Cela MP at 1.0 µM significantly inhibited spheroid growth. Cela MP was also able to retain the antioxidant activity of Cela only while mechanistic studies revealed triggered autophagy and an induction of apoptosis. Therefore, these studies highlight the anti-mesothelioma activity of Cela and demonstrate that Cela MPs are a promising inhalable medicine for MPM treatment.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Mesotelioma/tratamiento farmacológico , Mesotelioma/patología , Triterpenos Pentacíclicos/uso terapéutico , Línea Celular Tumoral , Neoplasias Pleurales/patología
14.
Food Funct ; 13(22): 11489-11502, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36190121

RESUMEN

Endoplasmic reticulum stress (ERS) plays a vital role in the pathogenesis of the alcoholic liver disease (ALD). Betulinic acid (BA) has been reported to be effective in the attenuation of ALD; however, its role in ERS and associated stress-signaling pathways remains elusive. Here, we found that the BA pretreatment significantly reduced the alcohol-induced liver injury by decreasing the activities of serum alanine aminotransferase and aspartate aminotransferase, alleviating fat deposition and rupturing the ER in hepatocytes. Moreover, the protective effect of BA on ALD was associated with the inhibition of reactive oxygen species accumulation and ERS, accompanied by the downregulation of glucose-regulated protein 78 (Grp78), Grp94, phosphorylation-inositol-requiring enzyme 1α (p-IRE1α), and phosphorylation-protein kinase R-like endoplasmic reticulum kinase (p-PERK), activating the transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP). Moreover, the alcohol-induced hepatocyte apoptosis was reduced, along with the downregulation of the mitogen-activated protein kinase pathway, caspase-12, caspase-3, and caspase-7, following BA administration. Additionally, the BA-mediated mitigation of alcohol-induced liver injury and deactivation of the ER pathways were the same with 4-PBA, an inhibitor of ERS, indicating that the protective effect of BA on ALD may be regulated by ERS-associated pathways. Collectively, BA is a potentially desirable agent for the ALD, which may reduce hepatocyte apoptosis by suppressing excessive ERS in the liver.


Asunto(s)
Antiinflamatorios no Esteroideos , Apoptosis , Estrés del Retículo Endoplásmico , Hepatocitos , Hepatopatías Alcohólicas , Triterpenos Pentacíclicos , Animales , Ratones , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Ácido Betulínico
15.
Eur J Med Chem ; 244: 114849, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36274272

RESUMEN

Encouraged by our previous findings and in continuation of our ongoing study project in designing and synthesis of novel Nur77-targeting anti-cancer agents, a series of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carboxamide derivatives were designed, synthesized and biologically evaluated as potent Nur77 modulators. Among synthesized compounds, 8b maintained good potency against different liver cancer cell lines and other types of cancer cell lines while exhibiting lower toxicity than the positive compound celastrol. Moreover, 8b displayed excellent Nur77-binding activity, superior to the lead compound 10g and comparable to the reference compound celastrol. The cytotoxic action of 8b towards cancer cells was associated with its induction of Nur77-mitochondrial targeting and Nur77-dependent apoptosis. Notably, 8b has good in vivo safety and anti-hepatocellular carcinoma (HCC) activity. Altogether, this study reveals that 8b is a novel Nur77 modulator with great promise for further research.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Indoles , Neoplasias Hepáticas , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Triterpenos Pentacíclicos , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Indoles/química , Indoles/farmacología , Indoles/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Relación Estructura-Actividad , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Apoptosis/efectos de los fármacos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Terapia Molecular Dirigida
16.
Med Oncol ; 39(11): 170, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972672

RESUMEN

Renal cancer is the most lethal urological cancer and characterized by high metastasis rate at initial diagnosis and drug resistance to current chemotherapeutics. Betulinic acid is a pentacyclic triterpene with broad biological activity that occurs naturally in variety of plants. Even though the anti-cancer efficacy of betulinic acid have been reported by many studies, the information about the pathways and the molecules which are affected by betulinic acid in renal cancer are limited. Epithelial-mesenchymal transition (EMT) is considered as the initial step of metastasis and contributes to drug resistance of cancer cells. Depending on the role of EMT in cancer progression and drug resistance, targeting EMT may represent an effective strategy in this context. Therefore, we aimed to investigate the anti-metastatic effects of betulinic acid on renal cell carcinoma cells by evaluating two EMT markers, SNAIL-1, and SDC-2. Following the treatment of betulinic acid at determined doses by WST-1 cytotoxicity assay in our previous study, SDC-2 expression level was decreased in both cell lines. Additionally, in correlation with this result, we also found a reduction in SDC-2 and SNAIL-1 protein levels which are measured by ELISA. Furthermore, the migration and invasion capacities were suppressed by betulinic acid treatment in metastatic renal adenocarcinoma ACHN cells. Taken together, our findings indicate that betulinic acid may constitute a potential treatment approach for renal cancer with further investigations.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Humanos , Neoplasias Renales/patología , Invasividad Neoplásica , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Factores de Transcripción de la Familia Snail/metabolismo , Ácido Betulínico
17.
Small ; 18(37): e2203531, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35962758

RESUMEN

Activatable fluorescence imaging in the second near-infrared window (NIR-II FL, 1000-1700 nm) is of great significance for accurate tumor diagnosis and targeting therapy. However, the clinical translation of most stimulus-activated nanoprobes is severely restricted by insufficient tumor response and out-of-synchronization theranostic process. Herein, an intelligent nanofactory AUC-GOx/Cel that possesses the "external supply, internal promotion" dual H2 O2 -amplification strategy for homologous activated tumor theranostic is designed. This nanofactory is constructed via a two-step biomineralization method using Au-doped Ag2 S as a carrier for glucose oxidase (GOx) and celastrol, followed by the growing of CuS to "turn off" the NIR-II FL signal. In the overexpressed H2 O2 tumor-microenvironment, the CuS featuring a responsive-degradability behavior can effectively release Cu ions, resulting in the "ON" state of NIR-II FL and Fenton-like activity. The exposed GOx can realize the intratumoral H2 O2 supply (external supply) via the effective conversion of glucose, and mediating tumor-starvation therapy; the interaction of celastrol and mitochondria can offer a substantial increase in the endogenous H2 O2 level (internal promotion), thereby significantly promoting the chemodynamic therapy (CDT) efficacy. Meanwhile, the dual H2 O2 -enhancement performance will in turn accelerate the degradation of AUC-GOx/Cel, and achieve a positive feedback mechanism for self-reinforcing CDT.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Cobre , Glucosa Oxidasa/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Triterpenos Pentacíclicos/uso terapéutico , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
18.
J Pharm Sci ; 111(11): 3047-3053, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35779664

RESUMEN

Betulinic acid (BA) is a natural pentacyclic triterpenoid with broad-spectrum anticancer activity, which has great development potential as an anti-cancer drug. In this study, a novel hyaluronic acid (HA)-modified BA liposome (BA-L) was developed for use in targeted liver cancer therapy. The size, polymer dispersity index (PDI), zeta potential, and entrapment efficiency were measured. Cell viability, cell migration and clonogenicity, cellular uptake, immunohistochemistry of CD44, and protein expression of ROCK1/IP3/RAS were also investigated. BA, BA-L, and HA-BA-L had no inhibitory effect on the activity of LO2 normal hepatocytes, but they inhibited the proliferation of HepG2 and SMMC-7721 cells in a dose- and time-dependent manner, with HA-BA-L exhibiting the most prominent inhibitory effect. Compared with the BA-L group, the expression of CD44 in HepG2 cells in the HA-BA-L group was decreased. The results of WB showed that BA, BA-L, and HA-BA-L downregulated the expression of ROCK1, IP3, and RAS in HepG2 cells, and the expression level in the HA-BA-L group was significantly decreased. The easily prepared HA-BA-L was demonstrated to be an excellent CD44-mediated intracellular delivery system capable of targeting effects. Further mechanistic research revealed that the inhibition of HA-BA-L on HepG2 cells may be mediated by blocking the ROCK1/IP3/RAS signaling pathways.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/uso terapéutico , Liposomas , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Polímeros , Quinasas Asociadas a rho/uso terapéutico , Ácido Betulínico
19.
Biomed Pharmacother ; 153: 113292, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35717785

RESUMEN

Rosacea is a common chronic facial inflammatory disease that affects millions of people worldwide. Due to the unclear etiology of rosacea, effective treatments are limited. Celastrol, a plant-derived triterpene, has been reported to alleviate inflammation in various diseases. However, whether celastrol exerts protective effects in rosacea remains to be elucidated. In this study, weighted gene co-expression network analyses (WGCNA) were performed. Hub modules closely related to rosacea clinical characteristics were identified and found to be involved in inflammation- and angiogenesis-related signaling pathways. Then, the pharmacological targets of celastrol were predicted using the TargetNet and Swiss Target Prediction databases. A GO analysis indicated that the biological process regulated by celastrol highly overlapped with the pathogenic biological processes in rosacea. Next, we showed that celastrol ameliorated erythema, skin thickness and inflammatory cell infiltration in the dermis of LL37-treated mice. Celastrol suppressed the expression of rosacea-related inflammatory cytokines and inhibited the Th17 immune response and cutaneous angiogenesis in LL37-induced rosacea-like mice. We further demonstrated that celastrol attenuated LL37-induced inflammation by inhibiting intracellular-free calcium ([Ca2+]i)-mediated mTOR signaling in keratinocytes. Chelating intracellular Ca2+ with BAPTA/AM potentiated celastrol-induced repression of LL37-induced p-S6 elevation. The mTOR agonist MHY1485 dramatically reinforced LL37-induced rosacea-like characteristics, while celastrol attenuated these outcomes. Moreover, celastrol inhibited LL37-activated NF-κB in a mTOR signaling-dependent manner. In conclusion, our findings underscore that celastrol may be a rosacea protective agent by inhibiting the LL37-activated Ca2+/CaMKII-mTOR-NF-κB pathway associated with skin inflammation disorders.


Asunto(s)
Rosácea , Triterpenos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Humanos , Inflamación/tratamiento farmacológico , Ratones , FN-kappa B/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Triterpenos Pentacíclicos/uso terapéutico , Rosácea/inducido químicamente , Rosácea/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Triterpenos/farmacología , Triterpenos/uso terapéutico
20.
Environ Sci Pollut Res Int ; 29(50): 76135-76143, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35668264

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease (ND) that represents the principal cause of dementia. Effective treatment is still lacking. Without prevention, Alzheimer's disease (AD) incidence is expected to triple within 30 years. The risk increases in highly polluted areas and is positively linked to chronic aluminum (Al) exposure. Canonical Wingless-Int (Wnt)/ß-catenin pathway has been found to play a considerable role in ND pathogenesis. Resins of Boswellia serrata (frankincense) have been used traditionally for their psychoactive activity, in addition to their memory-boosting effects. Boswellic acids (BA) are pentacyclic triterpenes. They have antioxidant, anti-inflammatory, antinociceptive, and immunomodulatory activities. This study aimed to elucidate the role of the Wnt/ß-catenin pathway in BA protective activity against aluminum-induced Alzheimer's disease. For 6 weeks, rats were treated daily with AlCl3 (100 mg/kg/i.p.) either alone or with BA (125 or 250 mg/kg PO). Results indicated that BA significantly improved learning and memory impairments induced by AlCl3 treatment. Moreover, BA treatment significantly decreased acetylcholinesterase levels and reduced amyloid-beta (Aß) expression. In addition, BA ameliorated the increased expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß), inhibited lipid peroxidation, and increased total antioxidants in the brain. Indeed, BA significantly suppressed AlCl3-induced decrease of brain-derived neurotrophic factor, pGSK-3ß (Ser 9), and ß-catenin. BA (250 mg/kg) showed a significant protective effect compared to a lower dose. The results conclude that BA administration modulated the expression of Wnt/ß-catenin pathway-related parameters, contributing to BA's role against Al-induced Alzheimer's disease. Effect of Boswellic acids on AlCl3-induced neurodegenerative changes. ChE cholinesterase, Ach acetylcholine, BDNF brain-derived neurotrophic factor, IL-1ß interleukin-1ß, TNF-α tumor necrosis factor-α.


Asunto(s)
Enfermedad de Alzheimer , Boswellia , Olíbano , Enfermedades Neurodegenerativas , Acetilcolina/uso terapéutico , Acetilcolina/toxicidad , Acetilcolinesterasa/metabolismo , Aluminio/toxicidad , Cloruro de Aluminio/toxicidad , Enfermedad de Alzheimer/tratamiento farmacológico , Analgésicos/toxicidad , Animales , Antiinflamatorios , Antioxidantes/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Olíbano/uso terapéutico , Olíbano/toxicidad , Interleucina-1beta/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Triterpenos Pentacíclicos/uso terapéutico , Triterpenos Pentacíclicos/toxicidad , Ratas , Triterpenos , Factor de Necrosis Tumoral alfa/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...