Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Microbiome ; 12(1): 125, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004755

RESUMEN

BACKGROUND: Soybean cyst nematodes (SCN) as animal parasites of plants are not usually interested in killing the host but are rather focused on completing their life cycle to increase population, resulting in substantial yield losses. Remarkably, some agricultural soils after long-term crop monoculture show a significant decline in SCN densities and suppress disease in a sustainable and viable manner. However, relatively little is known about the microbes and mechanisms operating against SCN in such disease-suppressive soils. RESULTS: Greenhouse experiments showed that suppressive soils (S) collected from two provinces of China and transplantation soils (CS, created by mixing 10% S with 90% conducive soils) suppressed SCN. However, SCN suppressiveness was partially lost or completely abolished when S soils were treated with heat (80 °C) and formalin. Bacterial community analysis revealed that the specific suppression in S and CS was mainly associated with the bacterial phylum Bacteroidetes, specifically due to the enrichment of Chitinophaga spp. and Dyadobacter sp., in the cysts. SCN cysts colonized by Chitinophaga spp. showed dramatically reduced egg hatching, with unrecognizable internal body organization of juveniles inside the eggshell due to chitinase activity. Whereas, Dyadobacter sp. cells attached to the surface coat of J2s increased soybean resistance against SCN by triggering the expression of defence-associated genes. The disease-suppressive potential of these bacteria was validated by inoculating them into conducive soil. The Dyadobacter strain alone or in combination with Chitinophaga strains significantly decreased egg densities after one growing cycle of soybeans. In contrast, Chitinophaga strains alone required more than one growing cycle to significantly reduce SCN egg hatching and population density. CONCLUSION: This study revealed how soybean monoculture for decades induced microbiota homeostasis, leading to the formation of SCN-suppressive soil. The high relative abundance of antagonistic bacteria in the cyst suppressed the SCN population both directly and indirectly. Because uncontrolled proliferation will likely lead to quick demise due to host population collapse, obligate parasites like SCN may have evolved to modulate virulence/proliferation to balance these conflicting needs. Video Abstract.


Asunto(s)
Glycine max , Microbiota , Enfermedades de las Plantas , Microbiología del Suelo , Tylenchoidea , Animales , Glycine max/parasitología , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Suelo/parasitología , China , Bacteroidetes/genética , Bacterias/clasificación , Bacterias/genética
2.
BMC Plant Biol ; 24(1): 664, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992595

RESUMEN

BACKGROUND: Meloidogyne incognita is one of the most important plant-parasitic nematodes and causes tremendous losses to the agricultural economy. Light is an important living factor for plants and pathogenic organisms, and sufficient light promotes root-knot nematode infection, but the underlying mechanism is still unclear. RESULTS: Expression level and genetic analyses revealed that the photoreceptor genes PHY, CRY, and PHOT have a negative impact on nematode infection. Interestingly, ELONGATED HYPOCOTYL5 (HY5), a downstream gene involved in the regulation of light signaling, is associated with photoreceptor-mediated negative regulation of root-knot nematode resistance. ChIP and yeast one-hybrid assays supported that HY5 participates in plant-to-root-knot nematode responses by directly binding to the SWEET negative regulatory factors involved in root-knot nematode resistance. CONCLUSIONS: This study elucidates the important role of light signaling pathways in plant resistance to nematodes, providing a new perspective for RKN resistance research.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Enfermedades de las Plantas , Tylenchoidea , Animales , Tylenchoidea/fisiología , Enfermedades de las Plantas/parasitología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/parasitología , Arabidopsis/genética , Arabidopsis/metabolismo , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Transducción de Señal , Resistencia a la Enfermedad/genética , Luz , Regulación de la Expresión Génica de las Plantas , Fototransducción
3.
Sci Rep ; 14(1): 15547, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969662

RESUMEN

Root-knot nematodes (RKNs) are a vital pest that causes significant yield losses and economic damage to potato plants. The use of chemical pesticides to control these nematodes has led to environmental concerns and the development of resistance in the nematode populations. Endophytic fungi offer an eco-friendly alternative to control these pests and produce secondary metabolites that have nematicidal activity against RKNs. The objective of this study is to assess the efficacy of Aspergillus flavus (ON146363), an entophyte fungus isolated from Trigonella foenum-graecum seeds, against Meloidogyne incognita in filtered culture broth using GC-MS analysis. Among them, various nematicidal secondary metabolites were produced: Gadoleic acid, Oleic acid di-ethanolamide, Oleic acid, and Palmitic acid. In addition, biochemical compounds such as Gallic acid, Catechin, Protocatechuic acid, Esculatin, Vanillic acid, Pyrocatechol, Coumarine, Cinnamic acid, 4, 3-indol butyl acetic acid and Naphthyl acetic acid by HPLC. The fungus was identified through morphological and molecular analysis, including ITS 1-4 regions of ribosomal DNA. In vitro experiments showed that culture filtrate of A. flavus had a variable effect on reducing the number of egg hatchings and larval mortality, with higher concentrations showing greater efficacy than Abamectin. The fungus inhibited the development and multiplication of M. incognita in potato plants, reducing the number of galls and eggs by 90% and 89%, respectively. A. flavus increased the activity of defense-related enzymes Chitinas, Catalyse, and Peroxidase after 15, 45, and 60 days. Leaching of the concentrated culture significantly reduced the second juveniles' stage to 97% /250 g soil and decreased the penetration of nematodes into the roots. A. flavus cultural filtrates via soil spraying improved seedling growth and reduced nematode propagation, resulting in systemic resistance to nematode infection. Therefore, A. flavus can be an effective biological control agent for root-knot nematodes in potato plants. This approach provides a sustainable solution for farmers and minimizes the environmental impact.


Asunto(s)
Aspergillus flavus , Endófitos , Control Biológico de Vectores , Enfermedades de las Plantas , Solanum tuberosum , Tylenchoidea , Solanum tuberosum/parasitología , Solanum tuberosum/microbiología , Animales , Endófitos/fisiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Tylenchoidea/efectos de los fármacos , Tylenchoidea/fisiología , Control Biológico de Vectores/métodos , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Aspergillus flavus/efectos de los fármacos , Raíces de Plantas/parasitología , Raíces de Plantas/microbiología , Antinematodos/farmacología , Antinematodos/metabolismo , Trigonella/microbiología
4.
Mol Plant Pathol ; 25(7): e13491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961768

RESUMEN

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.


Asunto(s)
Retículo Endoplásmico , Tylenchoidea , Animales , Retículo Endoplásmico/metabolismo , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Inmunidad de la Planta , Nicotiana/parasitología , Nicotiana/inmunología , Nicotiana/genética , Solanum lycopersicum/parasitología , Solanum lycopersicum/inmunología , Solanum lycopersicum/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Raíces de Plantas/parasitología , Raíces de Plantas/inmunología , Interacciones Huésped-Parásitos
5.
Plant Cell Rep ; 43(7): 178, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907748

RESUMEN

KEY MESSAGE: The study demonstrates the successful management of Meloidogyne incognita in eggplant using Mi-flp14 RNA interference, showing reduced nematode penetration and reproduction without off-target effects across multiple generations. Root-knot nematode, Meloidogyne incognita, causes huge yield losses worldwide. Neuromotor function in M. incognita governed by 19 neuropeptides is vital for parasitism and parasite biology. The present study establishes the utility of Mi-flp14 for managing M. incognita in eggplant in continuation of our earlier proof of concept in tobacco (US patent US2015/0361445A1). Mi-flp14 hairpin RNA construct was used for generating 19 independent transgenic eggplant events. PCR and Southern hybridization analysis confirmed transgene integration and its orientation, while RT-qPCR and Northern hybridization established the generation of dsRNA and siRNA of Mi-flp14. In vitro and in vivo bio-efficacy analysis of single-copy events against M. incognita showed reduced nematode penetration and development at various intervals that negatively impacted reproduction. Interestingly, M. incognita preferred wild-type plants over the transgenics even when unbiased equal opportunity was provided for the infection. A significant reduction in disease parameters was observed in transgenic plants viz., galls (40-48%), females (40-50%), egg masses (35-40%), eggs/egg mass (50-55%), and derived multiplication factor (60-65%) compared to wild type. A unique demonstration of perturbed expression of Mi-flp14 in partially penetrated juveniles and female nematodes established successful host-mediated RNAi both at the time of penetration even before the nematodes started withdrawing plant nutrients and later stage, respectively. The absence of off-target effects in transgenic plants was supported by the normal growth phenotype of the plants and T-DNA integration loci. Stability in the bio-efficacy against M. incognita across T1- to T4-generation transgenic plants established the utility of silencing Mi-flp14 for nematode management. This study demonstrates the significance of targeting Mi-flp14 in eggplant for nematode management, particularly to address global agricultural challenges posed by M. incognita.


Asunto(s)
Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Interferencia de ARN , Solanum melongena , Tylenchoidea , Animales , Tylenchoidea/patogenicidad , Tylenchoidea/fisiología , Solanum melongena/genética , Solanum melongena/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Interacciones Huésped-Parásitos/genética
6.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928010

RESUMEN

The identification of novel drug targets in plant-parasitic nematodes (PPNs) is imperative due to the loss of traditional nematicides and a lack of replacements. Chemosensation, which is pivotal for PPNs in locating host roots, has become a focus in nematode behavioral research. However, its underlying molecular basis is still indistinct in such a diverse group of PPNs. To characterize genes participating in chemosensation in the Javanese root-knot nematode Meloidogyne javanica, RNA-sequencing of the second-stage juveniles (J2s) treated with tomato root exudate (TRE) for 1 h and 6 h was performed. Genes related to chemosensation in M. javanica mainly responded to TRE treatment at 1 h. Moreover, a gene ontology (GO) analysis underscored the significance of the neuropeptide G protein-coupled receptor signaling pathway. Consequently, the repertoire of putative neuropeptides in M. javanica, including FMRFamide-like peptides (FLPs), insulin-like peptides (ILPs), and neuropeptide-like peptides (NLPs), were outlined based on a homology analysis. The gene Mjflp-14a, harboring two neuropeptides, was significantly up-regulated at 1 h TRE treatment. Through peptide synthesis and J2 treatment, one of the two neuropeptides (MjFLP-14-2) was proven to influence the J2 chemotaxis towards tomato root tips. Overall, our study reinforces the potential of nematode neuropeptides as novel targets and tools for root-knot nematode control.


Asunto(s)
Neuropéptidos , Raíces de Plantas , Solanum lycopersicum , Tylenchoidea , Animales , Tylenchoidea/fisiología , Neuropéptidos/metabolismo , Neuropéptidos/genética , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Solanum lycopersicum/parasitología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Quimiotaxis , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética
7.
Planta ; 260(2): 36, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922545

RESUMEN

MAIN CONCLUSION: Integrated management strategies, including novel nematicides and resilient cultivars, offer sustainable solutions to combat root-knot nematodes, crucial for safeguarding global agriculture against persistent threats. Root-knot nematodes (RKN) pose a significant threat to a diverse range of host plants, with their obligatory endoparasitic nature leading to substantial agricultural losses. RKN spend much of their lives inside or in contact by secreting plant cell wall-modifying enzymes resulting in the giant cell development for establishing host-parasite relationships. Additionally, inflicting physical harm to host plants, RKN also contributes to disease complexes creation with fungi and bacteria. This review comprehensively explores the origin, history, distribution, and physiological races of RKN, emphasizing their economic impact on plants through gall formation. Management strategies, ranging from cultural and physical to biological and chemical controls, along with resistance mechanisms and marker-assisted selection, are explored. While recognizing the limitations of traditional nematicides, recent breakthroughs in non-fumigant alternatives like fluensulfone, spirotetramat, and fluopyram offer promising avenues for sustainable RKN management. Despite the success of resistance mechanisms like the Mi gene, challenges persist, prompting the need for integrative approaches to tackle Mi-virulent isolates. In conclusion, the review stresses the importance of innovative and resilient control measures for sustainable agriculture, emphasizing ongoing research to address evolving challenges posed by RKN. The integration of botanicals, resistant cultivars, and biological controls, alongside advancements in non-fumigant nematicides, contributes novel insights to the field, laying the ground work for future research directions to ensure the long-term sustainability of agriculture in the face of persistent RKN threats.


Asunto(s)
Agricultura , Enfermedades de las Plantas , Raíces de Plantas , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/parasitología , Agricultura/métodos , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Interacciones Huésped-Parásitos , Resistencia a la Enfermedad , Productos Agrícolas/parasitología , Antinematodos/farmacología
8.
Plant Physiol Biochem ; 213: 108755, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875777

RESUMEN

Pathogen-secreted polygalacturonases (PGs) alter plant cell wall structure by cleaving the α-(1 â†’ 4) linkages between D-galacturonic acid residues in homogalacturonan (HG), macerating the cell wall, facilitating infection. Plant PG inhibiting proteins (PGIPs) disengage pathogen PGs, impairing infection. The soybean cyst nematode, Heterodera glycines, obligate root parasite produces secretions, generating a multinucleate nurse cell called a syncytium, a byproduct of the merged cytoplasm of 200-250 root cells, occurring through cell wall maceration. The common cytoplasmic pool, surrounded by an intact plasma membrane, provides a source from which H. glycines derives nourishment but without killing the parasitized cell during a susceptible reaction. The syncytium is also the site of a naturally-occurring defense response that happens in specific G. max genotypes. Transcriptomic analyses of RNA isolated from the syncytium undergoing the process of defense have identified that one of the 11 G. max PGIPs, GmPGIP11, is expressed during defense. Functional transgenic analyses show roots undergoing GmPGIP11 overexpression (OE) experience an increase in its relative transcript abundance (RTA) as compared to the ribosomal protein 21 (GmRPS21) control, leading to a decrease in H. glycines parasitism as compared to the overexpression control. The GmPGIP11 undergoing RNAi experiences a decrease in its RTA as compared to the GmRPS21 control with transgenic roots experiencing an increase in H. glycines parasitism as compared to the RNAi control. Pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) components are shown to influence GmPGIP11 expression while numerous agricultural crops are shown to have homologs.


Asunto(s)
Glycine max , Proteínas de Plantas , Raíces de Plantas , Tylenchoidea , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Glycine max/parasitología , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Animales , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/parasitología , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/parasitología , Interacciones Huésped-Parásitos
9.
BMC Plant Biol ; 24(1): 515, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851681

RESUMEN

BACKGROUND: Plant-parasitic root-knot nematode (Meloidogyne incognita) causes global yield loss in agri- and horticultural crops. Nematode management options rely on chemical method. However, only a handful of nematicides are commercially available. Resistance breeding efforts are not sustainable because R gene sources are limited and nematodes have developed resistance-breaking populations against the commercially available Mi-1.2 gene-expressing tomatoes. RNAi crops that manage nematode infection are yet to be commercialized because of the regulatory hurdles associated with transgenic crops. The deployment of the CRISPR/Cas9 system to improve nematode tolerance (by knocking out the susceptibility factors) in plants has emerged as a feasible alternative lately. RESULTS: In the present study, a M. incognita-responsive susceptibility (S) gene, amino acid permease (AAP6), was characterized from the model plant Arabidodpsis thaliana by generating the AtAAP6 overexpression line, followed by performing the GUS reporter assay by fusing the promoter of AtAAP6 with the ß-glucuronidase (GUS) gene. Upon challenge inoculation with M. incognita, overexpression lines supported greater nematode multiplication, and AtAAP6 expression was inducible to the early stage of nematode infection. Next, using CRISPR/Cas9, AtAAP6 was selectively knocked out without incurring any growth penalty in the host plant. The 'Cas9-free' homozygous T3 line was challenge inoculated with M. incognita, and CRISPR-edited A. thaliana plants exhibited considerably reduced susceptibility to nematode infection compared to the non-edited plants. Additionally, host defense response genes were unaltered between edited and non-edited plants, implicating the direct role of AtAAP6 towards nematode susceptibility. CONCLUSION: The present findings enrich the existing literature on CRISPR/Cas9 research in plant-nematode interactions, which is quite limited currently while compared with the other plant-pathogen interaction systems.


Asunto(s)
Arabidopsis , Sistemas CRISPR-Cas , Enfermedades de las Plantas , Tylenchoidea , Animales , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Susceptibilidad a Enfermedades , Técnicas de Inactivación de Genes , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Tylenchoidea/fisiología
10.
Sci Rep ; 14(1): 10030, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693283

RESUMEN

Ditylenchus destructor is a migratory plant-parasitic nematode that severely harms many agriculturally important crops. The control of this pest is difficult, thus efficient strategies for its management in agricultural production are urgently required. Cathepsin L-like cysteine protease (CPL) is one important protease that has been shown to participate in various physiological and pathological processes. Here we decided to characterize the CPL gene (Dd-cpl-1) from D. destructor. Analysis of Dd-cpl-1 gene showed that Dd-cpl-1 gene contains a signal peptide, an I29 inhibitor domain with ERFNIN and GNFD motifs, and a peptidase C1 domain with four conserved active residues, showing evolutionary conservation with other nematode CPLs. RT-qPCR revealed that Dd-cpl-1 gene displayed high expression in third-stage juveniles (J3s) and female adults. In situ hybridization analysis demonstrated that Dd-cpl-1 was expressed in the digestive system and reproductive organs. Silencing Dd-cpl-1 in 1-cell stage eggs of D. destructor by RNAi resulted in a severely delay in development or even in abortive morphogenesis during embryogenesis. The RNAi-mediated silencing of Dd-cpl-1 in J2s and J3s resulted in a developmental arrest phenotype in J3 stage. In addition, silencing Dd-cpl-1 gene expression in female adults led to a 57.43% decrease in egg production. Finally, Dd-cpl-1 RNAi-treated nematodes showed a significant reduction in host colonization and infection. Overall, our results indicate that Dd-CPL-1 plays multiple roles in D. destructor ontogenesis and could serve as a new potential target for controlling D. destructor.


Asunto(s)
Catepsina L , Animales , Catepsina L/genética , Catepsina L/metabolismo , Interferencia de ARN , Femenino , Silenciador del Gen , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Filogenia , Tylenchoidea/genética , Tylenchoidea/fisiología , Secuencia de Aminoácidos
11.
Mol Plant Pathol ; 25(5): e13461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695657

RESUMEN

Mitogen-activated protein kinase (MPK) cascades play central signalling roles in plant immunity and stress response. The soybean orthologue of MPK kinase2 (GmMKK2) was recently identified as a potential signalling node whose expression is upregulated in the feeding site induced by soybean cyst nematode (SCN, Heterodera glycines). To investigate the role of GmMKK2 in soybean-SCN interactions, we overexpressed a catabolically inactive variant referred to as kinase-dead variant (KD-GmMKK2) using transgenic hairy roots. KD-GmMKK2 overexpression caused significant reduction in soybean susceptibility to SCN, while overexpression of the wild-type variant (WT-GmMKK2) exhibited no effect on susceptibility. Transcriptome analysis indicated that KD-GmMKK2 overexpressing plants are primed for SCN resistance via constitutive activation of defence signalling, particularly those related to chitin, respiratory burst, hydrogen peroxide and salicylic acid. Phosphoproteomic profiling of the WT-GmMKK2 and KD-GmMKK2 root samples upon SCN infection resulted in the identification of 391 potential targets of GmMKK2. These targets are involved in a broad range of biological processes, including defence signalling, vesicle fusion, chromatin remodelling and nuclear organization among others. Furthermore, GmMKK2 mediates phosphorylation of numerous transcriptional and translational regulators, pointing to the presence of signalling shortcuts besides the canonical MAPK cascades to initiate downstream signalling that eventually regulates gene expression and translation initiation. Finally, the functional requirement of specific phosphorylation sites for soybean response to SCN infection was validated by overexpressing phospho-mimic and phospho-dead variants of two differentially phosphorylated proteins SUN1 and IDD4. Together, our analyses identify GmMKK2 impacts on signalling modules that regulate soybean response to SCN infection.


Asunto(s)
Glycine max , Enfermedades de las Plantas , Transducción de Señal , Tylenchoidea , Glycine max/parasitología , Glycine max/genética , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética
12.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732085

RESUMEN

Meloidogyne hapla is one of the most important nematode pathogens. It is a sedentary, biotrophic parasite of plants that overwinters in the soil or in diseased roots. The development of M. hapla is temperature dependent. Numerous studies have been performed on the effect of temperature on the development of M. hapla, but only a few of them analyzed the heat shock protein (hsp) genes. The aim of the study was to perform expression profiling of eight hsp genes (Mh-hsp90, Mh-hsp1, Mh-hsp4, Mh-hsp6, Mh-hsp60, Mh-dnj19, Mh-hsp43, and Mh-hsp12.2) at two development stages of M. hapla, i.e., in eggs and second-stage juveniles (J2). The eggs and J2 were incubated under cold stress (5 °C), heat stress (35 °C, 40 °C), and non-stress (10 °C, 20 °C, and 30 °C) conditions. Expression profiling was performed by qPCR. It was demonstrated that only two genes, Mh-hsp60 and Mh-dnj19, have been upregulated by heat and cold stress at both development stages. Heat stress upregulated the expression of more hsp genes than cold stress did. The level of upregulation of most hsp genes was more marked in J2 than in eggs. The obtained results suggest that the Mh-hsp90 and Mh-hsp1 genes can be used as bioindicators of environmental impacts on nematodes of the Meloidogyne genus.


Asunto(s)
Proteínas de Choque Térmico , Tylenchoidea , Tylenchoidea/fisiología , Animales , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Óvulo/metabolismo , Óvulo/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica
13.
Plant Cell Rep ; 43(6): 138, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733408

RESUMEN

KEY MESSAGE: The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 µM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.


Asunto(s)
Glycine max , Enfermedades de las Plantas , Salicilatos , Tylenchoidea , Animales , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Glycine max/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Salicilatos/metabolismo , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad
14.
Plant Physiol Biochem ; 212: 108706, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776824

RESUMEN

Trichoderma spp. can enhance plant resistance against a wide range of biotic stressors. However, the fundamental mechanisms by which Trichoderma enhances plant resistance against Meloidogyne incognita, known as root-knot nematodes (RKNs), are still unclear. Here, we identified a strain of Trichoderma asperellum (T141) that could effectively suppress RKN infestation in tomato (Solanum lycopersicum L.). Nematode infestation led to an increase in the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) in roots but pre-inoculation with T141 significantly decreased oxidative stress. The reduction in ROS and MDA was accompanied by an increase in the activity of antioxidant enzymes and the accumulation of flavonoids and phenols. Moreover, split root test-based analysis showed that T141 inoculation in local roots before RKN inoculation increased the concentration of phytohormone jasmonate (JA) and the transcripts of JA synthesis and signaling-related genes in distant roots. UPLC-MS/MS-based metabolomics analysis identified 1051 differentially accumulated metabolites (DAMs) across 4 pairwise comparisons in root division test, including 81 flavonoids. Notably, 180 DAMs were found in comparison between RKN and T141-RKN, whereas KEGG annotation and enrichment analysis showed that the secondary metabolic pathways, especially the flavonoid biosynthesis, played a key role in the T141-induced systemic resistance to RKNs. The role of up-regulated flavonoids in RKN mortality was further verified by in vitro experiments with the exogenous treatment of kaempferol, hesperidin and rutin on J2-stage RKNs. Our results revealed a critical mechanism by which T141 induced resistance of tomato plants against the RKNs by systemically promoting secondary metabolism in distant roots.


Asunto(s)
Resistencia a la Enfermedad , Flavonoides , Enfermedades de las Plantas , Raíces de Plantas , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Flavonoides/metabolismo , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Hypocreales/metabolismo , Resistencia Sistémica Adquirida de la Planta
15.
Biochem Biophys Res Commun ; 720: 150086, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38761478

RESUMEN

Root-knot nematode (RKN) is one of the most damaging plant pathogen in the world. They exhibit a wide host range and cause serious crop losses. The cell wall, encasing every plant cell, plays a crucial role in defending of RKN invasion. Expansins are a group of cell wall proteins inducing cell wall loosening and extensibility. They are widely involved in the regulation of plant growth and the response to biotic and abiotic stresses. In this study, we have characterized the biological function of tobacco (Nicotiana tabacum) NtEXPA7, the homologue of Solyc08g080060.2 (SlEXPA18), of which the transcription level was significantly reduced in susceptible tomato upon RKN infection. The expression of NtEXPA7 was up-regulated after inoculation of RKNs. The NtEXPA7 protein resided in the cell wall. Overexpression of NtEXPA7 promoted the seedling growth of transgenic tobacco. Meanwhile the increased expression of NtEXPA7 was beneficial to enhance the resistance against RKNs. This study expands the understanding of biological role of expansin in coordinate plant growth and disease resistance.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Plantones , Nicotiana/parasitología , Nicotiana/genética , Nicotiana/metabolismo , Animales , Plantones/parasitología , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Plantas Modificadas Genéticamente/parasitología , Tylenchoidea/fisiología , Pared Celular/metabolismo , Pared Celular/parasitología , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética
16.
BMC Plant Biol ; 24(1): 469, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811862

RESUMEN

BACKGROUND: Green nanoparticles are considered to be an effective strategy for improving phytochemicals and raising productivity in soil infected by root-knot nematodes. This work aims to understand the characteristics of certain nanomaterials, including non-iron (nFe), green non-iron (GnFe), and green magnetic nanobiochar (GMnB), and the effect of adding them at 3 and 6 mg kg- 1 on phytochemicals and tomato (Solanum lycopersicum) plant growth in soils infected by root-knot nematodes. RESULTS: Spectroscopic characterization of nanomaterials showed that nFe, GnFe, and GMnB contained functional groups (e.g., Fe-O, S-H, C-H, OH, and C = C) and possessed a large surface area. Application of GMB at 6 mg kg- 1 was the most efficient treatment for increasing the phytochemicals of the tomato plant, with a rise of 123.2% in total phenolic, 194.7% in total flavonoids, 89.7% in total carbohydrate, 185.2% in total free amino acids, and 165.1% in total tannin compared to the untreated soil. Tomato plant growth and attributes increased with increasing levels of soil nano-amendment in this investigation. The addition of GnFe3 and GnFe6 increased the reduction of root galls of root-knot nematodes by 22.44% and 17.76% compared with nFe3 and nFe6, respectively. The inclusion of the examined soil nano-amendments increased phytochemicals and reduced the total number of root-knot nematodes on tomato plants at varying rates, which played a significant role in enhancing tomato growth. CONCLUSIONS: In conclusion, treating tomato plants with GnFe or GMnB can be used as a promising green nanomaterial to eliminate root-knot nematodes and increase tomato yield in sandy clay loam soil.


Asunto(s)
Fitoquímicos , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitología , Solanum lycopersicum/crecimiento & desarrollo , Animales , Fitoquímicos/química , Tylenchoidea/fisiología , Tylenchoidea/efectos de los fármacos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Nanopartículas Magnéticas de Óxido de Hierro/química , Resistencia a la Enfermedad , Raíces de Plantas/parasitología , Suelo/parasitología , Suelo/química
17.
BMC Plant Biol ; 24(1): 451, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789940

RESUMEN

Root-knot nematodes (RKNs) infect host plants and obtain nutrients such as sugars for their own development. Therefore, inhibiting the nutrient supply to RKNs may be an effective method for alleviating root-knot nematode disease. At present, the pathway by which sucrose is unloaded from the phloem cells to giant cells (GCs) in root galls and which genes related to sugar metabolism and transport play key roles in this process are unclear. In this study, we found that sugars could be unloaded into GCs only from neighboring phloem cells through the apoplastic pathway. With the development of galls, the contents of sucrose, fructose and glucose in the galls and adjacent tissue increased gradually. SUT1, SUT2, SWEET7a, STP10, SUS3 and SPS1 may provide sugar sources for GCs, while STP1, STP2 and STP12 may transport more sugar to phloem parenchyma cells. At the early stage of Meloidogyne incognita infestation, the sucrose content in tomato roots and leaves increased, while the glucose and fructose contents decreased. SWEET7a, SPS1, INV-INH1, INV-INH2, SUS1 and SUS3 likely play key roles in root sugar delivery. These results elucidated the pathway of sugar unloading in tomato galls and provided an important theoretical reference for eliminating the sugar source of RKNs and preventing root-knot nematode disease.


Asunto(s)
Raíces de Plantas , Tumores de Planta , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/fisiología , Animales , Solanum lycopersicum/parasitología , Solanum lycopersicum/metabolismo , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Tumores de Planta/parasitología , Enfermedades de las Plantas/parasitología , Sacarosa/metabolismo , Azúcares/metabolismo , Metabolismo de los Hidratos de Carbono
18.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791195

RESUMEN

Pinus thunbergii Parl. is an economically and medicinally important plant, as well as a world-renowned horticultural species of the Pinus genus. Pine wilt disease is a dangerous condition that affects P. thunbergii. However, understanding of the genetics underlying resistance to this disease is poor. Our findings reveal that P. thunbergii's resistance mechanism is based on differential transcriptome responses generated by the early presence of the pathogen Bursaphelenchus xylophilus, also known as the pine wood nematode. A transcriptome analysis (RNA-seq) was performed to examine gene expression in shoot tissues from resistant and susceptible P. thunbergii trees. RNA samples were collected from the shoots of inoculated pines throughout the infection phases by the virulent Bursaphelenchus xylophilus AMA3 strain. The photosynthesis and plant-pathogen interaction pathways were significantly enriched in the first and third days after infection. Flavonoid biosynthesis was induced in response to late infestation (7 and 14 days post-infestation). Calmodulin, RBOH, HLC protein, RPS, PR1, and genes implicated in phytohormone crosstalk (e.g., SGT1, MYC2, PP2C, and ERF1) showed significant alterations between resistant and susceptible trees. Furthermore, salicylic acid was found to aid pine wood nematodes tolerate adverse conditions and boost reproduction, which may be significant for pine wood nematode colonization within pines. These findings provide new insights into how host defenses overcame pine wood nematode infection in the early stage, which could potentially contribute to the development of novel strategies for the control of pine wilt disease.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Pinus , Enfermedades de las Plantas , Transcriptoma , Pinus/parasitología , Pinus/genética , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad
19.
Plant Dis ; 108(5): 1252-1260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709560

RESUMEN

Strategies for plant nutrient resource allocation under Meloidogyne spp. infection and different soil nutrient conditions are not well established. In response, the objectives of this research are to determine if increased vegetative growth of Solanum lycopersicon var. cerasiforme (cherry tomato) under high nutrition enhances resistance to M. incognita and whether adaptive strategies for growth, reproduction, and nutrient uptake by cherry tomato infected with M. incognita alter nutrient availability. The study was conducted under greenhouse conditions using high, medium, and low soil nutrient regimes. The research results indicate that the total biomass of cherry tomato was less in the presence of M. incognita infection under all three nutrient conditions, compared with plants grown in the absence of this nematode. However, the increase in the root/shoot ratio indicates that cherry tomato allocated more resources to belowground organs. Under the combined impacts of M. incognita infection and low or medium soil nutrition, the nitrogen content in root system tissues and the phosphorus content in shoot system tissues were increased to meet the nutrient requirements of galled root tissue and plant fruit production. It is suggested that plants increase the allocation of reproductive resources to fruits by improving phosphorus transportation to the aboveground reproductive tissues under low and medium nutrient conditions. Overall, the study highlights a significant impact of soil nutrient levels on the growth and resource allocation associated with M. incognita-infected cherry tomato. In response, soil nutrient management is another practice for reducing the impacts of plant-parasitic nematodes on crop production.


Asunto(s)
Enfermedades de las Plantas , Raíces de Plantas , Suelo , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/fisiología , Solanum lycopersicum/parasitología , Animales , Suelo/química , Suelo/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/parasitología , Nitrógeno/metabolismo , Biomasa , Fósforo/metabolismo , Fósforo/análisis
20.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692851

RESUMEN

AIMS: Clonostachys rosea is a well-known mycoparasite that has recently been investigated as a bio-based alternative to chemical nematicides for the control of plant-parasitic nematodes. In the search for a promising biocontrol agent, the ability of the C. rosea strain PHP1701 to control the southern root-knot nematode Meloidogyne incognita was tested. METHODS AND RESULTS: Control of M. incognita in vitro and in soil by C. rosea strain PHP1701 was significant and concentration dependent. Small pot greenhouse trials confirmed a significant reduction in tomato root galling compared to the untreated control. In a large greenhouse trial, the control effect was confirmed in early and mid-season. Tomato yield was higher when the strain PHP1701 was applied compared to the untreated M. incognita-infected control. However, the yield of non-M. incognita-infected tomato plants was not reached. A similar reduction in root galling was also observed in a field trial. CONCLUSIONS: The results highlight the potential of this fungal strain as a promising biocontrol agent for root-knot nematode control in greenhouses, especially as part of an integrated pest management approach. We recommend the use of C. rosea strain PHP1701 for short-season crops and/or to reduce M. incognita populations on fallow land before planting the next crop.


Asunto(s)
Hypocreales , Control Biológico de Vectores , Enfermedades de las Plantas , Raíces de Plantas , Microbiología del Suelo , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitología , Animales , Tylenchoidea/fisiología , Raíces de Plantas/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Hypocreales/fisiología , Suelo/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...