Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neural Circuits ; 16: 908964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937204

RESUMEN

The olfactory tubercle (OT) is a striatal region that receives olfactory inputs. mRNAs of prodynorphin (Pdyn) and preproenkephalin (Penk), precursors of dynorphins and enkephalins, respectively, are strongly expressed in the striatum. Both produce opioid peptides with various physiological effects such as pain relief and euphoria. Recent studies have revealed that OT has anatomical and cytoarchitectonic domains that play different roles in odor-induced motivated behavior. Neuronal subtypes of the OT can be distinguished by their expression of the dopamine receptors D1 (Drd1) and D2 (Drd2). Here, we addressed whether and which type of opioid peptide precursors the D1- and D2-expressing neurons in the OT express. We used multiple fluorescence in situ hybridization for mRNAs of the opioid precursors and dopamine receptors to characterize mouse OT neurons. Pdyn was mainly expressed by Drd1-expressing cells in the dense cell layer (DCL) of the OT, whereas Penk was expressed primarily by Drd2-expressing cells in the DCL. We also confirmed the presence of a larger population of Pdyn-Penk-Drd1 co-expressing cells in the DCL of the anteromedial OT compared with the anterolateral OT. These observations will help understand whether and how dynorphins and enkephalins in the OT are involved in diverse odor-induced motivated behaviors.


Asunto(s)
Dinorfinas , Encefalinas , Neuronas/metabolismo , Tubérculo Olfatorio/citología , Precursores de Proteínas , Animales , Cuerpo Estriado/metabolismo , Dinorfinas/análisis , Dinorfinas/genética , Dinorfinas/metabolismo , Encefalinas/análisis , Encefalinas/genética , Encefalinas/metabolismo , Hibridación Fluorescente in Situ , Ratones , Tubérculo Olfatorio/metabolismo , ARN Mensajero/metabolismo , Receptores de Dopamina D1/metabolismo
2.
J Neurosci ; 40(22): 4335-4347, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32321744

RESUMEN

Rodents can successfully learn multiple novel stimulus-response associations after only a few repetitions when the contingencies predict reward. The circuits modified during such reinforcement learning to support decision-making are not known, but the olfactory tubercle (OT) and posterior piriform cortex (pPC) are candidates for decoding reward category from olfactory sensory input and relaying this information to cognitive and motor areas. Through single-cell recordings in behaving male and female C57BL/6 mice, we show here that an explicit representation for reward category emerges in the OT within minutes of learning a novel odor-reward association, whereas the pPC lacks an explicit representation even after weeks of overtraining. The explicit reward category representation in OT is visible in the first sniff (50-100 ms) of an odor on each trial, and precedes the motor action. Together, these results suggest that the coding of stimulus information required for reward prediction does not occur within olfactory cortex, but rather in circuits involving the olfactory striatum.SIGNIFICANCE STATEMENT Rodents are olfactory specialists and can use odors to learn contingencies quickly and well. We have found that mice can readily learn to place multiple odors into rewarded and unrewarded categories. Once they have learned the rule, they can do such categorization in a matter of minutes (<10 trials). We found that neural activity in olfactory cortex largely reflects sensory coding, with very little explicit information about categories. By contrast, neural activity in a brain region in the ventral striatum is rapidly modified in a matter of minutes to reflect reward category. Our experiments set up a paradigm for studying rapid sensorimotor reinforcement in a circuit that is right at the interface of sensory input and reward areas.


Asunto(s)
Percepción Olfatoria , Tubérculo Olfatorio/fisiología , Recompensa , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Tubérculo Olfatorio/citología , Corteza Piriforme/citología , Corteza Piriforme/fisiología
3.
Mol Cell Neurosci ; 98: 82-96, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31200100

RESUMEN

The olfactory tubercle (OT) is located in the ventral-medial region of the brain where it receives primary input from olfactory bulb (OB) projection neurons and processes olfactory behaviors related to motivation, hedonics of smell and sexual encounters. The OT is part of the dopamine reward system that shares characteristics with the striatum. Together with the nucleus accumbens, the OT has been referred to as the "ventral striatum". However, despite its functional importance little is known about the embryonic development of the OT and the phenotypic properties of the OT cells. Here, using thymidine analogs, we establish that mouse OT neurogenesis occurs predominantly between E11-E15 in a lateral-to-medial gradient. Then, using a piggyBac multicolor technique we characterized the migratory route of OT neuroblasts from their embryonic point of origin. Following neurogenesis in the ventral lateral ganglionic eminence (vLGE), neuroblasts destined for the OT followed a dorsal-ventral pathway we named "ventral migratory course" (VMC). Upon reaching the nascent OT, neurons established a prototypical laminar distribution that was determined, in part, by the progenitor cell of origin. A phenotypic analysis of OT neuroblasts using a single-color piggyBac technique, showed that OT shared the molecular specification of striatal neurons. In addition to primary afferent input from the OB, the OT also receives a robust dopaminergic input from ventral tegmentum (Ikemoto, 2007). We used tyrosine hydroxylase (TH) expression as a proxy for dopaminergic innervation and showed that TH onset occurs at E13 and progressively increased until postnatal stages following an 'inside-out' pattern. Postnatally, we established the myelination in the OT occurring between P7 and P14, as shown with CNPase staining, and we characterized the cellular phenotypes populating the OT by immunohistochemistry. Collectively, this work provides the first detailed analysis of the developmental and maturation processes occurring in mouse OT, and demonstrates the striatal nature of the OT as part of the ventral striatum (vST).


Asunto(s)
Neurogénesis , Tubérculo Olfatorio/embriología , Animales , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Femenino , Masculino , Ratones , Vaina de Mielina/metabolismo , Tubérculo Olfatorio/citología , Tubérculo Olfatorio/crecimiento & desarrollo
4.
Brain Struct Funct ; 224(4): 1647-1658, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30923887

RESUMEN

The protein doublecortin is mainly expressed in migrating neuroblasts and immature neurons. The X-linked gene MECP2, associated to several neurodevelopmental disorders such as Rett syndrome, encodes the protein methyl-CpG-binding protein 2 (MeCP2), a regulatory protein that has been implicated in neuronal maturation and refinement of olfactory circuits. Here, we explored doublecortin immunoreactivity in the brain of young adult female Mecp2-heterozygous and male Mecp2-null mice and their wild-type littermates. The distribution of doublecortin-immunoreactive somata in neurogenic brain regions was consistent with previous reports in rodents, and no qualitative differences were found between genotypes or sexes. Quantitatively, we found a significant increase in doublecortin cell density in the piriform cortex of Mecp2-null males as compared to WT littermates. A similar increase was seen in a newly identified population of doublecortin cells in the olfactory tubercle. In these olfactory structures, however, the percentage of doublecortin immature neurons that also expressed NeuN was not different between genotypes. By contrast, we found no significant differences between genotypes in doublecortin immunoreactivity in the olfactory bulbs. Nonetheless, in the periglomerular layer of Mecp2-null males, we observed a specific decrease of immature neurons co-expressing doublecortin and NeuN. Overall, no differences were evident between Mecp2-heterozygous and WT females. In addition, no differences could be detected between genotypes in the density of doublecortin-immunoreactive cells in the hippocampus or striatum of either males or females. Our results suggest that MeCP2 is involved in neuronal maturation in a region-dependent manner.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Neuronas/fisiología , Neuropéptidos/fisiología , Tubérculo Olfatorio/crecimiento & desarrollo , Tubérculo Olfatorio/metabolismo , Corteza Piriforme/crecimiento & desarrollo , Corteza Piriforme/metabolismo , Animales , Recuento de Células , Proteínas de Dominio Doblecortina , Femenino , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Vías Olfatorias/citología , Vías Olfatorias/crecimiento & desarrollo , Vías Olfatorias/metabolismo , Tubérculo Olfatorio/citología , Corteza Piriforme/citología
5.
Front Neural Circuits ; 11: 52, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28804450

RESUMEN

The medial part of the olfactory tubercle (OT) is a brain structure located at the interface of the reward and olfactory system. It is closely related to pheromone-rewards, natural reinforcement, addiction and many other behaviors. However, the structure of the anatomic circuitry of the medial part of the OT is still unclear. In the present study, the medial part of the OT was found to be highly connected with a wide range of brain areas with the help of the pseudorabies virus tracing tool. In order to further investigate the detailed connections for specific neurons, another tracing tool - rabies virus was utilized for D1R-cre and D2R-cre mice. The D1R and D2R neurons in the medial part of the OT were both preferentially innervated by the olfactory areas, especially the piriform cortex, and both had similar direct input patterns. With the help of the adeno-associated virus labeling, it was found that the two subpopulations of neurons primarily innervate with the reward related brain regions, with slightly less axons projecting to the olfactory areas. Thus, the whole-brain input and output circuitry structures for specific types of neurons in the medial part of the OT were systematically investigated, and the results revealed many unique connecting features. This work could provide new insights for further study into the physiological functions of the medial part of the OT.


Asunto(s)
Neuronas/citología , Tubérculo Olfatorio/citología , Animales , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/metabolismo , Vías Olfatorias/citología , Vías Olfatorias/metabolismo , Tubérculo Olfatorio/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
6.
J Neurosci ; 36(2): 548-60, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758844

RESUMEN

The ventral striatum is critical for evaluating reward information and the initiation of goal-directed behaviors. The many cellular, afferent, and efferent similarities between the ventral striatum's nucleus accumbens and olfactory tubercle (OT) suggests the distributed involvement of neurons within the ventral striatopallidal complex in motivated behaviors. Although the nucleus accumbens has an established role in representing goal-directed actions and their outcomes, it is not known whether this function is localized within the nucleus accumbens or distributed also within the OT. Answering such a fundamental question will expand our understanding of the neural mechanisms underlying motivated behaviors. Here we address whether the OT encodes natural reinforcers and serves as a substrate for motivational information processing. In recordings from mice engaged in a novel water-motivated instrumental task, we report that OT neurons modulate their firing rate during initiation and progression of the instrumental licking behavior, with some activity being internally generated and preceding the first lick. We further found that as motivational drive decreases throughout a session, the activity of OT neurons is enhanced earlier relative to the behavioral action. Additionally, OT neurons discriminate the types and magnitudes of fluid reinforcers. Together, these data suggest that the processing of reward information and the orchestration of goal-directed behaviors is a global principle of the ventral striatum and have important implications for understanding the neural systems subserving addiction and mood disorders. SIGNIFICANCE STATEMENT: Goal-directed behaviors are widespread among animals and underlie complex behaviors ranging from food intake, social behavior, and even pathological conditions, such as gambling and drug addiction. The ventral striatum is a neural system critical for evaluating reward information and the initiation of goal-directed behaviors. Here we show that neurons in the olfactory tubercle subregion of the ventral striatum robustly encode the onset and progression of motivated behaviors, and discriminate the type and magnitude of a reward. Our findings are novel in showing that olfactory tubercle neurons participate in such coding schemes and are in accordance with the principle that ventral striatum substructures may cooperate to guide motivated behaviors.


Asunto(s)
Objetivos , Motivación , Neuronas/fisiología , Tubérculo Olfatorio/citología , Recompensa , Estriado Ventral/citología , Potenciales de Acción/fisiología , Animales , Conducta Apetitiva/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...