Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Nat Commun ; 14(1): 1775, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997532

RESUMEN

The apical complex is a specialized collection of cytoskeletal and secretory machinery in apicomplexan parasites, which include the pathogens that cause malaria and toxoplasmosis. Its structure and mechanism of motion are poorly understood. We used cryo-FIB-milling and cryo-electron tomography to visualize the 3D-structure of the apical complex in its protruded and retracted states. Averages of conoid-fibers revealed their polarity and unusual nine-protofilament arrangement with associated proteins connecting and likely stabilizing the fibers. Neither the structure of the conoid-fibers nor the architecture of the spiral-shaped conoid complex change during protrusion or retraction. Thus, the conoid moves as a rigid body, and is not spring-like and compressible, as previously suggested. Instead, the apical-polar-rings (APR), previously considered rigid, dilate during conoid protrusion. We identified actin-like filaments connecting the conoid and APR during protrusion, suggesting a role during conoid movements. Furthermore, our data capture the parasites in the act of secretion during conoid protrusion.


Asunto(s)
Neospora , Toxoplasma , Toxoplasma/citología , Toxoplasma/ultraestructura , Neospora/citología , Neospora/ultraestructura , Tomografía con Microscopio Electrónico , Tubulina (Proteína)/ultraestructura , Citoesqueleto/ultraestructura , Membrana Celular/ultraestructura
2.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34996871

RESUMEN

Microtubules (MTs) are polymers of αß-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here, we use cryo-electron microscopy and total internal reflection fluorescence microscopy of GTP hydrolysis-deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wild-type GDP-MTs. End-binding proteins of the EB family have the ability to compact both mutant GTP lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wild-type MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these structures of catalytically inactive MTs add mechanistic insight into the GTP state of MTs, the stability of the GTP- and GDP-bound lattice, and our overall understanding of MT dynamic instability.


Asunto(s)
Microscopía por Crioelectrón , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Humanos , Hidrólisis , Cinesinas , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/genética , Proteínas Recombinantes , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura
3.
PLoS One ; 16(2): e0247022, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33577570

RESUMEN

Electron cryo-microscopy (Cryo-EM) is a powerful method for visualizing biological objects with up to near-angstrom resolution. Instead of chemical fixation, the method relies on very rapid freezing to immobilize the sample. Under these conditions, crystalline ice does not have time to form and distort structure. For many practical applications, the rate of cooling is fast enough to consider sample immobilization instantaneous, but in some cases, a more rigorous analysis of structure relaxation during freezing could be essential. This difficult yet important problem has been significantly under-reported in the literature, despite spectacular recent developments in Cryo-EM. Here we use Brownian dynamics modeling to examine theoretically the possible effects of cryo-immobilization on the apparent shapes of biological polymers. The main focus of our study is on tubulin protofilaments. These structures are integral parts of microtubules, which in turn are key elements of the cellular skeleton, essential for intracellular transport, maintenance of cell shape, cell division and migration. We theoretically examine the extent of protofilament relaxation within the freezing time as a function of the cooling rate, the filament's flexural rigidity, and the effect of cooling on water's viscosity. Our modeling suggests that practically achievable cooling rates are not rapid enough to capture tubulin protofilaments in conformations that are incompletely relaxed, suggesting that structures seen by cryo-EM are good approximations to physiological shapes. This prediction is confirmed by our analysis of curvatures of tubulin protofilaments, using samples, prepared and visualized with a variety of methods. We find, however, that cryofixation may capture incompletely relaxed shapes of more flexible polymers, and it may affect Cryo-EM-based measurements of their persistence lengths. This analysis will be valuable for understanding of structures of different types of biopolymers, observed with Cryo-EM.


Asunto(s)
Microtúbulos/ultraestructura , Tubulina (Proteína)/ultraestructura , Algoritmos , Animales , Microscopía por Crioelectrón , Congelación , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Multimerización de Proteína , Tubulina (Proteína)/metabolismo
4.
J Cell Biol ; 220(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33496729

RESUMEN

The formation of cellular microtubule networks is regulated by the γ-tubulin ring complex (γ-TuRC). This ∼2.3 MD assembly of >31 proteins includes γ-tubulin and GCP2-6, as well as MZT1 and an actin-like protein in a "lumenal bridge" (LB). The challenge of reconstituting the γ-TuRC has limited dissections of its assembly and function. Here, we report a biochemical reconstitution of the human γ-TuRC (γ-TuRC-GFP) as a ∼35 S complex that nucleates microtubules in vitro. In addition, we generate a subcomplex, γ-TuRCΔLB-GFP, which lacks MZT1 and actin. We show that γ-TuRCΔLB-GFP nucleates microtubules in a guanine nucleotide-dependent manner and with similar efficiency as the holocomplex. Electron microscopy reveals that γ-TuRC-GFP resembles the native γ-TuRC architecture, while γ-TuRCΔLB-GFP adopts a partial cone shape presenting only 8-10 γ-tubulin subunits and lacks a well-ordered lumenal bridge. Our results show that the γ-TuRC can be reconstituted using a limited set of proteins and suggest that the LB facilitates the self-assembly of regulatory interfaces around a microtubule-nucleating "core" in the holocomplex.


Asunto(s)
Tubulina (Proteína)/metabolismo , Actinas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinética , Microtúbulos/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura
5.
Curr Opin Cell Biol ; 68: 124-131, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33190097

RESUMEN

Microtubules are essential cytoskeletal elements assembled from αß-tubulin dimers. In high eukaryotes, microtubule nucleation, the de novo assembly of a microtubule from its minus end, is initiated by the γ-tubulin ring complex (γ-TuRC). Despite many years of research, the structural and mechanistic principles of the microtubule nucleation machinery remained poorly understood. Only recently, cryoelectron microscopy studies uncovered the molecular organization and potential activation mechanisms of γ-TuRC. In vitro assays further deciphered the spatial and temporal cooperation between γ-TuRC and additional factors, for example, the augmin complex, the phase separation protein TPX2, and the microtubule polymerase XMAP215. These breakthroughs deepen our understanding of microtubule nucleation mechanisms and will link the assembly of individual microtubules to the organization of cellular microtubule networks.


Asunto(s)
Centro Organizador de los Microtúbulos/química , Microtúbulos/química , Tubulina (Proteína)/química , Animales , Microscopía por Crioelectrón , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Centro Organizador de los Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Polimerizacion , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura
6.
Sci Rep ; 10(1): 21369, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288818

RESUMEN

Bacterial tubulin homolog FtsZ self-assembles into dynamic protofilaments, which forms the scaffold for the contractile ring (Z-ring) to achieve bacterial cell division. Here, we study the biochemical properties of FtsZ from Pseudomonas aeruginosa (PaFtsZ) and the effects of its two positive regulator proteins, ZipA and ZapA. Similar to Escherichia coli FtsZ, PaFtsZ had a strong GTPase activity, ~ 7.8 GTP min-1 FtsZ-1 at pH 7.5, and assembled into mainly short single filaments in vitro. However, PaFtsZ protofilaments were mixtures of straight and "intermediate-curved" (100-300 nm diameter) in pH 7.5 solution and formed some bundles in pH 6.5 solution. The effects of ZipA on PaFtsZ assembly varied with pH. In pH 6.5 buffer ZipA induced PaFtsZ to form large bundles. In pH 7.5 buffer PaFtsZ-ZipA protofilaments were not bundled, but ZipA enhanced PaFtsZ assembly and promoted more curved filaments. Comparable to ZapA from other bacterial species, ZapA from P. aeruginosa induced PaFtsZ protofilaments to associate into long straight loose bundles and/or sheets at both pH 6.5 and pH 7.5, which had little effect on the GTPase activity of PaFtsZ. These results provide us further information that ZipA functions as an enhancer of FtsZ curved filaments, while ZapA works as a stabilizer of FtsZ straight filaments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Pseudomonas aeruginosa/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestructura , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/ultraestructura , Transferencia Resonante de Energía de Fluorescencia , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Cinética , Microscopía Electrónica , Conformación Proteica , Pseudomonas aeruginosa/ultraestructura , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura
7.
Nat Commun ; 11(1): 3765, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32724196

RESUMEN

Microtubules are dynamic tubulin polymers responsible for many cellular processes, including the capture and segregation of chromosomes during mitosis. In contrast to textbook models of tubulin self-assembly, we have recently demonstrated that microtubules elongate by addition of bent guanosine triphosphate tubulin to the tips of curving protofilaments. Here we explore this mechanism of microtubule growth using Brownian dynamics modeling and electron cryotomography. The previously described flaring shapes of growing microtubule tips are remarkably consistent under various assembly conditions, including different tubulin concentrations, the presence or absence of a polymerization catalyst or tubulin-binding drugs. Simulations indicate that development of substantial forces during microtubule growth and shortening requires a high activation energy barrier in lateral tubulin-tubulin interactions. Modeling offers a mechanism to explain kinetochore coupling to growing microtubule tips under assisting force, and it predicts a load-dependent acceleration of microtubule assembly, providing a role for the flared morphology of growing microtubule ends.


Asunto(s)
Microtúbulos/metabolismo , Modelos Biológicos , Tubulina (Proteína)/metabolismo , Animales , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Simulación de Dinámica Molecular , Polimerizacion/efectos de los fármacos , Porcinos , Tubulina (Proteína)/aislamiento & purificación , Tubulina (Proteína)/ultraestructura , Moduladores de Tubulina/farmacología
8.
Cell Rep ; 31(13): 107791, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32610146

RESUMEN

Microtubule organization depends on the γ-tubulin ring complex (γ-TuRC), a ∼2.3-MDa nucleation factor comprising an asymmetric assembly of γ-tubulin and GCP2-GCP6. However, it is currently unclear how the γ-TuRC-associated microproteins MZT1 and MZT2 contribute to the structure and regulation of the holocomplex. Here, we report cryo-EM structures of MZT1 and MZT2 in the context of the native human γ-TuRC. MZT1 forms two subcomplexes with the N-terminal α-helical domains of GCP3 or GCP6 (GCP-NHDs) within the γ-TuRC "lumenal bridge." We determine the X-ray structure of recombinant MZT1/GCP6-NHD and find it is similar to that within the native γ-TuRC. We identify two additional MZT/GCP-NHD-like subcomplexes, one of which is located on the outer face of the γ-TuRC and comprises MZT2 and GCP2-NHD in complex with a centrosomin motif 1 (CM1)-containing peptide. Our data reveal how MZT1 and MZT2 establish multi-faceted, structurally mimetic "modules" that can expand structural and regulatory interfaces in the γ-TuRC.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Tubulina (Proteína)/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/química , Modelos Moleculares , Complejos Multiproteicos/ultraestructura , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura
9.
Sci Rep ; 10(1): 6034, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265472

RESUMEN

Optogenetic methods for switching molecular states in cells are increasingly prominent tools in life sciences. Förster Resonance Energy Transfer (FRET)-based sensors can provide quantitative and sensitive readouts of altered cellular biochemistry, e.g. from optogenetics. However, most of the light-inducible domains respond to the same wavelength as is required for excitation of popular CFP/YFP-based FRET pairs, rendering the techniques incompatible with each other. In order to overcome this limitation, we red-shifted an existing CFP/YFP-based OP18 FRET sensor (COPY) by employing an sYFP2 donor and mScarlet-I acceptor. Their favorable quantum yield and brightness result in a red-shifted FRET pair with an optimized dynamic range, which could be further enhanced by an R125I point mutation that stimulates intramolecular interactions. The new sensor was named ROPY and it visualizes the interaction between the microtubule regulator stathmin/OP18 and free tubulin heterodimers. We show that through phosphorylation of the ROPY sensor, its tubulin sequestering ability can be locally regulated by photo-activatable Rac1 (PARac1), independent of the FRET readout. Together, ROPY and PARac1 provide spatiotemporal control over free tubulin levels. ROPY/PARac1-based optogenetic regulation of free tubulin levels allowed us to demonstrate that depletion of free tubulin prevents the formation of pioneer microtubules, while local upregulation of tubulin concentration allows localized microtubule extensions to support the lamellipodia.


Asunto(s)
Microtúbulos/genética , Microtúbulos/ultraestructura , Optogenética , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Microscopía Confocal , Microtúbulos/química , Modelos Moleculares , Imagen Óptica , Tubulina (Proteína)/análisis , Tubulina (Proteína)/genética , Tubulina (Proteína)/ultraestructura
10.
Curr Drug Discov Technol ; 17(2): 166-182, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30621564

RESUMEN

BACKGROUND: Some lactones prevent protein Myb-dependent gene expression. OBJECTIVE: The object is to calculate inhibitors of Myb-brought genetic manifestation. METHODS: Linear quantitative structure-potency relations result expanded, among sesquiterpene lactones of a variety of macrocycles (pseudoguaianolides, guaianolides, eudesmanolides and germacranolides), to establish which part of the molecule constitutes their pharmacophore, and predict their inhibitory potency on Myb-reliant genetic manifestation, which may result helpful as leads for antileukaemic therapies with a new mechanism of action. RESULTS: Several count indices are connected with structure-activity. The α-methylene-γ-lactone ML functional groups increase, whereas OH groups decrease the activity. Hydrophobicity provides to increase cell toxicity. Four counts (ML, number of α, ß-unsaturated CO groups, etc.), connected with the number of oxygens, present a positive association, owing to the partial negative charge of oxygen. The s-trans-strans- germacranolide molecule presents maximal potency. The OH groups decrease the potency owing to the positive charge of hydrogen. The numbers of π-systems and atoms, and polarizability increase the potency. Following least squares, every standard error of the coefficients is satisfactory in every expression. The most predictive linear expressions for lactones, pseudoguaianolides and germacranolides are corroborated by leave-group-out cross-validation. Quadratic equations do not make the correlation better. CONCLUSION: Likely action mechanisms for lactones are argued with a diversity of functional groups in the lactone annulus, including artemisinin with its uncommon macrocycle characteristic, 1,2,4-trioxane cycle (pharmacophoric peroxide linkage -O1-O2- in endoperoxide ring), which results in the foundation for its sole antimalarial potency.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diseño de Fármacos , Neoplasias/tratamiento farmacológico , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/ultraestructura , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Etopósido/química , Etopósido/farmacología , Etopósido/uso terapéutico , Humanos , Lactonas/química , Lactonas/farmacología , Lactonas/uso terapéutico , Ligandos , Simulación del Acoplamiento Molecular , Paclitaxel/química , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Homología Estructural de Proteína , Relación Estructura-Actividad , Topotecan/química , Topotecan/farmacología , Topotecan/uso terapéutico , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapéutico
11.
Nature ; 578(7795): 467-471, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31856152

RESUMEN

Microtubules are dynamic polymers of α- and ß-tubulin and have crucial roles in cell signalling, cell migration, intracellular transport and chromosome segregation1. They assemble de novo from αß-tubulin dimers in an essential process termed microtubule nucleation. Complexes that contain the protein γ-tubulin serve as structural templates for the microtubule nucleation reaction2. In vertebrates, microtubules are nucleated by the 2.2-megadalton γ-tubulin ring complex (γ-TuRC), which comprises γ-tubulin, five related γ-tubulin complex proteins (GCP2-GCP6) and additional factors3. GCP6 is unique among the GCP proteins because it carries an extended insertion domain of unknown function. Our understanding of microtubule formation in cells and tissues is limited by a lack of high-resolution structural information on the γ-TuRC. Here we present the cryo-electron microscopy structure of γ-TuRC from Xenopus laevis at 4.8 Å global resolution, and identify a 14-spoked arrangement of GCP proteins and γ-tubulins in a partially flexible open left-handed spiral with a uniform sequence of GCP variants. By forming specific interactions with other GCP proteins, the GCP6-specific insertion domain acts as a scaffold for the assembly of the γ-TuRC. Unexpectedly, we identify actin as a bona fide structural component of the γ-TuRC with functional relevance in microtubule nucleation. The spiral geometry of γ-TuRC is suboptimal for microtubule nucleation and a controlled conformational rearrangement of the γ-TuRC is required for its activation. Collectively, our cryo-electron microscopy reconstructions provide detailed insights into the molecular organization, assembly and activation mechanism of vertebrate γ-TuRC, and will serve as a framework for the mechanistic understanding of fundamental biological processes associated with microtubule nucleation, such as meiotic and mitotic spindle formation and centriole biogenesis4.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Xenopus , Actinas/química , Actinas/metabolismo , Actinas/ultraestructura , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Modelos Moleculares , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura
12.
Arch Biochem Biophys ; 680: 108217, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31830440

RESUMEN

[3H]Diazonamide A ([3H]DZA), prepared from the natural product isolated from Diazona angulata, bound to tubulin in larger aberrant assembly products (>500 kDa by sizing HPLC) but not to the αß-tubulin heterodimer. The binding reaction was rapid, but stoichiometry was low. Stoichiometry was enhanced up to 8-fold by preincubating the tubulin in the reaction mixture prior to adding the [3H]DZA. Although Mg2+ did not affect binding stoichiometry, the cation markedly increased the number of tubulin rings (diameter about 50 nm) observed by negative stain electron microscopy. Bound [3H]DZA did not dissociate from the tubulin oligomers despite extensive column chromatography but did dissociate in the presence of 8 M urea. With preincubated tubulin, a superstoichiometric amount of [3H]DZA appeared to bind to the tubulin oligomeric structures, consistent with observations that neither nonradiolabeled DZA nor DZA analogues inhibited binding of [3H]DZA to the tubulin oligomers. Only weak inhibition of binding was observed with multiple antimitotic compounds. In particular, no inhibition occurred with vinblastine, and the best inhibitors of those examined were dolastatin 10 and cryptophycin 1. We compared the aberrant assembly reaction induced by DZA to those induced by other antimitotic peptides and depsipeptides, in particular dolastatin 10, cryptophycin 1, and hemiasterlin, but the results obtained varied considerably in terms of requirements for maximal reactions, polymer morphology, and inhibitory effects observed with antimitotic compounds.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Oxazoles/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Animales , Antineoplásicos/farmacología , Bovinos , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura
13.
Cell ; 180(1): 165-175.e16, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31862189

RESUMEN

The γ-tubulin ring complex (γ-TuRC) is an essential regulator of centrosomal and acentrosomal microtubule formation, yet its structure is not known. Here, we present a cryo-EM reconstruction of the native human γ-TuRC at ∼3.8 Å resolution, revealing an asymmetric, cone-shaped structure. Pseudo-atomic models indicate that GCP4, GCP5, and GCP6 form distinct Y-shaped assemblies that structurally mimic GCP2/GCP3 subcomplexes distal to the γ-TuRC "seam." We also identify an unanticipated structural bridge that includes an actin-like protein and spans the γ-TuRC lumen. Despite its asymmetric architecture, the γ-TuRC arranges γ-tubulins into a helical geometry poised to nucleate microtubules. Diversity in the γ-TuRC subunits introduces large (>100,000 Å2) surfaces in the complex that allow for interactions with different regulatory factors. The observed compositional complexity of the γ-TuRC could self-regulate its assembly into a cone-shaped structure to control microtubule formation across diverse contexts, e.g., within biological condensates or alongside existing filaments.


Asunto(s)
Centro Organizador de los Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/ultraestructura , Tubulina (Proteína)/ultraestructura , Actinas/metabolismo , Microscopía por Crioelectrón/métodos , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
14.
Nat Commun ; 10(1): 5236, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748546

RESUMEN

CAMSAP/Patronins regulate microtubule minus-end dynamics. Their end specificity is mediated by their CKK domains, which we proposed recognise specific tubulin conformations found at minus ends. To critically test this idea, we compared the human CAMSAP1 CKK domain (HsCKK) with a CKK domain from Naegleria gruberi (NgCKK), which lacks minus-end specificity. Here we report near-atomic cryo-electron microscopy structures of HsCKK- and NgCKK-microtubule complexes, which show that these CKK domains share the same protein fold, bind at the intradimer interprotofilament tubulin junction, but exhibit different footprints on microtubules. NMR experiments show that both HsCKK and NgCKK are remarkably rigid. However, whereas NgCKK binding does not alter the microtubule architecture, HsCKK remodels its microtubule interaction site and changes the underlying polymer structure because the tubulin lattice conformation is not optimal for its binding. Thus, in contrast to many MAPs, the HsCKK domain can differentiate subtly specific tubulin conformations to enable microtubule minus-end recognition.


Asunto(s)
Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/ultraestructura , Naegleria/ultraestructura , Tubulina (Proteína)/ultraestructura , Microscopía por Crioelectrón , Humanos , Espectroscopía de Resonancia Magnética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Naegleria/metabolismo , Unión Proteica , Dominios Proteicos , Tubulina (Proteína)/metabolismo
15.
ACS Nano ; 13(11): 12452-12460, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31585030

RESUMEN

Boundary conditions are important for pattern formation in active matter. However, it is still not well-understood how alterations in the boundary conditions (dynamic boundary conditions) impact pattern formation. To elucidate the effect of dynamic boundary conditions on the pattern formation by active matter, we investigate an in vitro gliding assay of microtubules on a deformable soft substrate. The dynamic boundary conditions were realized by applying mechanical stress through stretching and compression of the substrate during the gliding assay. A single cycle of stretch-and-compression (relaxation) of the substrate induces perpendicular alignment of microtubules relative to the stretch axis, whereas repeated cycles resulted in zigzag patterns of microtubules. Our model shows that the orientation angles of microtubules correspond to the direction to attain smooth movement without buckling, which is further amplified by the collective migration of the microtubules. Our results provide an insight into understanding the rich dynamics in self-organization arising in active matter subjected to time-dependent boundary conditions.


Asunto(s)
Microtúbulos , Modelos Moleculares , Proteínas Motoras Moleculares , Animales , Humanos , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/ultraestructura , Estrés Mecánico , Porcinos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura
16.
Nat Commun ; 10(1): 3530, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31387998

RESUMEN

Microtubules are a vital component of the cell's cytoskeleton and their organization is crucial for healthy cell functioning. The use of label-free SH imaging of microtubules remains limited, as sensitive detection is required and the true molecular origin and main determinants required to generate SH from microtubules are not fully understood. Using advanced correlative imaging techniques, we identified the determinants of the microtubule-dependent SH signal. Microtubule polarity, number and organization determine SH signal intensity in biological samples. At the molecular level, we show that the GTP-bound tubulin dimer conformation is fundamental for microtubules to generate detectable SH signals. We show that SH imaging can be used to study the effects of microtubule-targeting drugs and proteins and to detect changes in tubulin conformations during neuronal maturation. Our data provide a means to interpret and use SH imaging to monitor changes in the microtubule network in a label-free manner.


Asunto(s)
Microscopía Intravital/métodos , Microtúbulos/ultraestructura , Imagen Molecular/métodos , Microscopía de Generación del Segundo Armónico , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Células Cultivadas , Colchicina/farmacología , Estudios de Factibilidad , Guanosina Trifosfato/metabolismo , Ratones , Microscopía Electrónica , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Neurogénesis , Cultivo Primario de Células , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura
17.
PLoS Comput Biol ; 15(8): e1007327, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31469822

RESUMEN

Thirteen tubulin protofilaments, made of αß-tubulin heterodimers, interact laterally to produce cytoskeletal microtubules. Microtubules exhibit the striking property of dynamic instability, manifested in their intermittent growth and shrinkage at both ends. This behavior is key to many cellular processes, such as cell division, migration, maintenance of cell shape, etc. Although assembly and disassembly of microtubules is known to be linked to hydrolysis of a guanosine triphosphate molecule in the pocket of ß-tubulin, detailed mechanistic understanding of corresponding conformational changes is still lacking. Here we take advantage of the recent generation of in-microtubule structures of tubulin to examine the properties of protofilaments, which serve as important microtubule assembly and disassembly intermediates. We find that initially straight tubulin protofilaments, relax to similar non-radially curved and slightly twisted conformations. Our analysis further suggests that guanosine triphosphate hydrolysis primarily affects the flexibility and conformation of the inter-dimer interface, without a strong impact on the shape or flexibility of αß-heterodimer. Inter-dimer interfaces are significantly more flexible compared to intra-dimer interfaces. We argue that such a difference in flexibility could be key for distinct stability of the plus and minus microtubule ends. The higher flexibility of the inter-dimer interface may have implications for development of pulling force by curving tubulin protofilaments during microtubule disassembly, a process of major importance for chromosome motions in mitosis.


Asunto(s)
Tubulina (Proteína)/química , Fenómenos Biomecánicos , Biología Computacional , Microscopía por Crioelectrón , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Simulación de Dinámica Molecular , Análisis de Componente Principal , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura
18.
Nat Commun ; 10(1): 2589, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197138

RESUMEN

X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.


Asunto(s)
Electrones , Rayos Láser , Microtúbulos/ultraestructura , Imagen Molecular/métodos , Tubulina (Proteína)/ultraestructura , Algoritmos , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador , Imagen Molecular/instrumentación , Dispersión de Radiación , Sincrotrones , Rayos X
19.
Bioessays ; 41(3): e1800194, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30730055

RESUMEN

Microtubules form a highly dynamic filament network in all eukaryotic cells. Individual microtubules grow by tubulin dimer subunit addition and frequently switch between phases of growth and shortening. These unique dynamics are powered by GTP hydrolysis and drive microtubule network remodeling, which is central to eukaryotic cell biology and morphogenesis. Yet, our knowledge of the molecular events at growing microtubule ends remains incomplete. Here, recent ultrastructural, biochemical and cell biological data are integrated to develop a realistic model of growing microtubule ends comprised of structurally distinct but biochemically overlapping zones. Proteins that recognize microtubule lattice conformations associated with specific tubulin guanosine nucleotide states may independently control major structural transitions at growing microtubule ends. A model is proposed in which tubulin dimer addition and subsequent closure of the MT wall are optimized in cells to achieve rapid physiological microtubule growth.


Asunto(s)
Microtúbulos/metabolismo , Tubulina (Proteína)/química , Animales , Línea Celular Tumoral , Microscopía por Crioelectrón , Proteínas de Dominio Doblecortina , Guanosina/química , Guanosina Trifosfato/química , Humanos , Hidrólisis , Mamíferos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Morfogénesis , Neuropéptidos/metabolismo , Polimerizacion , Unión Proteica , Conformación Proteica , Tubulina (Proteína)/ultraestructura , Moduladores de Tubulina/metabolismo
20.
Nano Lett ; 18(12): 7435-7440, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30431282

RESUMEN

Liquid-phase electron microscopy (LPEM) is capable of imaging native (unstained) protein structure in liquid, but the achievable spatial resolution is limited by radiation damage. This damaging effect is more pronounced when targeting small molecular features than for larger structures. The matter is even more complicated because the critical dose that a sample can endure before radiation damage not only varies between proteins but also critically depends on the experimental conditions. Here, we examined the effect of the electron beam on the observed protein structure for optimized conditions using a liquid sample enclosure assembled from graphene sheets. It has been shown that graphene can reduce the damaging effect of electrons on biological materials. We used radiation sensitive microtubule proteins and investigated the radiation damage on these structures as a function of the spatial frequencies of the observed features with transmission electron microscopy (TEM). Microtubule samples were also examined using cryo-electron microscopy (cryo-TEM) for comparison. We used an electron flux of 11 ± 1-16 ± 1 e-/Å2s and obtained a series of images from the same sample region. Our results show that graphene-encapsulated microtubules can maintain their structural features of spatial frequencies of up to 0.20 nm-1 (5 nm), reflecting protofilaments for electron densities of up to 7.2 ± 1.4 × 102 e-/Å2, an order of magnitude higher than measured for frozen microtubules in amorphous ice.


Asunto(s)
Grafito/química , Microscopía Electrónica de Transmisión/métodos , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/ultraestructura , Animales , Microscopía por Crioelectrón/métodos , Electrones , Proteínas de Microtúbulos/química , Microtúbulos/química , Modelos Moleculares , Conformación Proteica , Porcinos , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...