Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.760
Filtrar
1.
Int J Mol Med ; 54(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940355

RESUMEN

The ubiquitin (Ub)­proteasome system (UPS) plays a pivotal role in maintaining protein homeostasis and function to modulate various cellular processes including skeletal cell differentiation and bone homeostasis. The Ub ligase E3 promotes the transfer of Ub to the target protein, especially transcription factors, to regulate the proliferation, differentiation and survival of bone cells, as well as bone formation. In turn, the deubiquitinating enzyme removes Ub from modified substrate proteins to orchestrate bone remodeling. As a result of abnormal regulation of ubiquitination, bone cell differentiation exhibits disorder and then bone homeostasis is affected, consequently leading to osteoporosis. The present review discussed the role and mechanism of UPS in bone remodeling. However, the specific mechanism of UPS in the process of bone remodeling is still not fully understood and further research is required. The study of the mechanism of action of UPS can provide new ideas and methods for the prevention and treatment of osteoporosis. In addition, the most commonly used osteoporosis drugs that target ubiquitination processes in the clinic are discussed in the current review.


Asunto(s)
Osteoporosis , Ubiquitina , Ubiquitinación , Humanos , Osteoporosis/metabolismo , Osteoporosis/patología , Animales , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Remodelación Ósea , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cells ; 13(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38891087

RESUMEN

Ubiquitin-specific protease 14 (USP14), one of the three major proteasome-associated deubiquitinating enzymes (DUBs), is known to be activated by the AKT-mediated phosphorylation at Ser432. Thereby, AKT can regulate global protein degradation by controlling the ubiquitin-proteasome system (UPS). However, the exact molecular mechanism of USP14 activation by AKT phosphorylation at the atomic level remains unknown. By performing the molecular dynamics (MD) simulation of the USP14 catalytic domain at three different states (inactive, active, and USP14-ubiquitin complex), we characterized the change in structural dynamics by phosphorylation. We observed that the Ser432 phosphorylation induced substantial conformational changes of USP14 in the blocking loop (BL) region to fold it from an open loop into a ß-sheet, which is critical for USP14 activation. Furthermore, phosphorylation also increased the frequency of critical hydrogen bonding and salt bridge interactions between USP14 and ubiquitin, which is essential for DUB activity. Structural dynamics insights from this study pinpoint the important local conformational landscape of USP14 by the phosphorylation event, which would be critical for understanding USP14-mediated proteasome regulation and designing future therapeutics.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas c-akt , Ubiquitina Tiolesterasa , Fosforilación , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Ubiquitina/metabolismo , Activación Enzimática , Dominio Catalítico , Unión Proteica , Conformación Proteica
3.
Cell Death Dis ; 15(6): 436, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902268

RESUMEN

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, necessitating the identification of novel therapeutic targets. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is involved in biological processes critical to cancer progression, such as regulation of solute carrier transporter proteins and metabolic pathways, including mTORC1. However, the metabolic processes governed by LAPTM4B and its role in oncogenesis remain unknown. In this study, we conducted unbiased metabolomic screens to uncover the metabolic landscape regulated by LAPTM4B. We observed common metabolic changes in several knockout cell models suggesting of a role for LAPTM4B in suppressing ferroptosis. Through a series of cell-based assays and animal experiments, we demonstrate that LAPTM4B protects tumor cells from erastin-induced ferroptosis both in vitro and in vivo. Mechanistically, LAPTM4B suppresses ferroptosis by inhibiting NEDD4L/ZRANB1 mediated ubiquitination and subsequent proteasomal degradation of the cystine-glutamate antiporter SLC7A11. Furthermore, metabolomic profiling of cancer cells revealed that LAPTM4B knockout leads to a significant enrichment of ferroptosis and associated metabolic alterations. By integrating results from cellular assays, patient tissue samples, an animal model, and cancer databases, this study highlights the clinical relevance of the LAPTM4B-SLC7A11-ferroptosis signaling axis in NSCLC progression and identifies it as a potential target for the development of cancer therapeutics.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Complejo de la Endopetidasa Proteasomal , Ubiquitina , Ferroptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Ratones , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Ubiquitinación , Ratones Desnudos , Proteolisis/efectos de los fármacos
4.
Sci Adv ; 10(24): eadm8449, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865459

RESUMEN

The accumulation of protein aggregates is a hallmark of many diseases, including Alzheimer's disease. As a major pillar of the proteostasis network, autophagy mediates the degradation of protein aggregates. The autophagy cargo receptor p62 recognizes ubiquitin on proteins and cooperates with TAX1BP1 to recruit the autophagy machinery. Paradoxically, protein aggregates are not degraded in various diseases despite p62 association. Here, we reconstituted the recognition by the autophagy receptors of physiological and pathological Tau forms. Monomeric Tau recruits p62 and TAX1BP1 via the sequential actions of the chaperone and ubiquitylation machineries. In contrast, Tau fibrils from Alzheimer's disease brains are recognized by p62 but fail to recruit TAX1BP1. This failure is due to the masking of fibrils ubiquitin moieties by p62. Tau fibrils are resistant to deubiquitylation, and, thus, this nonproductive interaction of p62 with the fibrils is irreversible. Our results shed light on the mechanism underlying autophagy evasion by protein aggregates and their consequent accumulation in disease.


Asunto(s)
Autofagia , Proteína Sequestosoma-1 , Ubiquitinación , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/química , Proteína Sequestosoma-1/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Unión Proteica , Agregado de Proteínas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitina/metabolismo , Proteínas de Neoplasias
5.
Sci Rep ; 14(1): 13037, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844605

RESUMEN

The proteasome-associated deubiquitinase USP14 is a potential drug target. Using an inducible USP14 knockout system in colon cancer cells, we found that USP14 depletion impedes cellular proliferation, induces cell cycle arrest, and leads to a senescence-like phenotype. Transcriptomic analysis revealed altered gene expression related to cell division and cellular differentiation. USP14 knockout cells also exhibited changes in morphology, actin distribution, and expression of actin cytoskeletal components. Increased ubiquitin turnover was observed, offset by upregulation of polyubiquitin genes UBB and UBC. Pharmacological inhibition of USP14 with IU1 increased ubiquitin turnover but did not affect cellular growth or morphology. BioGRID data identified USP14 interactors linked to actin cytoskeleton remodeling, DNA damage repair, mRNA splicing, and translation. In conclusion, USP14 loss in colon cancer cells induces a transient quiescent cancer phenotype not replicated by pharmacologic inhibition of its deubiquitinating activity.


Asunto(s)
Proliferación Celular , Senescencia Celular , Neoplasias Colorrectales , Ubiquitina Tiolesterasa , Humanos , Senescencia Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Línea Celular Tumoral , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Puntos de Control del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Ubiquitina/metabolismo
6.
Adv Virus Res ; 119: 1-38, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38897707

RESUMEN

The ubiquitination process is a reversible posttranslational modification involved in many essential cellular functions, such as innate immunity, cell signaling, trafficking, protein stability, and protein degradation. Viruses can use the ubiquitin system to efficiently enter host cells, replicate and evade host immunity, ultimately enhancing viral pathogenesis. Emerging evidence indicates that enveloped viruses can carry free (unanchored) ubiquitin or covalently ubiquitinated viral structural proteins that can increase the efficiency of viral entry into host cells. Furthermore, viruses continuously evolve and adapt to take advantage of the host ubiquitin machinery, highlighting its importance during virus infection. This review discusses the battle between viruses and hosts, focusing on how viruses hijack the ubiquitination process at different steps of the replication cycle, with a specific emphasis on viral entry. We discuss how ubiquitination of viral proteins may affect tropism and explore emerging therapeutics strategies targeting the ubiquitin system for antiviral drug discovery.


Asunto(s)
Ubiquitinación , Internalización del Virus , Replicación Viral , Humanos , Ubiquitina/metabolismo , Virus/metabolismo , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Proteínas Virales/genética , Virosis/virología , Virosis/inmunología , Virosis/metabolismo , Animales , Procesamiento Proteico-Postraduccional
7.
Mol Cell ; 84(11): 2011-2013, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848689

RESUMEN

In this issue of Molecular Cell, Yi et al.1 demonstrate that reduced mTORC1 activity induces the CTLH E3 ligase-dependent degradation of HMGCS1, an enzyme in the mevalonate pathway, thus revealing a unique connection between mTORC1 signaling and the degradation of a specific metabolic enzyme via the ubiquitin-proteasome system.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Complejo de la Endopetidasa Proteasomal , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteolisis , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/genética , Animales , Ácido Mevalónico/metabolismo , Ubiquitina/metabolismo
8.
Cell Mol Life Sci ; 81(1): 271, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888668

RESUMEN

Cystic Fibrosis (CF) is a genetic disease caused by mutations in CFTR gene expressing the anion selective channel CFTR located at the plasma membrane of different epithelial cells. The most commonly investigated variant causing CF is F508del. This mutation leads to structural defects in the CFTR protein, which are recognized by the endoplasmic reticulum (ER) quality control system. As a result, the protein is retained in the ER and degraded via the ubiquitin-proteasome pathway. Although blocking ubiquitination to stabilize the CFTR protein has long been considered a potential pharmacological approach in CF, progress in this area has been relatively slow. Currently, no compounds targeting this pathway have entered clinical trials for CF. On the other hand, the emergence of Orkambi initially, and notably the subsequent introduction of Trikafta/Kaftrio, have demonstrated the effectiveness of molecular chaperone-based therapies for patients carrying the F508del variant and even showed efficacy against other variants. These treatments directly target the CFTR variant protein without interfering with cell signaling pathways. This review discusses the limits and potential future of targeting protein ubiquitination in CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Ubiquitinación , Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/patología , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Retículo Endoplásmico/metabolismo , Animales , Mutación , Ubiquitina/metabolismo
9.
J Orthop Surg Res ; 19(1): 356, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879525

RESUMEN

BACKGROUND: Ubiquitin/ubiquitin-like (Ub/UBL)-related genes have been reported to be associated with the survival of osteosarcoma patients but have not yet been systematically explored. METHODS: The prognostic value of Ub/UBL-related genes, immune cell infiltration and clinicopathological features of patients were explored by Cox and LASSO regression analyses. A prognostic model was established and then validated in the GSE21257 dataset. The differential expression of hub genes in osteosarcoma was confirmed by qRT-PCR, western blotting and immunohistochemistry. RESULTS: Tripartite Motif Containing 8 (TRIM8) and Ubiquitin Like With PHD And Ring Finger Domains 2 (UHRF2) were screened as genes with prognostic value in osteosarcoma. Kaplan-Meier analysis and scatter plots indicated that patients in the high gene significance score group tended to have a worse prognosis. The concordance index, calibration analysis and receiver operating characteristic analysis suggested that the model had good prediction accuracy and high sensitivity and specificity. Decision curve analysis revealed that patients could obtain greater net benefit from this model. Functional analyses of the differentially expressed genes indicated that they were involved in important functions and pathways. TRIM8 and UHRF2 were confirmed to be highly expressed in osteosarcoma cell lines and tissues. CONCLUSIONS: TRIM8 and UHRF2 are potential prognostic genes in osteosarcoma, and these results provide insights into the roles of these genes and their implications for patient outcomes.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/inmunología , Osteosarcoma/mortalidad , Humanos , Pronóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/inmunología , Neoplasias Óseas/mortalidad , Masculino , Femenino , Biomarcadores de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina/genética
10.
Autophagy ; 20(7): 1471-1472, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744436

RESUMEN

The destination of a damaged lysosome is either being repaired if the damage is small or degraded through a lysosome-specific macroautophagy/autophagy pathway named lysophagy when the damage is too extensive to repair. Even though previous studies report lumenal glycan exposure during lysosome damage as a signal to trigger lysophagy, it is possibly beneficial for cells to initiate lysophagy earlier than membrane rupture. In a recently published article, Gahlot et al. determined that SPART/SPG20 senses lipid-packing defects and recruits and activates the ubiquitin ligase ITCH, which labels damaged lysosomes with ubiquitin chains to initiate lysophagy.


Asunto(s)
Autofagia , Lisosomas , Lisosomas/metabolismo , Humanos , Autofagia/fisiología , Animales , Macroautofagia/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Modelos Biológicos , Ubiquitina/metabolismo
11.
Biochem Soc Trans ; 52(3): 1085-1098, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38716888

RESUMEN

In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.


Asunto(s)
Enzimas Desubicuitinizantes , Humanos , Animales , Enzimas Desubicuitinizantes/metabolismo , Músculo Esquelético/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/fisiopatología , Enfermedades Neuromusculares/enzimología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/genética , Ratones , Proteostasis
12.
J Phys Chem B ; 128(23): 5557-5566, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38809811

RESUMEN

Accurate atomistic modeling of the interactions of a chromatography resin with a solute can inform the selection of purification conditions for a product, an important problem in the biotech and pharmaceutical industries. We present a molecular dynamics simulation-based approach for the qualitative prediction of interaction sites (specificity) and retention times (affinity) of a protein for a given chromatography resin. We mimicked the resin with an unrestrained ligand composed of the resin headgroup coupled with successively larger fragments of the agarose backbone. The interactions of the ligand with the protein are simulated in an explicit solvent using the Replica Exchange Molecular Dynamics enhanced sampling approach in conjunction with Hydrogen Mass Repartitioning (REMD-HMR). We computed the ligand interaction surface from the simulation trajectories and correlated the features of the interaction surface with experimentally determined retention times. The simulation and analysis protocol were first applied to a series of ubiquitin mutants for which retention times on Capto MMC resin are available. The ubiquitin simulations helped identify the optimal ligand that was used in subsequent simulations on six proteins for which Capto MMC elution times are available. For each of the six proteins, we computed the interaction surface and characterized it in terms of a range of simulation-averaged residue-level physicochemical descriptors. Modeling of the salt concentrations required for elution with respect to the descriptors resulted in a linear fit in terms of aromaphilicity and Kyte-Doolittle hydrophobicity that was robust to outliers, showed high correlation, and correctly ranked the protein elution order. The physics-based model building approach described here does not require a large experimental data set and can be readily applied to different resins and diverse biomolecules.


Asunto(s)
Simulación de Dinámica Molecular , Ubiquitina/química , Ligandos , Unión Proteica , Sefarosa/química , Proteínas/química
13.
Anal Chem ; 96(21): 8518-8527, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38711366

RESUMEN

Accurate structural determination of proteins is critical to understanding their biological functions and the impact of structural disruption on disease progression. Gas-phase cross-linking mass spectrometry (XL-MS) via ion/ion reactions between multiply charged protein cations and singly charged cross-linker anions has previously been developed to obtain low-resolution structural information on proteins. This method significantly shortens experimental time relative to conventional solution-phase XL-MS but has several technical limitations: (1) the singly deprotonated N-hydroxysulfosuccinimide (sulfo-NHS)-based cross-linker anions are restricted to attachment at neutral amine groups of basic amino acid residues and (2) analyzing terminal cross-linked fragment ions is insufficient to unambiguously localize sites of linker attachment. Herein, we demonstrate enhanced structural information for alcohol-denatured A-state ubiquitin obtained from an alternative gas-phase XL-MS approach. Briefly, singly sodiated ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS) cross-linker anions enable covalent cross-linking at both ammonium and amine groups. Additionally, covalently modified internal fragment ions, along with terminal b-/y-type counterparts, improve the determination of linker attachment sites. Molecular dynamics simulations validate experimentally obtained gas-phase conformations of denatured ubiquitin. This method has identified four cross-linking sites across 8+ ubiquitin, including two new sites in the N-terminal region of the protein that were originally inaccessible in prior gas-phase XL approaches. The two N-terminal cross-linking sites suggest that the N-terminal half of ubiquitin is more compact in gas-phase conformations. By comparison, the two C-terminal linker sites indicate the signature transformation of this region of the protein from a native to a denatured conformation. Overall, the results suggest that the solution-phase secondary structures of the A-state ubiquitin are conserved in the gas phase. This method also provides sufficient sensitivity to differentiate between two gas-phase conformers of the same charge state with subtle structural variations.


Asunto(s)
Reactivos de Enlaces Cruzados , Ubiquitina , Ubiquitina/química , Reactivos de Enlaces Cruzados/química , Sodio/química , Gases/química , Cationes/química , Succinimidas/química , Espectrometría de Masas , Iones/química
14.
Clin Transl Med ; 14(5): e1719, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778460

RESUMEN

Cerebrovascular diseases (CVDs) are a major threat to global health. Elucidation of the molecular mechanisms underlying the pathology of CVDs is critical for the development of efficacious preventative and therapeutic approaches. Accumulating studies have highlighted the significance of ubiquitin-modifying enzymes (UMEs) in the regulation of CVDs. UMEs are a group of enzymes that orchestrate ubiquitination, a post-translational modification tightly involved in CVDs. Functionally, UMEs regulate multiple pathological processes in ischemic and hemorrhagic stroke, moyamoya disease, and atherosclerosis. Considering the important roles of UMEs in CVDs, they may become novel druggable targets for these diseases. Besides, techniques applying UMEs, such as proteolysis-targeting chimera and deubiquitinase-targeting chimera, may also revolutionize the therapy of CVDs in the future.


Asunto(s)
Trastornos Cerebrovasculares , Humanos , Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
15.
Plant Physiol Biochem ; 212: 108700, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781635

RESUMEN

Eukaryotic cells have evolved dynamic quality control pathways and recycling mechanisms for cellular homeostasis. We discuss here, the two major systems for quality control, the ubiquitin-proteasome system (UPS) and autophagy that regulate cellular protein and organelle turnover and ensure efficient nutrient management, cellular integrity and long-term wellbeing of the plant. Both the pathways rely on ubiquitination signal to identify the targets for proteasomal and autophagic degradation, yet they use distinct degradation machinery to process these cargoes. Nonetheless, both UPS and autophagy operate together as an interrelated quality control mechanism where they communicate with each other at multiple nodes to coordinate and/or compensate the recycling mechanism particularly under development and environmental cues. Here, we provide an update on the cellular machinery of autophagy and UPS, unravel the nodes of their crosstalk and particularly highlight the factors responsible for their differential deployment towards protein, macromolecular complexes and organelles.


Asunto(s)
Autofagia , Complejo de la Endopetidasa Proteasomal , Ubiquitina , Complejo de la Endopetidasa Proteasomal/metabolismo , Autofagia/fisiología , Ubiquitina/metabolismo , Ubiquitinación , Plantas/metabolismo
16.
Pharmacol Res ; 205: 107224, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777113

RESUMEN

INTRODUCTION: Current anti-rheumatic drugs are primarily modulating immune cell activation, yet their effectiveness remained suboptimal. Therefore, novel therapeutics targeting alternative mechanisms, such as synovial activation, is urgently needed. OBJECTIVES: To explore the role of Midline-1 (Mid1) in synovial activation. METHODS: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were used to establish a subcutaneous xenograft model. Wild-type C57BL/6, Mid1-/-, Dpp4-/-, and Mid1-/-Dpp4-/- mice were used to establish a collagen-induced arthritis model. Cell viability, cell cycle, qPCR and western blotting analysis were used to detect MH7A proliferation, dipeptidyl peptidase-4 (DPP4) and Mid1 levels. Co-immunoprecipitation and proteomic analysis identified the candidate protein of Mid1 substrates. Ubiquitination assays were used to determine DPP4 ubiquitination status. RESULTS: An increase in Mid1, an E3 ubiquitin ligase, was observed in human RA synovial tissue by GEO dataset analysis, and this elevation was confirmed in a collagen-induced mouse arthritis model. Notably, deletion of Mid1 in a collagen-induced arthritis model completely protected mice from developing arthritis. Subsequent overexpression and knockdown experiments on MH7A, a human synoviocyte cell line, unveiled a previously unrecognized role of Mid1 in synoviocyte proliferation and migration, the key aspects of synovial activation. Co-immunoprecipitation and proteomic analysis identified DPP4 as the most significant candidate of Mid1 substrates. Mechanistically, Mid1 promoted synoviocyte proliferation and migration by inducing ubiquitin-mediated proteasomal degradation of DPP4. DPP4 deficiency led to increased proliferation, migration, and inflammatory cytokine production in MH7A, while reconstitution of DPP4 significantly abolished Mid1-induced augmentation of cell proliferation and activation. Additionally, double knockout model showed that DPP4 deficiency abolished the protective effect of Mid1 defect on arthritis. CONCLUSION: Overall, our findings suggest that the ubiquitination of DPP4 by Mid1 promotes synovial cell proliferation and invasion, exacerbating synovitis in RA. These results reveal a novel mechanism that controls synovial activation, positioning Mid1 as a promising target for therapeutic intervention in RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Dipeptidil Peptidasa 4 , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional , Sinovitis , Ubiquitina-Proteína Ligasas , Animales , Artritis Reumatoide/metabolismo , Humanos , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/genética , Artritis Experimental/metabolismo , Artritis Experimental/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones , Sinovitis/metabolismo , Sinovitis/patología , Ratones Noqueados , Ubiquitinación , Ubiquitina/metabolismo , Ratones Endogámicos NOD , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Masculino , Proliferación Celular , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sinoviocitos/metabolismo , Sinoviocitos/patología
17.
Pharmacol Res ; 204: 107215, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744399

RESUMEN

The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.


Asunto(s)
Enfermedades Cardiovasculares , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/inmunología , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/metabolismo , Animales , Ubiquitina/metabolismo , Ubiquitina/inmunología , Transducción de Señal
18.
Biochim Biophys Acta Rev Cancer ; 1879(4): 189119, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761982

RESUMEN

Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.


Asunto(s)
Recurrencia Local de Neoplasia , Neoplasias , Complejo de la Endopetidasa Proteasomal , Ubiquitina , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Ubiquitina/metabolismo , Recurrencia Local de Neoplasia/patología , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral
19.
Cancer Lett ; 594: 216978, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38795760

RESUMEN

Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.


Asunto(s)
Transducción de Señal , Ubiquitina , Ubiquitinación , Humanos , Ubiquitina/metabolismo , Animales , Linfoma/metabolismo , Linfoma/tratamiento farmacológico , Linfoma/patología , Terapia Molecular Dirigida , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Enzimas Desubicuitinizantes/metabolismo
20.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739798

RESUMEN

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Asunto(s)
Péptidos , Plasmodium falciparum , Proteínas Protozoarias , Ubiquitina Tiolesterasa , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/genética , Humanos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/farmacología , Antimaláricos/química , Ubiquitina/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...