Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biotechnol Adv ; 33(2): 288-302, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25698505

RESUMEN

Glycosylation of small molecules like specialized (secondary) metabolites has a profound impact on their solubility, stability or bioactivity, making glycosides attractive compounds as food additives, therapeutics or nutraceuticals. The subsequently growing market demand has fuelled the development of various biotechnological processes, which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) production of glycosides. In this context, uridine glycosyltransferases (UGTs) have emerged as promising catalysts for the regio- and stereoselective glycosylation of various small molecules, hereby using uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives an extensive overview of the recently developed in vivo production processes using UGTs and discusses the major routes towards UDP-sugar formation. Furthermore, the use of interconverting enzymes and glycorandomization is highlighted for the production of unusual or new-to-nature glycosides. Finally, the technological challenges and future trends in UDP-sugar based glycosylation are critically evaluated and summarized.


Asunto(s)
Biotecnología , Carbohidratos/biosíntesis , Glicosiltransferasas/genética , Uridina Difosfato/biosíntesis , Secuencia de Aminoácidos/genética , Catálisis , Glicosilación , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Humanos , Especificidad por Sustrato , Uridina Difosfato/química
3.
J Biol Chem ; 287(2): 879-92, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22102281

RESUMEN

There is increasing evidence that in several fungi, rhamnose-containing glycans are involved in processes that affect host-pathogen interactions, including adhesion, recognition, virulence, and biofilm formation. Nevertheless, little is known about the pathways for the synthesis of these glycans. We show that rhamnose is present in glycans isolated from the rice pathogen Magnaporthe grisea and from the plant pathogen Botryotinia fuckeliana. We also provide evidence that these fungi produce UDP-rhamnose. This is in contrast to bacteria where dTDP-rhamnose is the activated form of this sugar. In bacteria, formation of dTDP-rhamnose requires three enzymes. Here, we demonstrate that in fungi only two genes are required for UDP-Rha synthesis. The first gene encodes a UDP-glucose-4,6-dehydratase that converts UDP-glucose to UDP-4-keto-6-deoxyglucose. The product was shown by time-resolved (1)H NMR spectroscopy to exist in solution predominantly as a hydrated form along with minor amounts of a keto form. The second gene encodes a bifunctional UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase that converts UDP-4-keto-6-deoxyglucose to UDP-rhamnose. Sugar composition analysis and gene expression studies at different stages of growth indicate that the synthesis of rhamnose-containing glycans is under tissue-specific regulation. Together, our results provide new insight into the formation of rhamnose-containing glycans during the fungal life cycle. The role of these glycans in the interactions between fungal pathogens and their hosts is discussed. Knowledge of the metabolic pathways involved in the formation of rhamnose-containing glycans may facilitate the development of drugs to combat fungal diseases in humans, as to the best of our knowledge mammals do not make these types of glycans.


Asunto(s)
Genes Fúngicos/fisiología , Glucosa/análogos & derivados , Magnaporthe/metabolismo , Azúcares de Uridina Difosfato/biosíntesis , Uridina Difosfato/análogos & derivados , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Glucosa/biosíntesis , Glucosa/genética , Magnaporthe/genética , Magnaporthe/patogenicidad , Datos de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Uridina Difosfato/biosíntesis , Uridina Difosfato/genética , Azúcares de Uridina Difosfato/genética
4.
Chem Biol ; 17(12): 1356-66, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21168771

RESUMEN

UDP-galactofuranose (UDP-Galf) is a substrate for two types of enzymes, UDP-galactopyranose mutase and galactofuranosyltransferases, which are present in many pathogenic organisms but absent from mammals. In particular, these enzymes are involved in the biosynthesis of cell wall galactan, a polymer essential for the survival of the causative agent of tuberculosis, Mycobacterium tuberculosis. We describe here the synthesis of derivatives of UDP-Galf modified at C-5 and C-6 using a chemoenzymatic route. In cell-free assays, these compounds prevented the formation of mycobacterial galactan, via the production of short "dead-end" intermediates resulting from their incorporation into the growing oligosaccharide chain. Modified UDP-furanoses thus constitute novel probes for the study of the two classes of enzymes involved in mycobacterial galactan assembly, and studies with these compounds may ultimately facilitate the future development of new therapeutic agents against tuberculosis.


Asunto(s)
Antituberculosos/química , Inhibidores Enzimáticos/química , Galactanos/biosíntesis , Galactosa/análogos & derivados , Galactosiltransferasas/antagonistas & inhibidores , Uridina Difosfato/análogos & derivados , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Galactanos/antagonistas & inhibidores , Galactosa/biosíntesis , Galactosa/química , Galactosa/farmacología , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Transferasas Intramoleculares/antagonistas & inhibidores , Transferasas Intramoleculares/metabolismo , Klebsiella pneumoniae/enzimología , Mycobacterium smegmatis/enzimología , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uridina Difosfato/biosíntesis , Uridina Difosfato/química , Uridina Difosfato/farmacología
5.
Biochemistry ; 49(38): 8398-414, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20799687

RESUMEN

Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce α-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase (→GlcNAc-malate) and the BaBshB deacetylase (→GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 Å resolution, identifies several active-site interactions important for the specific recognition of l-malate, but not other α-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-d-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.


Asunto(s)
Bacillus anthracis/enzimología , Cisteína/biosíntesis , Cisteína/metabolismo , Bacillus anthracis/metabolismo , Sitios de Unión , Borohidruros , Cisteína/análogos & derivados , Cisteína/química , Glucosamina/análogos & derivados , Glucosamina/biosíntesis , Glucosamina/metabolismo , Glicopéptidos , Glicosiltransferasas/biosíntesis , Glicosiltransferasas/metabolismo , Inositol , Liasas Intramoleculares , Peso Molecular , Oxidación-Reducción , Compuestos de Sulfhidrilo/metabolismo , Uridina Difosfato/biosíntesis , Uridina Difosfato/metabolismo
6.
Cell Microbiol ; 11(11): 1612-23, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19563461

RESUMEN

Galactofuranose (Galf) is a major molecule found in cell wall polysaccharides, secreted glycoproteins, membrane lipophosphoglycans and sphingolipids of Aspergillus fumigatus. The initial step in the Galf synthetic pathway is the re-arrangement of UDP-galactopyranose to UDP-Galf through the action of UDP-galactopyranose mutase. A mutant lacking the AfUGM1 gene encoding the UDP-galactopyranose mutase has been constructed. In the mutant, though there is a moderate reduction in the mycelial growth associated with an increased branching, it remains as pathogenic and as resistant to cell wall inhibitors and phagocytes as the wild-type parental strain. The major phenotype seen is a modification of the cell wall surface that results in an increase in adhesion of the mutants to different inert surfaces (glass and plastic) and epithelial respiratory cells. The adhesive phenotype is due to the unmasking of the mannan consecutive to the removal of galactofuran by the ugm1 mutation. Removal of the mannan layer from the mutant surface by a mannosidase treatment abolishes mycelial adhesion to surfaces.


Asunto(s)
Aspergillus fumigatus/fisiología , Adhesión Celular , Galactosa/análogos & derivados , Galactosa/metabolismo , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/ultraestructura , Línea Celular , Células Epiteliales/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactosa/biosíntesis , Eliminación de Gen , Humanos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Microscopía Electrónica de Rastreo , Micelio/ultraestructura , Esporas Fúngicas/crecimiento & desarrollo , Uridina Difosfato/análogos & derivados , Uridina Difosfato/biosíntesis
7.
Clin Pharmacol Ther ; 78(1): 81-8, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16003296

RESUMEN

The tuberculostatic compound rifampin (INN, rifampicin) induces the expression of a number of drug metabolism-related genes involved in multidrug resistance (P-glycoprotein and multidrug resistance proteins 1 and 2), cytochromes (cytochrome P450 [CYP] 3A4), uridine diphosphate-glucuronosyltransferases, monoamine oxidases, and glutathione S -transferases. Drugs that depend on these enzymes for their metabolism are prone to drug interactions when coadministered with rifampin. A novel, clinically relevant drug interaction is described between rifampin and mycophenolate mofetil (MMF), a cornerstone immunosuppressive molecule used in solid organ transplantation. Long-term rifampin therapy caused a more than twofold reduction in dose-corrected mycophenolic acid (MPA) exposure (dose-interval area under the concentration curve from 0 to 12 hours [AUC 0-12]) when administered simultaneously in a heart-lung transplant recipient, whereas subsequent withdrawal of rifampin resulted in reversal of these changes after 2 weeks of washout (dose-corrected AUC 0-12 after rifampin withdrawal, 19.7 mg.h.L-1.g -1 versus 6.13 mg.h.L-1.g-1 before rifampin withdrawal [221% change]; dose-uncorrected AUC 0-12 after rifampin withdrawal, 29.6 mg.h/L [daily MMF dose, 3 g] versus 18.4 mg.h/L [daily MMF dose, 6 g] during rifampin administration [60.8% change]). Failure to recognize this drug interaction could potentially lead to MPA underexposure and loss of clinical efficacy. The effect of rifampin on MPA metabolism can, at least in part, be explained by simultaneous induction of renal, hepatic, and gastrointestinal uridine diphosphate-glucuronosyltransferases and organic anion transporters with subsequent functional inhibition of enterohepatic recirculation of MPA.


Asunto(s)
Interacciones Farmacológicas , Glucuronosiltransferasa/biosíntesis , Ácido Micofenólico/análogos & derivados , Ácido Micofenólico/uso terapéutico , Rifampin/uso terapéutico , Uridina Difosfato/biosíntesis , Área Bajo la Curva , Enfermedad Crónica , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Quimioterapia Combinada , Circulación Enterohepática/efectos de los fármacos , Circulación Enterohepática/fisiología , Trasplante de Corazón-Pulmón , Histiocitosis de Células de Langerhans/complicaciones , Histiocitosis de Células de Langerhans/diagnóstico , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/diagnóstico , Masculino , Tasa de Depuración Metabólica/efectos de los fármacos , Persona de Mediana Edad , Ácido Micofenólico/sangre , Ácido Micofenólico/farmacología , Farmacología Clínica/educación , Farmacología Clínica/métodos , Insuficiencia Respiratoria/complicaciones , Insuficiencia Respiratoria/diagnóstico , Rifampin/farmacología , Tacrolimus/sangre , Tacrolimus/uso terapéutico , Factores de Tiempo , Privación de Tratamiento
8.
Drug Metab Dispos ; 31(11): 1361-8, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14570768

RESUMEN

Nicotine is considered the major addictive agent in tobacco. Tobacco users extensively metabolize nicotine to cotinine. Both nicotine and cotinine undergo N-glucuronidation. Human liver microsomes have been shown to catalyze the formation of these N-glucuronides. However, which UDP-glucuronosyltransferases contribute to this catalysis has not been identified. To identify these enzymes, we initially measured the rates of glucuronidation by 15 human liver microsome samples. Fourteen of the samples glucuronidated both nicotine and cotinine at rates ranging from 146 to 673 pmol/min/mg protein and 140 to 908 pmol/min/mg protein, respectively. The rates of nicotine glucuronidation and cotinine glucuronidation by these 14 samples were correlated, r = 0.97 (p < 0.0001). The glucuronidation of nicotine and cotinine by heterologously expressed UGT1A3, UGT1A4, and UGT1A9 was also determined. All three enzymes catalyzed the glucuronidation of nicotine. However, the rate of catalysis by UGT1A4 Supersomes was more than 30-fold greater than that by either UGT1A3 Supersomes or UGT1A9 Supersomes. Interestingly, when expressed per UGT1A protein, measured by a UGT1A specific antibody, cell lysate from V79-expressed UGT1A9 catalyzed nicotine glucuronidation at a rate 17-fold greater than did UGT1A9 Supersomes. UGT1A4 Supersomes also catalyzed cotinine N-glucuronidation, but at one-tenth the rate of nicotine glucuronidation. Cotinine glucuronidation by either UGT1A3 or UGT1A9 was not detected. Both propofol, a UGT1A9 substrate, and imipramine, a UGT1A4 substrate, inhibited the glucuronidation of nicotine and cotinine by human liver microsomes. Taken together, these data support a role for both UGT1A9 and UGT1A4 in the catalysis of nicotine and cotinine N-glucuronidation.


Asunto(s)
Cotinina/metabolismo , Glucurónidos/metabolismo , Glucuronosiltransferasa/biosíntesis , Microsomas Hepáticos/enzimología , Nicotina/metabolismo , Animales , Cotinina/química , Cricetinae , Regulación Enzimológica de la Expresión Génica/fisiología , Glucurónidos/química , Glucuronosiltransferasa/genética , Humanos , Nicotina/química , Uridina Difosfato/biosíntesis , Uridina Difosfato/genética
10.
Biosci Biotechnol Biochem ; 61(6): 956-9, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9214753

RESUMEN

Enzymatic production of cytidine diphosphate choline (CDP-choline) using orotic acid and choline chloride as substrates was investigated using a 200-ml beaker as a reaction vessel. When Cornybacterium ammoniagenes KY13505 cells were used as the enzyme source, UMP was accumulated up to 28.6 g/liter (77.6 mM) from orotic acid after 26 h of reaction. In this reaction, UDP and UTP were also accumulated, but CTP, a direct precursor of CDP-choline, was not accumulated sufficiently. Escherichia coli JF646/pMW6 cells, which overproduce CTP synthetase by selfcloning of the pyrG gene, were used together with cells of KY12505 for the enzymatic reaction using orotic acid as a substrate. CTP was produced at 8.95 g/liter (15.1 mM) after 23 h of this reaction. To produce CDP-choline, two additional enzyme activities were needed. E. coli MM294/pUCK3 and MM294/pCC41 cells, which express a choline kinase from Saccharomyces cerevisiae (CKIase; encoded by the CKI gene) and a cholinephosphate cytidylyltransferase from S. cerevisiae (CCTase; encoded by the CCT gene) respectively, were added to this CTP-producing reaction system. After 23 h of the reaction using orotic acid and choline chloride as substrates, 7.7 g/liter (15.1 mM) of CDP-choline was accumulated without addition of ATP or phosphoribosylpyrophosphate (PRPP). ATP and PRPP required in the CDP-choline forming reaction system are biosynthesized by those cells using glucose as a substrate.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Colina/metabolismo , Corynebacterium/enzimología , Citidina Difosfato Colina/síntesis química , Escherichia coli/enzimología , Regulación Enzimológica de la Expresión Génica/genética , Ácido Orótico/metabolismo , Nucleótidos de Pirimidina/biosíntesis , Colina/química , Cromatografía Líquida de Alta Presión , Corynebacterium/genética , Citidina Trifosfato/biosíntesis , Escherichia coli/genética , Ligasas/biosíntesis , Ácido Orótico/química , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Plásmidos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Uridina Difosfato/biosíntesis , Uridina Monofosfato/biosíntesis , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo , Uridina Trifosfato/biosíntesis
11.
Anal Biochem ; 242(1): 1-7, 1996 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-8923956

RESUMEN

A method to prepare UDP-galactofuranose (UDP-Galf) free of UDP-galactopyranose (UDP-Galp) is described. The UDP-Galf is synthesized enzymatically from UDP-Galp using the enzyme UDP-galactopyranose mutase. Treatment of UDP-Galp with the enzyme yields an equilibrium mixture of UDP-Galp and UDP-Galf in which UDP-Galf is approximately 7%. In spite of its low yield, the UDP-Galf is readily purified from starting UDP-Galp using a Dionex PA-100 ion exchange HPLC column. The purified UDP-Galf was characterized by chemical degradations, by electrospray mass spectrometry, and by several nuclear magnetic resonance techniques. In addition, an HPLC assay for the enzyme UDP-galactopyranose mutase is presented that requires 0.5 microgram of UDP-Galf per assay and can be used for both qualitative and quantitative measurements of the enzyme activity. These procedures should thus aid in the characterization of the enzymes involved in galactofuranosyl biosynthesis for the cell walls of Mycobacteria, for the lipophosphoglycan of Leishmania, and for other microorganisms where galactofuranosyl residues are found.


Asunto(s)
Proteínas Bacterianas/análisis , Carbohidrato Epimerasas/análisis , Cromatografía Líquida de Alta Presión/métodos , Proteínas de Escherichia coli , Galactosa/análogos & derivados , Transferasas Intramoleculares , Uridina Difosfato/análogos & derivados , Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/enzimología , Galactosa/biosíntesis , Galactosa/química , Galactosa/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Espectrofotometría Ultravioleta , Uridina Difosfato/biosíntesis , Uridina Difosfato/química , Uridina Difosfato/aislamiento & purificación
12.
Anal Biochem ; 232(2): 197-203, 1995 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-8747475

RESUMEN

UTP, labeled with 15N and 13C (at all carbon atoms of the ribose moiety), was obtained enzymatically from [15N]uracil and [13C6]glucose. Eleven enzymes and suitable substrates reconstituted a metabolic pathway in which glucose was first transformed to 5-phosphoribosyl-1-pyrophosphate. The latter compound plus uracil yielded UMP in a second step by the reaction catalyzed by uracil phosphoribosyltransferase. UMP was subsequently phosphorylated to the corresponding di- and triphosphate. ATP, required for five phosphorylation reactions, was regenerated from creatine phosphate, whereas NADP+ necessary for the oxidation of glucose 6-phosphate and 6-phosphogluconate was recycled by glutamate dehydrogenase and excess of ammonia and alpha-oxoglutarate. Despite the number and complexity of the enzymatic steps, the synthesis of [15N, 13C]UTP is straightforward with an overall yield exceeding 60%. This method, extended and diversified to the synthesis of all natural ribonucleotides, is a more economical alternative for obtaining nucleic acids for structural analysis by heteronuclear NMR spectroscopy.


Asunto(s)
Marcaje Isotópico/métodos , Uridina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Isótopos de Carbono , Enzimas/metabolismo , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Espectroscopía de Resonancia Magnética , NADP/metabolismo , Isótopos de Nitrógeno , Fosforilación , Proteínas Recombinantes/metabolismo , Ribulosafosfatos/biosíntesis , Uracilo/metabolismo , Uridina Difosfato/biosíntesis , Uridina Monofosfato/biosíntesis , Uridina Trifosfato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA