Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 318(2): H264-H282, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31834834

RESUMEN

The ß1-adrenergic regulation of cardiac myocyte contraction plays an important role in regulating heart function. Activation of this system leads to an increased heart rate and stronger myocyte contraction. However, chronic stimulation of the ß1-adrenergic signaling system can lead to cardiac hypertrophy and heart failure. To understand the mechanisms of action of ß1-adrenoceptors, a mathematical model of cardiac myocyte contraction that includes the ß1-adrenergic system was developed and studied. The model was able to simulate major experimental protocols for measurements of steady-state force-calcium relationships, cross-bridge release rate and force development rate, force-velocity relationship, and force redevelopment rate. It also reproduced quite well frequency and isoproterenol dependencies for intracellular Ca2+ concentration ([Ca2+]i) transients, total contraction force, and sarcomere shortening. The mathematical model suggested the mechanisms of increased contraction force and myocyte shortening on stimulation of ß1-adrenergic receptors is due to phosphorylation of troponin I and myosin-binding protein C and increased [Ca2+]i transient resulting from activation of the ß1-adrenergic signaling system. The model was used to simulate work-loop contractions and estimate the power during the cardiac cycle as well as the effects of 4-aminopyridine and tedisamil on the myocyte contraction. The developed mathematical model can be used further for simulations of contraction of ventricular myocytes from genetically modified mice and myocytes from mice with chronic cardiac diseases.NEW & NOTEWORTHY A new mathematical model of mouse ventricular myocyte contraction that includes the ß1-adrenergic system was developed. The model simulated major experimental protocols for myocyte contraction and predicted the effects of 4-aminopyridine and tedisamil on the myocyte contraction. The model also allowed for simulations of work-loop contractions and estimation of the power during the cardiac cycle.


Asunto(s)
Ventrículos Cardíacos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Receptores Adrenérgicos beta 1/fisiología , Algoritmos , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Cardiotónicos/farmacología , Proteínas Portadoras/metabolismo , Simulación por Computador , Frecuencia Cardíaca/fisiología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Ratones , Modelos Teóricos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Fosforilación , Bloqueadores de los Canales de Potasio/farmacología , Receptores Adrenérgicos beta 1/efectos de los fármacos , Sarcómeros/fisiología , Troponina I/metabolismo , Troponina I/fisiología
2.
J Muscle Res Cell Motil ; 41(1): 71-89, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31030382

RESUMEN

The molecular mechanism by which Ca2+ binding and phosphorylation regulate muscle contraction through Troponin is not yet fully understood. Revealing the differences between the relaxed and active structure of cTn, as well as the conformational changes that follow phosphorylation has remained a challenge for structural biologists over the years. Here we review the current understanding of how Ca2+, phosphorylation and disease-causing mutations affect the structure and dynamics of troponin to regulate the thin filament based on electron microscopy, X-ray diffraction, NMR and molecular dynamics methodologies.


Asunto(s)
Calcio/metabolismo , Contracción Muscular/fisiología , Troponina I/fisiología , Humanos
3.
Nat Commun ; 10(1): 3295, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337768

RESUMEN

HCN channels underlie the depolarizing funny current (If) that contributes importantly to cardiac pacemaking. If is upregulated in failing and infarcted hearts, but its implication in disease mechanisms remained unresolved. We generated transgenic mice (HCN4tg/wt) to assess functional consequences of HCN4 overexpression-mediated If increase in cardiomyocytes to levels observed in human heart failure. HCN4tg/wt animals exhibit a dilated cardiomyopathy phenotype with increased cellular arrhythmogenicity but unchanged heart rate and conduction parameters. If augmentation induces a diastolic Na+ influx shifting the Na+/Ca2+ exchanger equilibrium towards 'reverse mode' leading to increased [Ca2+]i. Changed Ca2+ homeostasis results in significantly higher systolic [Ca2+]i transients and stimulates apoptosis. Pharmacological inhibition of If prevents the rise of [Ca2+]i and protects from ventricular remodeling. Here we report that augmented myocardial If alters intracellular Ca2+ homeostasis leading to structural cardiac changes and increased arrhythmogenicity. Inhibition of myocardial If per se may constitute a therapeutic mechanism to prevent cardiomyopathy.


Asunto(s)
Calcio/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Proteínas Musculares/fisiología , Canales de Potasio/fisiología , Animales , Apoptosis , Electrofisiología Cardíaca , Perfilación de la Expresión Génica , Corazón/fisiología , Homeostasis , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones Transgénicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Troponina I/genética , Troponina I/metabolismo , Troponina I/fisiología
4.
Arch Biochem Biophys ; 603: 20-8, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27184165

RESUMEN

Cardiac tropnoin I (cTnI) plays a critical role in the regulation of diastolic function, and its low expression may result in cardiac diastolic dysfunction, which is the most common form of cardiovascular disorders in older adults. In this study, cTnI expression levels were determined in mice at various ages and cardiac function was measured and compared between young adult mice (3 and 10 months) and older mice (18 months). The data indicated that the cTnI levels reached a peak high in young adult hearts (3 months), but decreased in older hearts (18 months). Furthermore, the older hearts showed a significant diastolic dysfunction observed by P-V loop and echocardiography measurements. To further define the mechanism underlying the cTnI decrease in aging hearts, we tested DNA methylation and histone acetylation modifications of cTnI gene. We found that acetylation of histone near the promoter region of cTnI gene played an important role in regulation of cTnI expression in the heart at different ages. Our study indicates that epigenetic modification caused cTnI expression decrease is one of the possible causes that result in a reduced cTnI level and diastolic dysfunction in the older hearts.


Asunto(s)
Envejecimiento , Cardiomiopatías/metabolismo , Diástole , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Troponina I/fisiología , Animales , Inmunoprecipitación de Cromatina , Ecocardiografía , Epigénesis Genética , Corazón/fisiología , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas
5.
J Physiol ; 594(3): 669-86, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26635197

RESUMEN

KEY POINTS: ß-adrenergic stimulation increases cardiac myosin binding protein C (MyBP-C) and troponin I phosphorylation to accelerate pressure development and relaxation in vivo, although their relative contributions remain unknown. Using a novel mouse model lacking protein kinase A-phosphorylatable troponin I (TnI) and MyBP-C, we examined in vivo haemodynamic function before and after infusion of the ß-agonist dobutamine. Mice expressing phospho-ablated MyBP-C displayed cardiac hypertrophy and prevented full acceleration of pressure development and relaxation in response to dobutamine, whereas expression of phosphor-ablated TnI alone had little effect on the acceleration of contractile function in response to dobutamine. Our data demonstrate that MyBP-C phosphorylation is the principal mediator of the contractile response to increased ß-agonist stimulation in vivo. These results help us understand why MyBP-C dephosphorylation in the failing heart contributes to contractile dysfunction and decreased adrenergic reserve in response to acute stress. ß-adrenergic stimulation plays a critical role in accelerating ventricular contraction and speeding relaxation to match cardiac output to changing circulatory demands. Two key myofilaments proteins, troponin I (TnI) and myosin binding protein-C (MyBP-C), are phosphorylated following ß-adrenergic stimulation; however, their relative contributions to the enhancement of in vivo cardiac contractility are unknown. To examine the roles of TnI and MyBP-C phosphorylation in ß-adrenergic-mediated enhancement of cardiac function, transgenic (TG) mice expressing non-phosphorylatable TnI protein kinase A (PKA) residues (i.e. serine to alanine substitution at Ser23/24; TnI(PKA-)) were bred with mice expressing non-phosphorylatable MyBP-C PKA residues (i.e. serine to alanine substitution at Ser273, Ser282 and Ser302; MyBPC(PKA-)) to generate a novel mouse model expressing non-phosphorylatable PKA residues in TnI and MyBP-C (DBL(PKA-)). MyBP-C dephosphorylation produced cardiac hypertrophy and increased wall thickness in MyBPC(PKA-) and DBL(PKA-) mice, and in vivo echocardiography and pressure-volume catheterization studies revealed impaired systolic function and prolonged diastolic relaxation compared to wild-type and TnI(PKA-) mice. Infusion of the ß-agonist dobutamine resulted in accelerated rates of pressure development and relaxation in all mice; however, MyBPC(PKA-) and DBL(PKA-) mice displayed a blunted contractile response compared to wild-type and TnI(PKA-) mice. Furthermore, unanaesthesized MyBPC(PKA-) and DBL(PKA-) mice displayed depressed maximum systolic pressure in response to dobutamine as measured using implantable telemetry devices. Taken together, our data show that MyBP-C phosphorylation is a critical modulator of the in vivo acceleration of pressure development and relaxation as a result of enhanced ß-adrenergic stimulation, and reduced MyBP-C phosphorylation may underlie depressed adrenergic reserve in heart failure.


Asunto(s)
Cardiomegalia/fisiopatología , Proteínas Portadoras/fisiología , Receptores Adrenérgicos beta/fisiología , Troponina I/fisiología , Agonistas de Receptores Adrenérgicos beta 1/farmacología , Animales , Presión Sanguínea , Cardiomegalia/patología , Proteínas Portadoras/genética , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Dobutamina/farmacología , Femenino , Corazón/fisiopatología , Masculino , Ratones Transgénicos , Miocardio/patología , Miofibrillas/metabolismo , Fosforilación , Troponina I/genética
6.
J Am Heart Assoc ; 3(3): e000716, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24895160

RESUMEN

BACKGROUND: Right ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca(2+) sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH. METHODS AND RESULTS: RV samples from PAH patients undergoing heart-lung transplantation were compared to non-failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western-blot analyses using antibodies to protein-kinase-A (PKA), Cα (PKCα) and Ca(2+)/calmoduling-dependent-kinase (CamKIIδ) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors (P<0.0001). To test the functional relevance of PKA-, PKCα-, and CamKIIδ-mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamKIIδ had no major effect. CamKIIδ activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca(2+) sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors (P<0.05) and reduced PKA-mediated cTnI phosphorylation (Ser22/23) (P<0.001). Finally, alterations in Ca(2+)-handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca(2+) clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors (P<0.05). CONCLUSIONS: Increased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca(2+) handling proteins contribute to RV diastolic dysfunction in PAH.


Asunto(s)
Hipertensión Pulmonar/fisiopatología , Miocitos Cardíacos/química , Disfunción Ventricular Derecha/fisiopatología , Adulto , Western Blotting , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/análisis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Estudios de Casos y Controles , Conectina/análisis , Conectina/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/análisis , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Femenino , Ventrículos Cardíacos/química , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Miocitos Cardíacos/fisiología , Fosforilación , Proteína Quinasa C-alfa/análisis , Proteína Quinasa C-alfa/fisiología , Troponina I/fisiología
7.
Naunyn Schmiedebergs Arch Pharmacol ; 386(8): 671-84, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23549671

RESUMEN

Our objective was to investigate the role of phosphodiesterase (PDE)3 and PDE4 and cGMP in the control of cAMP metabolism and of phosphorylation of troponin I (TnI) and phospholamban (PLB) when 5-HT4 receptors are activated in pig left atrium. Electrically paced porcine left atrial muscles, mounted in organ baths, received stimulators of particulate guanylyl cyclase (pGC) or soluble guanylyl cyclase (sGC) and/or specific PDE inhibitors followed by 5-HT or the 5-HT4 receptor agonist prucalopride. Muscles were freeze-clamped at different moments of exposure to measure phosphorylation of the cAMP/protein kinase A targets TnI and PLB by immunoblotting and cAMP levels by enzyme immunoassay. Corresponding with the functional results, 5-HT only transiently increased cAMP content, but caused a less quickly declining phosphorylation of PLB and did not significantly change TnI phosphorylation. Under combined PDE3 and PDE4 inhibition, the 5-HT-induced increase in cAMP levels and PLB phosphorylation was enhanced and sustained, and TnI phosphorylation was now also increased. Responses to prucalopride per se and the influence thereupon of PDE3 and PDE4 inhibition were similar except that responses were generally smaller. Stimulation of pGC together with PDE4 inhibition increased 5-HT-induced PLB phosphorylation compared to 5-HT alone, consistent with functional responses. sGC stimulation hastened the fade of inotropic responses to 5-HT, while cAMP levels were not altered. PDE3 and PDE4 control the cAMP response to 5-HT4 receptor activation, causing a dampening of downstream signalling. Stimulation of pGC is able to enhance inotropic responses to 5-HT by increasing cAMP levels, while sGC stimulation decreases contraction to 5-HT cAMP independently.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , AMP Cíclico/fisiología , GMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/fisiología , Receptores de Serotonina 5-HT4/fisiología , Troponina I/fisiología , 1-Metil-3-Isobutilxantina/farmacología , Animales , Función Atrial/fisiología , Benzofuranos/farmacología , Atrios Cardíacos , Técnicas In Vitro , Masculino , Contracción Miocárdica/fisiología , Inhibidores de Fosfodiesterasa/farmacología , Fosforilación , Serotonina/farmacología , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Porcinos
8.
Circ Res ; 112(2): 355-66, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23329791

RESUMEN

We focus here on the modulation of thin filament activity by cardiac troponin I phosphorylation as an integral and adaptive mechanism in cardiac homeostasis and as a mechanism vulnerable to maladaptive response to stress. We discuss a current concept of cardiac troponin I function in the A-band region of the sarcomere and potential signaling to cardiac troponin I in a network involving the ends of the thin filaments at the Z-disk and the M-band regions. The cardiac sarcomere represents a remarkable set of interacting proteins that functions not only as a molecular machine generating the heartbeat but also as a hub of signaling. We review how phosphorylation signaling to cardiac troponin I is integrated, with parallel signals controlling excitation-contraction coupling, hypertrophy, and metabolism.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Miocitos Cardíacos/metabolismo , Troponina I/metabolismo , Animales , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Humanos , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Fosforilación/fisiología , Troponina I/fisiología
9.
Biochem Biophys Res Commun ; 431(1): 47-51, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23291173

RESUMEN

Stretch-induced enhancement of active force (stretch activation, SA) is observed in striated muscles in general, and most conspicuously in insect flight muscle (IFM). It remains unclear whether a common mechanism underlies the SA of all muscle types, or the SA of IFM relies on its highly specialized features. Recent studies suggest that IFM-specific isoforms of thin filament regulatory proteins (troponin and tropomyosin) are implicated in SA. Among others, IFM-specific troponin-I (troponin-H or TnH), with an unusually long Pro-Ala-rich extension at the C-terminus, has been speculated to transmit the mechanical signal of stretch to the troponin complex. To verify this hypothesis, it was removed by a specific endoproteinase in bumblebee IFM, expecting that it would eliminate SA while leaving intact the capacity for Ca(2+)-activated isometric force. Electrophoretic data showed that the extension was almost completely (97%) removed from IFM fibers after treatment. Unexpectedly, SA force was still conspicuous, and its rate of rise was not affected. Therefore, the results preclude the possibility that the extension is a main part of the mechanism of SA. This leaves open the possibility that SAs of IFM and vertebrate striated muscles, which lack the extension, operate under common basic mechanisms.


Asunto(s)
Vuelo Animal/fisiología , Músculo Esquelético/fisiología , Troponina I/fisiología , Secuencia de Aminoácidos , Animales , Drosophila , Datos de Secuencia Molecular , Troponina I/química , Troponina I/genética
10.
Mol Diagn Ther ; 16(6): 371-81, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23184341

RESUMEN

Acute myocardial infarction (AMI) is the leading cause of death worldwide, with early diagnosis still being difficult. Promising new cardiac biomarkers such as troponins and creatine kinase (CK) isoforms are being studied and integrated into clinical practice for early diagnosis of AMI. The cardiac-specific troponins I and T (cTnI and cTnT) have good sensitivity and specificity as indicators of myocardial necrosis and are superior to CK and its MB isoenzyme (CK-MB) in this regard. Besides being potential biologic markers, cardiac troponins also provide significant prognostic information. The introduction of novel high-sensitivity troponin assays has enabled more sensitive and timely diagnosis or exclusion of acute coronary syndromes. This review summarizes the available information on the potential of troponins and other cardiac markers in early diagnosis and prognosis of AMI, and provides perspectives on future diagnostic approaches to AMI.


Asunto(s)
Biomarcadores , Infarto del Miocardio/clasificación , Infarto del Miocardio/diagnóstico , Triaje/métodos , Troponina I/fisiología , Troponina T/fisiología , Biomarcadores/análisis , Biomarcadores/sangre , Biomarcadores/metabolismo , Diagnóstico Precoz , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Infarto del Miocardio/sangre , Infarto del Miocardio/terapia , Miocardio/metabolismo , Pronóstico , Sensibilidad y Especificidad , Troponina I/análisis , Troponina I/sangre , Troponina I/metabolismo , Troponina T/análisis , Troponina T/sangre , Troponina T/metabolismo
11.
J Physiol ; 590(23): 6047-63, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22966157

RESUMEN

Troponin I (TnI) and myosin heavy chain (MHC) are two contractile regulatory proteins that undergo major shifts in isoform expression as cardiac myocytes mature from embryonic to adult stages. To date, many studies have investigated individual effects of embryonic vs. cardiac isoforms of either TnI or MHC on cardiac muscle function and contractile dynamics. Thus, we sought to determine whether concomitant expression of the embryonic isoforms of both TnI and MHC had functional effects that were not previously observed. Adult transgenic (TG) mice that express the embryonic isoform of TnI, slow skeletal TnI (ssTnI), were treated with propylthiouracil (PTU) to revert MHC expression from adult (α-MHC) to embryonic (ß-MHC) isoforms. Cardiac muscle fibres from these mice contained ∼80% ß-MHC and ∼34% ssTnI of total MHC or TnI, respectively, allowing us to test the functional effects of ssTnI in the presence of ß-MHC. Detergent-skinned cardiac muscle fibre bundles were used to study how the interplay between MHC and TnI modulate muscle length-mediated effect on crossbridge (XB) recruitment dynamics, Ca(2+)-activated tension, and ATPase activity. One major finding was that the model-predicted XB recruitment rate (b) was enhanced significantly by ssTnI, and this speeding effect of ssTnI on XB recruitment rate was much greater (3.8-fold) when ß-MHC was present. Another major finding was that the previously documented ssTnI-mediated increase in myofilament Ca(2+) sensitivity (pCa(50)) was blunted when ß-MHC was present. ssTnI expression increased pCa(50) by 0.33 in α-MHC fibres, whereas ssTnI increased pCa(50) by only 0.05 in ß-MHC fibres. Our study provides new evidence for significant interplay between MHC and TnI isoforms that is essential for tuning cardiac contractile function. Thus, MHC-TnI interplay may provide a developmentally dependent mechanism to enhance XB recruitment dynamics at a time when Ca(2+)-handling mechanisms are underdeveloped, and to prevent excessive ssTnI-dependent inotropy (increased Ca(2+) sensitivity) in the embryonic myocardium.


Asunto(s)
Corazón/fisiología , Cadenas Pesadas de Miosina/fisiología , Troponina I/fisiología , Animales , Calcio/fisiología , Contracción Isométrica , Ratones , Ratones Transgénicos , Miofibrillas/fisiología , Músculos Papilares/fisiología , Propiltiouracilo/farmacología , Isoformas de Proteínas/fisiología
13.
J Physiol ; 590(6): 1443-63, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22250211

RESUMEN

Oxidation can decrease or increase the Ca2+ sensitivity of the contractile apparatus in rodent fast-twitch (type II) skeletal muscle fibres, but the reactions and molecular targets involved are unknown. This study examined whether increased Ca2+ sensitivity is due to S-glutathionylation of particular cysteine residues. Skinned muscle fibres were directly activated in heavily buffered Ca2+ solutions to assess contractile apparatus Ca2+ sensitivity. Rat type II fibres were subjected to S-glutathionylation by successive treatments with 2,2'-dithiodipyridine (DTDP) and glutathione (GSH), and displayed a maximal increase in pCa50 (−log10 [Ca2+] at half-maximal force) of ∼0.24 pCa units, with little or no effect on maximum force or Hill coefficient. Partial similar effect was produced by exposure to oxidized gluthathione (GSSG, 10 mM) for 10 min at pH 7.1, and near-maximal effect by GSSG treatment at pH 8.5. None of these treatments significantly altered Ca2+ sensitivity in rat type I fibres. Western blotting showed that both the DTDP­GSH and GSSG­pH 8.5 treatments caused marked S-glutathionylation of the fast troponin I isoform (TnI(f)) present in type II fibres, but not of troponin C (TnC) or myosin light chain 2. Both the increased Ca2+ sensitivity and glutathionylation of TnI(f) were blocked by N-ethylmaleimide (NEM). S-nitrosoglutathione (GSNO) also increased Ca2+ sensitivity, but only in conditions where it caused S-glutathionylation of TnI(f). In human type II fibres from vastus lateralis muscle, DTDP­GSH treatment also caused similar increased Ca2+ sensitivity and S-glutathionylation of TnI(f). When the slow isoform of TnI in type I fibres of rat was partially substituted (∼30%) with TnI(f), DTDP­GSH treatment caused a significant increase in Ca2+ sensitivity (∼0.08 pCa units). TnIf in type II fibres from toad and chicken muscle lack Cys133 present in mammalian TnIf, and such fibres showed no change in Ca2+ sensitivity with DTDP­GSH nor any S-glutathionylation of TnI(f) (latter examined only in toad). Following 40 min of cycling exercise in human subjects (at ∼60% peak oxygen consumption), TnI(f) in vastus lateralis muscle displayed a marked increase in S-glutathionylation (∼4-fold). These findings show that S-glutathionylation of TnI(f), most probably at Cys133, increases the Ca2+ sensitivity of the contractile apparatus, and that this occurs in exercising humans, with likely beneficial effects on performance.


Asunto(s)
Calcio/fisiología , Fibras Musculares de Contracción Rápida/fisiología , Troponina I/fisiología , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacología , Adulto , Animales , Bufo marinus , Pollos , Cisteína/fisiología , Disulfuros/farmacología , Ejercicio Físico/fisiología , Femenino , Glutatión/farmacología , Disulfuro de Glutatión/farmacología , Humanos , Masculino , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/fisiología , Conejos , Ratas , Ratas Long-Evans , Porcinos , Adulto Joven
14.
Am J Physiol Heart Circ Physiol ; 302(4): H923-33, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22140044

RESUMEN

In addition to the core structure conserved in all troponin I isoforms, cardiac troponin I (cTnI) has an ∼30 amino acids NH(2)-terminal extension. This peptide segment is a heart-specific regulatory structure containing two Ser residues that are substrates of PKA. Under ß-adrenergic regulation, phosphorylation of cTnI in the NH(2)-terminal extension increases the rate of myocardial relaxation. The NH(2)-terminal extension of cTnI is also removable by restrictive proteolysis to produce functional adaptation to hemodynamic stresses. The molecular mechanism for the NH(2)-terminal modifications to regulate the function of cTnI is not fully understood. In the present study, we tested a hypothesis that the NH(2)-terminal extension functions by modulating the conformation of other regions of cTnI. Monoclonal antibody epitope analysis and protein binding experiments demonstrated that deletion of the NH(2)-terminal segment altered epitopic conformation in the middle, but not COOH-terminal, region of cTnI. PKA phosphorylation produced similar effects. This targeted long-range conformational modulation corresponded to changes in the binding affinities of cTnI for troponin T and for troponin C in a Ca(2+)-dependent manner. The data suggest that the NH(2)-terminal extension of cTnI regulates cardiac muscle function through modulating molecular conformation and function of the core structure of cTnI.


Asunto(s)
Corazón/fisiología , Conformación Molecular , Contracción Miocárdica/fisiología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/fisiología , Troponina I/química , Troponina I/fisiología , Animales , Bovinos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Epítopos/genética , Eliminación de Gen , Humanos , Ratones , Modelos Animales , Relajación Muscular , Miocardio/metabolismo , Fragmentos de Péptidos/genética , Fosforilación , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Troponina I/genética , Troponina T/metabolismo
15.
J Card Fail ; 17(5): 359-65, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21549291

RESUMEN

BACKGROUND: Autoimmune mechanisms, particularly through generation of autoantibodies, may contribute to the pathophysiology of idiopathic dilated cardiomyopathy (iDCM). The precise role of cellular autoimmune responses to cardiac-specific antigens has not been well described in humans. The purpose of this study was to characterize the cellular autoimmune response to cardiac troponin I (cTnI), specifically, the release of cytokines by peripheral blood mononuclear cells (PBMCs), in subjects with iDCM and healthy control subjects. METHODS AND RESULTS: We performed enzyme-linked immunospot assays on PBMCs isolated from subjects with iDCM and healthy control subjects to examine the ex vivo interferon-gamma (IFN-γ) and interleukin-10 (IL-10) production in response to cTnI exposure. Thirty-five consecutive subjects with iDCM (mean age 53 ± 11 years, 60% male, left ventricular ejection fraction 23 ± 7%) and 26 control subjects (mean age 46 ± 13 years, 46% male) were prospectively enrolled. IFN-γ production in response to cTnI did not differ between the groups (number of secreting cells 26 ± 49 vs 38 ± 53, respectively; P = .1). In contrast, subjects with iDCM showed significantly higher IL-10 responses to cTnI compared with control subjects (number of secreting cells 386 ± 428 vs 152 ± 162, respectively; P < .05). Among iDCM subjects, heightened IL-10 response to cTnI was associated with reduced systemic inflammation and lower prevalence of advanced diastolic dysfunction compared with those with normal IL-10 response to cTnI. CONCLUSIONS: Our preliminary findings suggest that a heightened cellular autoimmune IL-10 response to cTnI is detectable in a subset of patients with iDCM, which may be associated with reduced systemic levels of high-sensitivity C-reactive protein and lower prevalence of advanced diastolic dysfunction.


Asunto(s)
Cardiomiopatía Dilatada/inmunología , Interferón gamma/fisiología , Interleucina-10/fisiología , Leucocitos Mononucleares/inmunología , Troponina I/farmacología , Adulto , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/prevención & control , Estudios de Casos y Controles , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Troponina I/fisiología
16.
Drugs Today (Barc) ; 47(4): 303-12, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21573253

RESUMEN

The objective of the current article is to review and evaluate the diagnostic and prognostic value of a new generation of sensitive assays for cardiac troponin I and troponin T. Cardiac-specific troponins I and T are the preferred diagnostic biomarker in patients presenting with suspected acute coronary syndromes. One important limitation of previous generation assays has been the relative insensitivity in detecting myocardial injury in patients with a short duration from symptom onset to presentation in the emergency room. Recently, sensitive assays for cardiac troponins I and T have been introduced as research tools and in clinical practice. Clinical trials evaluating these assays have demonstrated that sensitivity and overall diagnostic accuracy for acute myocardial infarction, defined by the 99th percentile cardiac troponin concentration in a healthy population, is enhanced, although at the cost of reduced specificity. Not surprisingly, the relative benefit compared to previous generation assays is greatest for those patients presenting early after symptom onset. A number of cardiac conditions other than acute coronary syndromes, as well as several noncardiac conditions, are associated with elevation of circulating cardiac troponins. Thus, with the use of more sensitive assays, clinical context and serial testing to document a rise and/or fall in concentrations will be increasingly important for correct interpretation of troponin results.


Asunto(s)
Infarto del Miocardio/diagnóstico , Troponina/análisis , Biomarcadores , Diagnóstico Precoz , Servicios Médicos de Urgencia , Corazón/fisiología , Humanos , Valor Predictivo de las Pruebas , Pronóstico , Factores de Tiempo , Troponina/fisiología , Troponina I/análisis , Troponina I/fisiología , Troponina T/análisis , Troponina T/fisiología
17.
Exp Cell Res ; 317(2): 188-94, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20828558

RESUMEN

Assays to quantify myocardial renewal rely on the accurate identification of cardiomyocyte nuclei. We previously ¹4C birth dated human cardiomyocytes based on the nuclear localization of cTroponins T and I. A recent report by Kajstura et al. suggested that cTroponin I is only localized to the nucleus in a senescent subpopulation of cardiomyocytes, implying that ¹4C birth dating of cTroponin T and I positive cell populations underestimates cardiomyocyte renewal in humans. We show here that the isolation of cell nuclei from the heart by flow cytometry with antibodies against cardiac Troponins T and I, as well as pericentriolar material 1 (PCM-1), allows for isolation of close to all cardiomyocyte nuclei, based on ploidy and marker expression. We also present a reassessment of cardiomyocyte ploidy, which has important implications for the analysis of cell turnover, and iododeoxyuridine (IdU) incorporation data. These data provide the foundation for reliable analysis of cardiomyocyte turnover in humans.


Asunto(s)
Núcleo Celular/metabolismo , Miocitos Cardíacos/diagnóstico por imagen , Ploidias , Proliferación Celular , Separación Celular , Citometría de Flujo , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Troponina I/fisiología , Troponina T/fisiología , Ultrasonografía
18.
J Mol Cell Cardiol ; 49(3): 402-11, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20580639

RESUMEN

Several cardiac troponin I (cTnI) mutations are associated with restrictive cardiomyopathy (RCM) in humans. We have created transgenic mice (cTnI(193His) mice) that express the corresponding human RCM R192H mutation. Phenotype of this RCM animal model includes restrictive ventricles, biatrial enlargement and sudden cardiac death, which are similar to those observed in RCM patients carrying the same cTnI mutation. In the present study, we modified the overall cTnI in cardiac muscle by crossing cTnI(193His) mice with transgenic mice expressing an N-terminal truncated cTnI (cTnI-ND) that enhances relaxation. Protein analyses determined that wild type cTnI was replaced by cTnI-ND in the heart of double transgenic mice (Double TG), which express only cTnI-ND and cTnI R193H in cardiac myocytes. The presence of cTnI-ND effectively rescued the lethal phenotype of RCM mice by reducing the mortality rate. Cardiac function was significantly improved in Double TG mice when measured by echocardiography. The hypersensitivity to Ca(2+) and the prolonged relaxation of RCM cTnI(193His) cardiac myocytes were completely reversed by the presence of cTnI-ND in RCM hearts. The results demonstrate that myofibril hypersensitivity to Ca(2+) is a key mechanism that causes impaired relaxation in RCM cTnI mutant hearts and Ca(2+) desensitization by cTnI-ND can correct diastolic dysfunction and rescue the RCM phenotypes, suggesting that Ca(2+) desensitization in myofibrils is a therapeutic option for treatment of diastolic dysfunction without interventions directed at the systemic beta-adrenergic-PKA pathways.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Restrictiva/fisiopatología , Mutación/genética , Miocitos Cardíacos/patología , Troponina I/fisiología , Animales , Western Blotting , Diástole , Ecocardiografía , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Fenotipo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Physiol Genomics ; 42(3): 406-19, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20484158

RESUMEN

Troponin I (TnI) and myosin binding protein-C (MyBP-C) are key regulatory proteins of contractile function in vertebrate muscle. TnI modulates the Ca(2+) activation signal, while MyBP-C regulates cross-bridge cycling kinetics. In vertebrates, each protein is distributed as tissue-specific paralogs in fast skeletal (fs), slow skeletal (ss), and cardiac (c) muscles. The purpose of this study is to characterize how TnI and MyBP-C have changed during the evolution of vertebrate striated muscle and how tissue-specific paralogs have adapted to different physiological conditions. To accomplish this we have completed phylogenetic analyses using the amino acid sequences of all known TnI and MyBP-C isoforms. This includes 99 TnI sequences (fs, ss, and c) from 51 different species and 62 MyBP-C sequences from 26 species, with representatives from each vertebrate group. Results indicate that the role of protein kinase A (PKA) and protein kinase C (PKC) in regulating contractile function has changed during the evolution of vertebrate striated muscle. This is reflected in an increased number of phosphorylatable sites in cTnI and cMyBP-C in endothermic vertebrates and the loss of two PKC sites in fsTnI in a common ancestor of mammals, birds, and reptiles. In addition, we find that His(132), Val(134), and Asn(141) in human ssTnI, previously identified as enabling contractile function during cellular acidosis, are present in all vertebrate cTnI isoforms except those from monotremes, marsupials, and eutherian mammals. This suggests that the replacement of these residues with alternative residues coincides with the evolution of endothermy in the mammalian lineage.


Asunto(s)
Proteínas Portadoras/fisiología , Evolución Molecular , Músculo Estriado/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Troponina I/fisiología , Vertebrados/genética , Secuencia de Aminoácidos , Animales , Aves , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Mamíferos , Marsupiales , Datos de Secuencia Molecular , Monotremata , Contracción Muscular/genética , Contracción Muscular/fisiología , Filogenia , Reptiles , Homología de Secuencia de Aminoácido , Troponina I/genética , Troponina I/metabolismo
20.
Recent Pat Cardiovasc Drug Discov ; 4(3): 203-10, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19925440

RESUMEN

Recently, regenerative medicine using the transplantation of embryonic stem cells and bone marrow stem cells has been a great success but still has many unconfirmed problems including its clinical evaluation. The aim of this article is to review current literature and some patents regarding molecular therapeutic agents including using MAP kinase TNNI3K for the treatment and diagnosis of acute myocardial ischemia or infarction. TNNI3K is a novel cardiac troponin I-interacting kinase gene and its overexpression may promote cardiac myogenesis, improve cardiac performance, and attenuate ischemia-induced ventricular remodeling. The modulation of embryonal stem cells with high TNNI3K activity using a TNNI3K active peptide could be a useful therapeutic approach for ischemic cardiac diseases. For overexpressing TNNI3K or enhancing TNNI3K activity in cardiac precursor cells, the engraftment of bone marrow cells or embryonic stem cells can effectively promote cardiac myogenesis, beating frequency, and contractile functions, and decrease "silent" (no contraction) cardiac cells after cell transplantion, indicating that the overexpression of TNNI3K can increase the success rate of transplanting embryonic stem cells or bone marrow cells into ischemic hearts for the treatment of ischemic cardiac diseases. Although previous investigations showing that TNNI3K may be involved in the development of cardiac hypertrophy, it is still unclear whether TNNI3K has a role in cardiac hypertrophy or what mechanism is involved in the effects of TNNI3K. To confirm this, further investigations need to be undertaken.


Asunto(s)
Marcación de Gen/tendencias , Cardiopatías/enzimología , Cardiopatías/terapia , Quinasas Quinasa Quinasa PAM/metabolismo , Animales , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/terapia , Marcación de Gen/métodos , Cardiopatías/genética , Cardiopatías/patología , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/fisiología , Quinasas Quinasa Quinasa PAM/uso terapéutico , Proteínas Serina-Treonina Quinasas , Troponina I/metabolismo , Troponina I/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA